MONITORING AND EVALUATION OF THE CHELAN COUNTY PUD HATCHERY PROGRAMS

2007 Annual Report

June 1, 2008

CHELAN COUNTY

Prepared by:
T. Hillman
M. Miller

BioAnalysts, Inc.
Boise, ID
C. Peven

Chelan PUD
Wenatchee, WA
M. Tonseth
T. Miller
K. Truscott
A. Murdoch

WA Dept of Fish and Wildlife
Wenatchee, WA

Prepared for:
HCP Hatchery Committee
Wenatchee, WA

TABLE OF CONTENTS

SECTION 1: INTRODUCTION 1
SECTION 2: SUMMARY OF METHODS 5
2.1 Broodstock Sampling 5
2.2 Within Hatchery Monitoring 6
2.3 Juvenile Sampling 8
2.4 Spawning/Carcass Surveys 10
SECTION 3: WENATCHEE STEELHEAD 17
3.1 Broodstock Sampling 17
3.2 Hatchery Rearing 21
3.3 Disease Monitoring 28
3.4 Natural Juvenile Productivity 29
3.5 Spawning Surveys. 34
3.6 Life History Monitoring 38
3.7 ESA/HCP Compliance 44
SECTION 4: WENATCHEE SOCKEYE SALMON 49
4.1 Broodstock Sampling 49
4.2 Hatchery Rearing 53
4.3 Disease Monitoring 58
4.4 Natural Juvenile Productivity 58
4.5 Spawning Surveys. 61
4.6 Carcass Surveys 63
4.7 Life History Monitoring 67
4.8 ESA/HCP Compliance 77
SECTION 5: WENATCHEE (CHIWAWA) SPRING CHINOOK 79
5.1 Broodstock Sampling 79
5.2 Hatchery Rearing 84
5.3 Disease Monitoring 89
5.4 Natural Juvenile Productivity 89
5.5 Spawning Surveys. 99
5.6 Carcass Surveys 104
5.7 Life History Monitoring 109
5.8 ESA/HCP Compliance 120
SECTION 6: WENATCHEE SUMMER CHINOOK 125
6.1 Broodstock Sampling 125
6.2 Hatchery Rearing 130
6.3 Disease Monitoring. 135
6.4 Natural Juvenile Productivity 135
6.5 Spawning Surveys. 136
6.6 Carcass Surveys 139
6.7 Life History Monitoring 144
6.8 ESA/HCP Compliance 152
SECTION 7: METHOW SUMMER CHINOOK 155
7.1 Broodstock Sampling 155
7.2 Hatchery Rearing 160
7.3 Disease Monitoring 165
7.4 Spawning Surveys. 165
7.5 Carcass Surveys 169
7.6 Life History Monitoring 173
7.7 ESA/HCP Compliance 181
SECTION 8: OKANOGAN/SIMILKAMEEN SUMMER CHINOOK 183
8.1 Broodstock Sampling 183
8.2 Hatchery Rearing 183
8.3 Disease Monitoring 187
8.4 Spawning Surveys. 188
8.5 Carcass Surveys 191
8.6 Life History Monitoring 195
8.7 ESA/HCP Compliance 203
SECTION 9: TURTLE ROCK SUMMER CHINOOK 205
9.1 Broodstock Sampling 205
9.2 Hatchery Rearing 205
9.3 Life History Monitoring 210
9.4 ESA/HCP Compliance 216
SECTION 10: REFERENCES 219
SECTION 11: APPENDICES 221

PREFACE

This annual report is the result of coordinated field efforts conducted by Washington Department of Fish and Wildlife (WDFW), the Confederated Tribes and Bands of the Yakama Nation (Yakama Nation), Chelan County Public Utility District (Chelan PUD), and BioAnalysts, Inc. An extensive amount of work was conducted in 2006 and 2007 to collect the data needed to monitor the effects of the Chelan County PUD Hatchery Programs. This work was directed and coordinated by the Habitat Conservation Plan (HCP) Hatchery Committee, consisting of the following members: David Carie, U.S. Fish and Wildlife Service (USFWS); Jerry Marco, Confederated Tribes of the Colville Reservation (Colville Tribes); Kristine Petersen, National Marine Fisheries Service (NMFS); Shaun Seaman, Chelan County PUD; Tom Scribner, the Yakama Nation; and Kirk Truscott, WDFW.

The approach to monitoring the hatchery programs was guided by the "Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Programs" written by Andrew Murdoch and Chuck Peven. Technical aspects of the monitoring and evaluation program were developed by the Hatchery Evaluation Technical Team (HETT), which consists of the following scientists: Matt Cooper, USFWS; Steve Hays, Chelan PUD; Tracy Hillman, BioAnalysts; Tom Kahler, Douglas PUD; Rick Klinge, Douglas PUD; Russell Langshaw, Grant PUD; Ben Lenz, Grant PUD; Andrew Murdoch, WDFW; Keely Murdoch, Yakama Nation; Kristine Petersen, NMFS; Chuck Peven, Chelan PUD; and Ali Wick, Anchor Environmental. The HETT developed an "Analytical Framework for Monitoring and Evaluating PUD Hatchery Programs" (Hays et al. 2006), which directs the analyses of hypotheses developed under the conceptual approach. Most of the analyses outlined in the Analytical Framework paper will be conducted after the fifth year of monitoring.

Most of the work reported in this paper was funded by Chelan PUD. Bonneville Power Administration purchased the Passive Integrated Transponder (PIT) tags that were used to mark juvenile Chinook and steelhead. This is the second annual report written under the direction of the HCP.
"I often say that when you can measure something and express it in numbers, you know something about it. When you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind. It may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of science, whatever it may be."

Lord Kelvin

SECTION 1: INTRODUCTION

Chelan PUD implements hatchery programs as part of two Habitat Conservation Plan (HCP) agreements related to the operation of Rocky Reach and Rock Island dams. The HCPs define the goal of achieving no net impact to spring Chinook, summer/fall Chinook, sockeye salmon, steelhead, and coho salmon affected by the operation of these dams. The two HCPs identify general program objectives as "contributing to the rebuilding and recovery of naturally reproducing populations in their native habitats, while maintaining genetic and ecologic integrity, and supporting harvest." The fish resource management agencies initially developed the following general goal statements for each hatchery program, which were adopted by the Hatchery Committee:
(1) Support the recovery of ESA listed species by increasing the abundance of natural adult population, while ensuring appropriate spatial distribution, genetic stock integrity, and adult spawner productivity.

Includes the Wenatchee spring Chinook, Wenatchee summer steelhead, and Methow spring Chinook programs.
(2) Increase the abundance of the natural adult population of unlisted plan species, while ensuring appropriate spatial distribution, genetic stock integrity, and adult spawner productivity. In addition, provide harvest opportunities in years when spawning escapement is sufficient to support harvest.

Includes the Wenatchee sockeye, Wenatchee summer/fall Chinook, Methow summer/fall Chinook, Okanogan summer/fall Chinook, and Okanogan sockeye programs.
(3) Provide salmon for harvest and increase harvest opportunities, while segregating returning adults from natural tributary spawning populations.

Includes the Turtle Rock summer/fall Chinook program.
Thus, there are two different types of artificial propagation strategies that address the different goals of the program: supplementation and harvest augmentation. The supplementation programs primarily focus on increasing the natural production of fish in tributaries. A fundamental assumption of this strategy is that hatchery fish returning to the spawning grounds are "reproductively similar" to naturally produced fish. The second program type, harvest augmentation, focuses on increasing harvest opportunities. This is accomplished by releasing hatchery fish directly into the Columbia River with the intent that returning adults remain segregated from the naturally spawning populations in tributaries.
Monitoring is needed to determine if the programs are performing properly. The HCP Hatchery Committee adopted a monitoring and evaluation (M\&E) approach that will guide the assessment of the hatchery programs. The approach, developed by Murdoch and Peven (2005), identified the following objectives:
(1) Determine if supplementation programs have increased the number of naturally spawning and naturally produced adults of the target population relative to a nonsupplemented population (i.e., reference stream) and the changes in the natural replacement rate (NRR) of the supplemented population is similar to that of the nonsupplemented population.
(2) Determine if the run timing, spawn timing, and spawning distribution of both the natural and hatchery components of the target population are similar.
(3) Determine if genetic diversity, population structure, and effective population size have changed in natural spawning populations as a result of the hatchery program. Additionally, determine if hatchery programs have caused changes in phenotypic characteristics of natural populations.
(4) Determine if the hatchery adult-to-adult survival (i.e., hatchery replacement rate or HRR) is greater than the natural adult-to-adult survival (i.e., natural replacement rate or NRR) and equal to or greater than the program specific HRR expected value based on survival rates listed in the BAMP (1998).
(5) Determine if the stray rate of hatchery fish is below the acceptable levels to maintain genetic variation between stocks.
(6) Determine if hatchery fish were released at the programmed size and number.
(7) Determine if the proportion of hatchery fish on the spawning grounds affects the freshwater productivity (i.e., number of juveniles per redd) of supplemented streams when compared to non-supplemented streams.
(8) Determine if harvest opportunities have been provided using hatchery returning adults where appropriate (e.g., Turtle Rock program).
Two additional objectives that were not explicit in the goals specified above but were included in the M\&E approach because they relate to goals and concerns of all artificial production programs include:
(9) Determine whether bacterial kidney disease (BKD) management actions lower the prevalence of disease in hatchery fish and subsequently in the naturally spawning population. In addition, when feasible, assess the transfer of Renibacterium salmoninarum (Rs) infection at various life stages from hatchery fish to naturally produced fish.
(10) Determine if the release of hatchery fish impact non-target taxa of concern (NTTOC) within acceptable limits.
Attending each objective is one or more testable hypotheses (see Murdoch and Peven 2005). Each hypothesis will be tested statistically following the routines identified in Hays et al. (2006). Most of these analytical routines will be conducted at the end of five-year monitoring blocks, as outlined in the M\&E plan (Murdoch and Peven 2005; Hays et al. 2006).
Throughout each five-year monitoring period, annual reports will be generated that describe the M\&E data collected during a specific year. This is the second annual report developed under the direction of the M\&E guidance approach (Murdoch and Peven 2005). The purpose of this report is to describe monitoring activities conducted in 2007. Activities included broodstock collection, collection of life-history information, within hatchery spawning and rearing activities, juvenile monitoring within streams, and redd and carcass surveys. Data from reference areas are not included in this annual report, because the process of selecting reference areas is still occurring. To the extent currently possible, we have included information collected before 2007.

This report is divided into several sections, each representing a different species (i.e., steelhead, sockeye salmon, spring Chinook, and summer Chinook). For all species we provide broodstock information; hatchery rearing history, release data, and survival estimates; juvenile migration and productivity estimates; redd counts, distribution, and spawn timing; spawning escapements; and lifehistory characteristics. For salmon species, we also provide information on carcasses.

Finally, we end each section by addressing compliance issues with ESA/HCP mandates. For each Chelan PUD Hatchery Program, WDFW and the PUD are authorized annual take of ESA-listed spring Chinook and steelhead through Section 10 of the Endangered Species Act (ESA), including:

1. ESA Section 10(a)(1)(A) Permit No. 1395, which authorizes the annual take of adult and juvenile endangered upper Columbia River (UCR) spring Chinook and threatened UCR steelhead associated with implementing artificial propagation programs for the enhancement of UCR steelhead. The authorization includes takes associated with adult broodstock collection, hatchery operations, juvenile fish releases, monitoring and evaluation activities, and management of adult returns related to UCR steelhead artificial propagation programs in the UCR region (NMFS 2003a).
2. ESA Section 10(a)(1)(A) Permit No. 1196, which authorizes the annual take of adult and juvenile endangered UCR spring Chinook and threatened UCR steelhead associated with implementing artificial propagation programs for the enhancement of UCR spring Chinook. The authorization includes takes associated with adult broodstock collection, hatchery operations, juvenile fish releases, and monitoring and evaluation activities supporting UCR spring Chinook artificial propagation programs in the UCR region (NMFS 2004).
3. ESA Section $10(\mathrm{a})(1)(\mathrm{A})$ Permit No. 1347, which authorizes the annual incidental take of adult and juvenile endangered UCR spring Chinook and threatened UCR steelhead through actions associated with implementing artificial propagation programs for the enhancement of non-listed anadromous fish populations in the UCR. The authorization includes incidental takes associated with adult broodstock collection, hatchery operations, juvenile fish releases, and monitoring and evaluation activities associated with non-listed summer Chinook, fall Chinook, and sockeye salmon artificial propagation programs in the UCR region (NMFS 2003b).

SECTION 2: SUMMARY OF METHODS

Sampling in 2007 followed the methods and protocols described in Murdoch and Peven (2005) and Peven (2006). In this section we only briefly review the methods and protocols. More detailed information can be found in Murdoch and Peven (2005) and Peven (2006).

2.1 Broodstock Sampling

Methods for collecting broodstock during 2007 are described in Appendix A in WDFW (2007). Methods for sampling broodstock are described in Appendices A and B in Murdoch and Peven (2006). Generally, 2007 broodstock were collected over the migration period (to the extent allowed in ESA-permit provisions) in proportion to their temporal occurrence at collection sites, with inseason adjustments dictated by 2007 run timing and trapping success relative to achieving weekly and annual collection objectives. Pre-season weekly collection objectives are shown in Table 2.1 and assumptions associated with broodstock trapping are provided in Table 2.2.
Table 2.1. Weekly collection objectives for steelhead, sockeye, and Chinook in 2007.

Collection week beginning day	Chiwawa Spring Chinook ${ }^{\text {a }}$		Wild Wenatchee Summer Chinook	Wild ME/OK Summer Chinook	Wenatchee Steelhead		Wild Wenatchee Sockeye ${ }^{\text {b }}$	
	Hatchery	Wild			Hatchery	Wild	Male	Female
20 May	1							
27 May	5	2						
3 June	11	5						
10 June	17	5						
17 Jun	19	6						
24 Jun	22	6						
1 Jul	27	7	126	87	1	1		
8 Jul	14	5	98	83	1	1		
15 Jul	4	2	82	83	1	1	20	20
22 Jul	3	1	63	73	1	1	41	41
29 Jul	0	1	44	59	1	1	25	25
5 Aug			29	44	4	4	20	20
12 Aug			21	40	7	7	16	16
19 Aug			16	26	8	8	8	8
26 Aug			13	24	7	7		
2 Sep				23	6	6		
9 Sep				14	6	6		
16 Sep					8	8		
23 Sep					9	9		
30 Sep					17	17		
7 Oct					15	15		
14 Oct					8	8		
21 Oct					4	4		
28 Oct								

Collection week beginning day	Chiwawa Spring Chinook ${ }^{\text {a }}$		Wild Wenatchee Summer Chinook	Wild ME/OK Summer Chinook	Wenatchee Steelhead		Wild Wenatchee Sockeye ${ }^{\text {b }}$	
	Hatchery	Wild			Hatchery	Wild	Male	Female
Total	123	40	492	556	104	104	130	130

${ }^{\text {a }}$ Collection quota based on 30 April 2007 run-escapement abundance and migration timing estimate.
${ }^{\mathrm{b}}$ Collection targeted equal numbers of males and females.
Table 2.2. Biological and trapping assumptions associated with collecting broodstock for the Chelan PUD Hatchery Programs.

Assumptions	Wenatchee Steelhead	Wenatchee Sockeye	Chiwawa Spring Chinook	Wenatchee Summer Chinook	ME/OK Summer Chinook
Production level	400,000 yearling smolts	$\begin{aligned} & 200,000 \\ & \text { subyearlings } \end{aligned}$	672,000 yearling smolts	864,000 yearling smolts	976,000 yearling smolts
Broodstock required	208 adults (not to exceed 33% of population)	260 adults (not to exceed 33% of population)	379 adults (not to exceed 33% of population)	492 adults (not to exceed 33% of the population)	556 adults (not to exceed 33% of the population)
Trapping period	7 July - 12 Nov	7 July - 28 Aug	1 May - 12 Sep	7 Jul - 12 Sep	7 Jul - 15 Sep
\# days/week	5	3	4	5	3
\# hours/day	24	16	24	24	16
Broodstock composition	$\begin{gathered} 50 \% \text { wild; } 50 \% \\ \text { WxW and/or HxW } \end{gathered}$	100\% wild	Sliding scale; minimum 33\% wild (depends on the number of wild fish)	100\% wild	100\% wild
Trapping site	Dryden Dam (Tumwater will be used if weekly quota not achieved at Dryden Dam)	Tumwater Dam	Tumwater Dam (hatchery fish only) and the Chiwawa Weir (both hatchery and wild fish)	Dryden Dam (Tumwater will be used if weekly quota not achieved at Dryden Dam)	Wells Dam east ladder

Several biological parameters were measured during broodstock collection at adult collection sites. Those parameters included the date and start and stop time of trapping; number of each species collected for broodstock; origin, size, and sex of trapped fish; age from scale analysis; and prespawn mortality. For each species, trap efficiency, extraction rate, and trap operation effectiveness were estimated following procedures in Appendix B in Murdoch and Peven (2006). In addition, a representative sample of most species trapped but not taken for broodstock were sampled for origin, sex, age, and size (stock assessment). All steelhead trapped were sampled.

2.2 Within Hatchery Monitoring

Methods for monitoring hatchery activities are described in Appendix C in Murdoch and Peven (2005). Biological information collected from all spawned adult fish included age at maturity, length at maturity, spawn timing, and fecundity of females. In addition, all fish were checked for tags and females were sampled for disease.

Throughout the rearing period in the hatchery, fish were sampled for growth, health, and survival. Each month, lengths and weights were collected from a sample of fish and rearing density indices were calculated. In addition, fish were examined monthly for health problems following standard fish health monitoring practices for hatcheries. Various life-stage survivals were estimated for each hatchery stock. These estimates were then compared to the standard survival rates identified in Table 2.3 to provide insight as to how well the hatchery operations were performing. Failure to achieve a survival standard could indicate a problem with some part of the hatchery program. However, failure to meet a standard may not be indicative of the overall success of the program to meet the goals identified in Section 1.

Table 2.3. Standard life-stage survival rates for fish reared within the Chelan PUD hatchery programs.

Life stage	Standard survival rate (\%)
Collection-to-spawning (females)	90
Collection-to-spawning (males)	85
Unfertilized egg-to-eyed	92
Unfertilized egg-to-ponding	98
30 d after ponding	97
100 d after ponding	93
Ponding-to-release	90
Transport-to-release	95
Unfertilized egg-to-release	81

Nearly all hatchery fish from each stock were marked (adipose fin clip) or tagged (coded-wire tag or elastomer tag). Different combinations of marks and tags were used depending on the stock. In addition, about 10,000 juvenile hatchery fish from each stock of steelhead (HxW-early production, HxW-late production, and WxW) and spring Chinook were PIT tagged during late July and September to aid in estimating survival rates (e.g., smolt-to-adult) outside the hatchery. About 15,000 juvenile sockeye were PIT tagged in June.

Lastly, the size and number of fish released were assessed and compared to programmed production levels. The goal of the program is that numbers released and their sizes should fall within 10% of the programmed targets identified in Table 2.4. However, because of constraints due to run size and proportions of wild and hatchery adults, production levels may not be met every year.
Table 2.4. Targets for fish released from the Chelan PUD hatchery programs; CV = coefficient of variation.

Hatchery stock	Size targets			
Welease targets		Weight (g)	Fish/pound	
		Fork length (CV)	(9atchee Summer Chinook	864,000
$176(9.0)$	45.4	10		
Okanogan Summer Chinook	576,000	$176(9.0)$	45.4	10
Methow Summer Chinook	400,000	$176(9.0)$	45.4	10
Turtle Rock Summer Chinook (yearlings)	200,000	$176(9.0)$	45.4	10
Turtle Rock Summer Chinook (subyearlings)	$1,620,000$	$112(9.0)$	11.4	40
Chiwawa Spring Chinook	672,000	$176(9.0)$	37.8	12
Wenatchee Sockeye	200,000	$133(9.0)$	22.7	20

Hatchery stock	Selease targets	targets		
		Fork length (CV)	Weight (g)	Fish/pound
Wenatchee Steelhead		$198(9.0)$	75.6	6

2.3 Juvenile Sampling

Juvenile sampling within streams included operation of rotary smolt traps, snorkel observations, and PIT tagging. Methods for sampling juvenile fish are described in Appendix E in Murdoch and Peven (2005).

Smolt traps were located on the Wenatchee River at river km 9.6 at the West Monitor Bridge (Lower Wenatchee Trap) and about 0.5 km downstream from the mouth of Lake Wenatchee (Upper Wenatchee Trap), and in the Chiwawa River about 1 km upstream from the mouth (Chiwawa Trap). All traps operated throughout the smolt migration period. The Chiwawa Trap operated throughout most of the year (March through November) and not during icing or extreme high flow conditions. The following data were collected at each trap site: water temperature, discharge, number and identification of all species captured, degree of smoltification for anadromous fish, presence of marks and tags, size (fork lengths and weights), and scales from steelhead and sockeye salmon smolts. Trap efficiencies at each trap site were estimated by using mark-recapture trials conducted over a wide range of discharges. Linear models relating discharge and trap efficiencies were developed to estimate daily trap efficiencies during periods when no mark-recapture trials were conducted. The total number of fish migrating past the trap each day was estimated as the quotient of the daily number of fish captured and the estimated daily trap efficiency. Summing the daily totals resulted in the total emigration estimate.

Snorkel observations were used to estimate the number of juvenile spring Chinook salmon, juvenile rainbow/steelhead, and bull trout within the Chiwawa River basin. The focus of the study was on juvenile spring Chinook salmon. Sampling followed a stratified random design with proportional allocation of sites among strata. Strata were identified based on unique combinations of geology, land type, valley bottom type, stream state condition, and habitat types. A total of 189 randomly selected sites were surveyed during August (Table 2.5). Counts of fish within each sampling site were adjusted based on water temperatures. That is, non-linear models that described relationships between water temperatures and detection efficiencies (Hillman et al. 1992) were used to estimate total numbers of fish within sampling sites. These numbers were then converted to densities by dividing total fish numbers by the wetted surface area and water volume of sample sites. Total numbers within a stratum were estimated as the product of fish densities times the total wetted surface or water volume for the stratum. The sum of fish numbers across strata resulted in the total number of fish within the basin. The calculation of total numbers, densities, and degrees of certainty are fully explained in Hillman and Miller (2004).

Working in collaboration with the Integrated Status and Effectiveness Monitoring Program (ISEMP) funded by NOAA Fisheries and Bonneville Power Administration (BPA), crews PIT tagged juvenile wild Chinook and wild and hatchery steelhead throughout the Wenatchee basin. Tags were injected into juvenile fish collected at the Chiwawa Trap, Upper Wenatchee Trap, and the Lower Wenatchee Trap. In addition, fish were collected and tagged in the Chiwawa River upstream from the trap, in Nason Creek, and in the upper Wenatchee River between Tumwater and Lake Wenatchee. The
proposed number of wild spring Chinook and steelhead to be tagged at each location is provided in Table 2.6. The goal of this work was to better understand the life-history characteristics of fish in the Wenatchee Basin and to estimate SARs. This in turn improves the ability to detect potential impacts of the hatchery program on wild fish.

Table 2.5. Location of strata and numbers of randomly sampled sites within each strata that were sampled in the Chiwawa River basin in 2007.

Reach/stratum	River kilometers (RKm)	Number of randomly selected sites
Chiwawa River		
1	0.0-6.1	12
2	6.1-8.9	6
3	8.9-12.7	8
4	12.7-14.3	6
5	14.3-17.4	4
6	17.4-19.0	7
7	19.0-32.2	39
8	32.2-40.9	22
9	40.9-46.4	11
10	46.4-50.1	8
Phelps Creek		
1	0.0-0.6	3
Chikamin Creek (includes Minnow Creek)		
1	0.0-1.5	29
Rock Creek		
1	0.0-1.2	12
Peven Creek (unnamed stream on USGS map)		
1	0.0-0.1	6
Big Meadow Creek		
1	0.0-1.6	21
Alder Creek		
1	0.0-0.1	2
Brush Creek		
1	0.0-0.1	4
Y Creek		
1	0.0-0.1	2

Table 2.6. Number of wild spring Chinook and steelhead proposed for tagging at different locations within the Wenatchee Basin, 2007.

Sampling location		Target sample size	
		Wild steelhead	
Chiwawa Trap	$2,500-8,000$	$500-2,000$	
Chiwawa River	$500-2,000$	$500-2,000$	
Upper Wenatchee Trap	$500-1,000$	$50-250$	
Upper Wenatchee	$500-2,000$	$500-2,000$	
Nason Creek	$500-2,000$	$500-2,000$	
Lower Wenatchee Trap	$1,000-2,000$	$500-2,500$	
Total	$\mathbf{5 , 5 0 0 - 1 7 , 0 0 0}$	$\mathbf{2 , 5 5 0 - 1 0 , 7 5 0}$	

Survival rates for various juvenile life-stages were calculated based on estimates of seeding levels (total egg deposition), numbers of parr, numbers of emigrants, and numbers of smolts. Total egg deposition was estimated as the product of the number of redds counted in the basin times the mean fecundity of female spawners. Fecundity was estimated from females collected for broodstock using an electronic egg counter. Numbers of emigrants and smolts were estimated at trapping sites and numbers of parr were estimated using snorkel observations only in the Chiwawa Basin. Survival estimates could not be calculated for some stocks (e.g., summer Chinook) because life-stage abundance estimates were lacking.

2.4 Spawning/Carcass Surveys

Methods for conducting carcass and spawning ground surveys are detailed in Appendix F in Murdoch and Peven (2005). Information collected during spawning surveys included spawn timing, redd distribution, and redd abundance. Data collected during carcass surveys included sex, size (fork length and postorbital-to-hypural length), scales for aging ${ }^{1}$, degree of egg voidance, DNA samples, and identification of marks or tags. The sampling goal for carcasses was 20% of the spawning population. Crews also conducted snorkel surveys to assess the incidence of precocial fish spawning naturally in streams.

Both redd and carcass surveys were conducted in reaches that encompassed the spawning distribution of most populations. Steelhead surveys were the exception. These surveys were conducted within major spawning areas in the basin and therefore may not capture the entire spawning distribution of the population. Steelhead surveys were conducted during March through June in reaches and index areas described in Table 2.7. Total redd counts were estimated by expanding counts within non-index areas by expansion factors developed within index areas.

[^0]Table 2.7. Description of reaches and index areas surveyed for steelhead redds in the Wenatchee Basin.

Stream	Code	Reach	Index/reference area
Wenatchee River	W2	Sleepy Hollow Br to L. Cashmere Br	Monitor Boat Rmp to Cashmere Boat Rmp
	W6	Leavenworth Br to Icicle Rd Br	Leavenworth Boat Ramp to Icicle Ck
	W8	Tumwater Dam to Tumwater Br	Swift Boat Ramp to Tumwater Br
	W9	Tumwater Br to Chiwawa R	Tumwater Br to Plain
	W10	Chiwawa R to Lk Wenatchee	Chiwawa Pump St. to Lk Wenatchee
Peshastin Creek	P1	Mouth to Camas Cr	Kings Br to Camas Cr
	P2A	Camas Cr to Mouth of Scotty Cr	Ingalls Cr to Ruby Cr
	P2	Camas Cr to Mouth of Scotty Cr	FR7620 to Shaser Cr
Ingalls Creek	D1	Mouth to Trailhead RM 1	Mouth to Trailhead RM 1
	D2	Trailhead to Wilderness Bd RM 1.5	Trailhead to Wilderness Bd RM 1.5
Chiwawa River	C1	Mouth to Grouse Cr	Mouth to Rd 62 Br RM 6.4
	C2	Grouse Cr to Rock Cr	Chikamin Cr to Log Jam
Clear Creek	V1	Mouth to Hwy 22	Mouth to Hwy 22
	V2	Hwy 22 to Lower Culvert RM 2	Hwy 22 to Lower Culvert
Nason Creek	N1	Mouth to Kahler Cr Br	Mouth to Swamp Cr
	N3	Hwy 2 Br to Lower RR Br	Hwy 2 Br to Merrit Br
	N4	Lower RR Br to Whitepine Cr	Rayrock to Church Camp
Icicle River	I1	Mouth to Hatchery	Mouth to Boulder Block
Little Wenatchee	L2	Mouth to Lost Cr	Old Fish Weir to Lost Cr
	L3	Lost Cr to Rainy Cr Br	Lost Cr to Rainy Cr Br
White River	H2	Sears Cr Br to Napeequa R	Riprap Bank to Napeequa R
	H3	Napeequa R to Mouth of Panther Cr	Napeequa R to Grasshopper Meadows
Napeequa River	Q1	Mouth to RM 1	Mouth to RM1

Spring Chinook redd and carcass surveys were conducted during August through September in the Chiwawa River (including Rock and Chikamin creeks), Nason Creek, Icicle Creek, Peshastin Creek (including Ingalls Creek), upper Wenatchee River, Little Wenatchee River, and the White River (including the Napeequa River and Panther Creek). Survey reaches for spring Chinook are described in Table 2.8.

Table 2.8. Description of reaches surveyed for spring Chinook redds and carcasses in the Wenatchee Basin.

Stream	Code	Reach	River mile (RM)
Chiwawa River	C1	Mouth to Grouse Creek	0.0-11.7
	C2	Grouse Creek to Rock Creek	11.7-19.3
	C3	Rock Creek to Schaefer Creek	19.3-22.4
	C4	Schaefer Creek to Atkinson Flats	22.4-25.6
	C5	Atkinson Flats to Maple Creek	25.6-27.0
	C6	Maple Creek to Trinity	27.0-30.3
Rock Creek	R1	Mouth to End	0.0-0.5
Chikamin Creek	K1	Mouth to End	0.0-0.5
Nason Creek	N1	Mouth to Kahler Creek Bridge	0.0-3.9
	N2	Kahler Creek Bridge to Hwy 2 Bridge	3.9-8.3
	N3	Hwy 2 Bridge to Lower RR Bridge	8.3-13.2
	N4	Lower RR Bridge to Whitepine Creek	13.2-15.4
Little Wenatchee River	L2	Old Fish Weir to Lost Creek	2.7-5.2
	L3	Lost Creek to Rainy Creek	5.2-9.2
	L4	Rainy Creek to Falls	9.2-Falls
White River	H2	Sears Creek Bridge to Napeequa River	6.4-11.0
	H3	Napeequa River to Grasshopper Meadows	11.0-12.9
Napeequa River	Q1	Mouth to End	0.0-1.0
Panther Creek	T1	Mouth to End	0.0-0.7
Wenatchee River	W9	Tumwater Bridge to Chiwawa River	35.6-48.4
	W10	Chiwawa River to Lake Wenatchee	48.4-54.2
Icicle Creek	I1	Mouth to Boulder Block	0.0-4.0
Peshastin Creek	P1	Mouth to Camas Creek	0.0-5.9
	P2	Camas Creek to Mouth of Scotty Creek	5.9-16.3
Ingalls Creek	D1	Mouth to Trailhead	0.0-1.0

Surveys for live sockeye and carcass were conducted during August through October in the White, Napeequa, and Little Wenatchee rivers. No sockeye redds were counted in 2007. Live fish counts were used to estimate spawning escapements using the area-under-the-curve (AUC) method.

Table 2.9. Description of reaches surveyed for sockeye salmon carcasses and live fish in the Wenatchee Basin.

Stream	Code	Reach	River mile (RM)
Little Wenatchee River	L1	Mouth to Old Fish Weir	$0.0-2.7$
	L2	Old Fish Weir to Lost Creek	$2.7-5.2$
	L3	Lost Creek to Rainy Creek	$5.2-9.2$
White River	H1	Mouth to Sears Creek Bridge	$0.0-6.4$
	H2	Sears Creek Bridge to Napeequa River	$6.4-11.0$
	H3	Napeequa River to Grasshopper Meadows	$11.0-12.9$
Napeequa River	Q1	Mouth to End	$0.0-1.0$

Wenatchee summer Chinook surveys were conducted during September through November within ten reaches on the Wenatchee River (Table 2.10). Both peak redd counts and total redd counts were estimated in the Wenatchee River. Total redd counts were only conducted within index areas, not throughout the entire river. Total redd counts for the entire river were estimated by expanding the peak counts within non-index areas by expansion factors developed within index areas.

Table 2.10. Description of reaches and index areas surveyed for summer Chinook redds in the Wenatchee Basin.

Code	Reach	River mile	Index/reference area
W1	Mouth to Sleepy Hollow Br	0.0-3.5	Monitor Br to L. Cashmere Br
W2	Sleepy Hollow Br to L. Cashmere Br	3.5-9.5	
W3	L. Cashmere Br to Dryden Dam	9.5-17.5	
W4	Dryden Dam to Peshastin Br	17.5-20.0	Dryden Dam to Peshastin Br
W5	Peshastin Br to Leavenworth Br	20.0-23.9	
W6	Leavenworth Br to Icicle Rd Br	23.9-26.4	Icicle to Takeout
W7	Icicle Rd Br to Tumwater Dam	26.4-30.9	Swiftwater Campground to Tumwater Br
W8	Tumwater Dam to Tumwater Br	30.9-35.6	
W9	Tumwater Br to Chiwawa River	35.6-48.4	Swing Pool to Railroad Tunnel
W10	Chiwawa River to Lake Wenatchee	48.4-54.2	Swamp to Bridge

Summer Chinook surveys were also conducted in the Methow, Okanogan, and Similkameen rivers during September through November. Total redd counts were conducted in these rivers. Table 2.11 describes the survey reaches in these rivers.

Table 2.11. Description of reaches surveyed for summer Chinook redds and carcasses on the Methow, Okanogan, and Similkameen rivers.

Stream	Code	Reach	River mile (RM)
Methow River	M1	Mouth to Methow Bridge	$0.0-14.8$
	M2	Methow Bridge to Carlton Bridge	$14.8-27.2$
	M3	Carlton Bridge to Twisp Bridge	$27.2-39.6$
	M4	Twisp Bridge to MVID	$39.6-44.9$
	M5	MVID to Winthrop Bridge	$44.9-49.8$
	M6	Winthrop Bridge to Hatchery Dam	$49.8-51.6$
Okanogan River	O1	Mouth to Mallot Bridge	$0.0-16.9$
	O2	Mallot Bridge to Okanogan Bridge	$16.9-26.1$
	O3	Okanogan Bridge to Omak Bridge	$26.1-30.7$
	O4	Omak Bridge to Riverside Bridge	$30.7-40.7$
	O5	Riverside Bridge to Tonasket Bridge	$40.7-56.8$
	O6	Tonasket Bridge to Zosel Dam	$56.8-77.4$
Similkameen River	S1	Driscoll Channel to Oroville Bridge	$0.0-1.8$
	S2	Oroville Bridge to Enloe Dam	$1.8-5.7$

Except for sockeye, total spawning escapements for each population were estimated as the product of total number of redds times the ratio of fish per redd for a specific stock. Fish per redd ratios were estimated as the ratio of males to females sampled at broodstock collection sites. Total spawning escapement for sockeye salmon was estimated using the AUC approach (where escapement = (AUC/redd residence time) x observer efficiency). This method relied on weekly counts of live sockeye and assumed a redd residence time of 11 days (from Hyatt et al. 2006) and an observer efficiency of $100 \%{ }^{2}$
During sockeye carcass surveys in 2007, crews collected tissue samples for genetic analysis. Tissue was collected from the operculum of wild and hatchery carcasses (target of 144 wild and 144 hatchery fish). Sampling within a population was proportional to the distribution of carcasses across survey reaches. That is, samples were collected in all reaches but the number collected within a given reach was proportional to the density of carcasses within that reach. Methods for analyzing these samples are described in Appendix H in Murdoch and Peven (2005).

Derived metrics calculated from carcass surveys, broodstock sampling, stock assessments, and harvest records included proportion of hatchery spawners, stray rates, age-at-maturity, length-atage, smolt-to-adult survival (SAR), hatchery replacement rates (HRR), exploitation rates, harvest rates, and natural replacement rates (NRR). The expected SARs and HRRs for different stocks raised in the Chelan PUD hatchery programs are provided in Table 2.12. Methods for calculating these variables are described in Appendices D, F, and G in Murdoch and Peven (2005).

[^1]Table 2.12. Expected smolt-to-adult (SAR) and hatchery replacement rates (HRR) for stocks raised in the Chelan PUD Hatchery Programs (from Table 6 in Appendix D in Murdoch and Peven 2005).

Program	Number of broodstock	Smolts released	SAR	Adult equivalents	Number of smolts/adult	HRR
Chiwawa Spring Chinook	379	672,000	0.003	2,016	333	5.3
Wenatchee Summer Chinook	492	864,000	0.003	2,592	333	5.3
Similkameen Summer Chinook	328	576,000	0.003	1,728	333	5.3
Methow Summer Chinook	228	400,000	0.003	1,200	333	5.3
Wenatchee Sockeye	260	200,000	0.007	1,400	143	5.4
Wenatchee Steelhead	208	400,000	0.010	4,000	100	19.2

Derived data that rely on CWTs (e.g., HRR, SAR, stray rates, etc.) are two to four years behind release information because of the lag time for returning adult fish to enter the fishery and the processing of tags. Consequently, complete information on rates and ratios based on CWTs is generally only available for years prior to 2001. In addition, methods for calculating derived variables are still being developed by the Hatchery Evaluation Technical Team (HETT). Therefore, estimates of derived data in this report are subject to change after the HETT and Hatchery Committee decide on standard methods for calculating derived data.

SECTION 3: WENATCHEE STEELHEAD

3.1 Broodstock Sampling

This section focuses on results from sampling 2006 and 2007 brood years of Wenatchee steelhead, which were collected at Dryden and Tumwater dams. The 2006 brood begins the tracking of the life cycle of steelhead released in 2007. The 2007 brood is included because juveniles from this brood are still maintained within the hatchery.

Origin of Broodstock

A total of 199 Wenatchee steelhead from the 2005 return (2006 brood) were collected at Dryden and Tumwater dams (Table 3.1). About 51\% of these were natural origin (adipose fin present, no CWT, and no elastomer tags) fish and the remaining 49\% were hatchery origin (pink right, orange right, or green left elastomer tagged) adults. Origin was determined by analyzing scales and/or otoliths. The total number of steelhead spawned from the 2006 return was 162 adults (57% natural origin and 43\% hatchery origin).

A total of 176 steelhead were collected from the 2006 return (2007 brood) at Dryden and Tumwater dams; 79 natural origin (adipose fin present, no CWT and no elastomer tags) and 97 hatchery origin (pink right, orange right, or green left elastomer tagged) adults. A total of 134 steelhead were spawned; 57% were natural origin fish and 43% were hatchery fish (Table 3.1). Origins were confirmed by sampling scales and/or otoliths.
Table 3.1. Numbers of wild and hatchery steelhead collected for broodstock, numbers that died before spawning, and numbers of steelhead spawned, 1998-2007. Unknown origin fish (i.e., undetermined by scale analysis, no elastomer, CWT, or fin clips, and no additional hatchery marks) were considered naturally produced. Mortality includes fish that died of natural causes typically near the end of spawning and were not needed for the program or were immature fish killed at spawning.

Brood year	Wild steelhead					Hatchery steelhead					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
1998	35	0	0	35	0	43	4	2	37	0	72
1999	58	5	1	52	0	67	1	2	64	0	116
2000	39	2	1	36	0	101	9	12	60	20	96
2001	64	5	8	51	0	114	5	6	103	0	154
2002	99	0	1	96	2	113	1	0	64	48	160
2003	63	10	4	49	0	92	2	0	90	0	139
2004	85	3	0	75	7	132	1	0	61	70	136
2005	95	8	0	87	0	114	7	1	104	2	191
2006	101	5	0	93	3	98	0	0	69	29	162
2007	79	0	2	76	1	97	0	14	58	25	134
Average	72	4	2	65	1	97	3	4	71	19	136

Age/Length Data

Broodstock ages were determined from examination of scales and/or otoliths. For both the 2006 and 2007 returns, natural origin steelhead consisted primarily of 2-salt adults, while hatchery origin adults for both return years consisted mostly of 1-salt fish (Table 3.2).
Table 3.2. Percent of hatchery and wild steelhead of different ages (saltwater ages) collected from broodstock, 1998-2007.

Return year	Origin	Saltwater age		
		1	2	3
1998	Wild	39.4	60.6	0.0
	Hatchery	20.9	79.1	0.0
1999	Wild	50.0	48.3	1.7
	Hatchery	81.8	18.2	0.0
2000	Wild	56.4	43.6	0.0
	Hatchery	67.9	32.1	0.0
2001	Wild	51.7	48.3	0.0
	Hatchery	14.9	85.1	0.0
2002	Wild	55.6	44.4	0.0
	Hatchery	94.6	5.4	0.0
2003	Wild	13.1	85.3	1.6
	Hatchery	29.4	70.6	0.0
2004	Wild	94.8	5.2	0.0
	Hatchery	95.2	4.8	0.0
2005	Wild	22.1	77.9	0.0
	Hatchery	20.5	79.5	0.0
2006	Wild	28.7	71.3	0.0
	Hatchery	60.3	39.7	0.0
2007	Wild	40.3	59.3	0.0
	Hatchery	62.1	37.9	0.0
Average	Wild	45.3	54.4	0.3
	Hatchery	54.8	45.2	0.0

There was little difference between mean lengths of hatchery and natural origin steelhead for both the 2006 and 2007 return years (Table 3.3). Natural origin fish were on average <1 to 5 cm larger than hatchery origin fish of the same age.

Table 3.3. Mean fork length (cm) at age (saltwater ages) of hatchery and wild steelhead collected from broodstock, 1998-2007; $\mathrm{N}=$ sample size and $\mathrm{SD}=1$ standard deviation.

Return year	Origin	Steelhead fork length (cm)								
		1-Salt			2-Salt			3-Salt		
		Mean	N	SD	Mean	N	SD	Mean	N	SD
1998	Wild	63	15	4	79	20	5	-	0	-
	Hatchery	61	9	4	73	34	4	-	0	-
1999	Wild	65	29	5	74	28	5	77	1	-
	Hatchery	62	54	4	73	12	4	-	0	-
2000	Wild	64	22	3	74	17	5	-	0	-
	Hatchery	60	57	3	71	27	4	-	0	-
2001	Wild	61	33	6	77	31	5	-	0	-
	Hatchery	62	17	4	72	97	4	-	0	-
2002	Wild	64	55	4	77	44	4	-	0	-
	Hatchery	63	106	4	73	6	4	-	0	-
2003	Wild	69	8	6	77	52	5	91	1	-
	Hatchery	66	27	4	75	65	4	-	0	-
2004	Wild	63	73	6	78	4	2	-	0	-
	Hatchery	61	59	3	73	3	1	-	0	-
2005	Wild	59	21	4	74	74	5	-	0	-
	Hatchery	59	23	4	72	89	4	-	0	-
2006	Wild	63	27	5	75	67	6	-	0	-
	Hatchery	61	41	4	72	27	5	-	0	-
2007	Wild	64	31	6	76	46	5	-	0	-
	Hatchery	60	60	4	71	36	5	-	0	-

Sex Ratios

Male steelhead in the 2006 return made up about 43% of the adults collected, resulting in an overall male to female ratio of 0.75:1.00 (Table 3.4). For the 2007 return, males made up about 48% of the adults collected, resulting in an overall male to female ratio of 0.93:1.00. On average, the sex ratio is less than the $1: 1$ ratio assumed in the broodstock protocol (Table 3.4).

Table 3.4. Numbers of male and female wild and hatchery steelhead collected for broodstock, 1998-2007. Ratios of males to females are also provided.

Return year	Number of wild steelhead			Number of hatchery steelhead			Total M/F
	Males (M)	Females (F)	\mathbf{M} / \mathbf{F}	Males (M)	Females (F)	\mathbf{M} / \mathbf{F}	
1998	13	22	$0.59: 1.00$	15	$0.54: 1.00$	$0.56: 1.00$	
1999	22	36	$0.61: 1.00$	35	32	$1.09: 1.00$	$0.84: 1.00$
2000	18	21	$0.86: 1.00$	60	41	$1.46: 1.00$	$1.26: 1.00$
2001	38	26	$1.46: 1.00$	40	74	$0.54: 1.00$	$0.78: 1.00$
2002	32	67	$0.48: 1.00$	81	32	$2.53: 1.00$	$1.14: 1.00$
2003	19	44	$0.43: 1.00$	44	48	$0.92: 1.00$	$0.68: 1.0$
2004	43	42	$1.02: 1.00$	90	42	$2.14: 1.00$	$1.58: 1.00$
2005	36	59	$0.61: 1.00$	46	68	$0.68: 1.00$	$0.65: 1.00$
2006	38	63	$0.60: 1.00$	47	51	$0.92: 1.00$	$0.75: 1.00$
2007	36	43	$0.84: 1.00$	49	48	$1.02: 1.00$	$0.93: 1.00$
Total	295	423	$\mathbf{0 . 7 0 : 1 . 0 0}$	507	464	$\mathbf{1 . 0 9 : 1 . 0 0}$	$\mathbf{0 . 9 0 : 1 . 0 0}$

Fecundity

Fecundities for Wenatchee steelhead returning in 2006 and 2007 averaged 5,492 and 5,660 eggs per female, respectively, which were not greatly different than the 10 -year average (Table 3.5). Mean fecundities for the 2006 and 2007 returns were greater than the 5,400 eggs per female assumed in the broodstock protocol.
Table 3.5. Mean fecundity of wild, hatchery, and all female steelhead collected for broodstock, 1998-2007.

Return year	Mean fecundity		
	Wild	Hatchery	Total
1998	6,202	5,558	5,924
1999	5,691	5,186	5,424
2000	5,858	5,729	5,781
2001	5,951	6,359	6,270
2002	5,776	5,262	5,626
2003	6,561	6,666	6,621
2004	5,118	5,353	5,238
2005	5,545	6,061	5,832
2006	5,688	5,251	5,492
2007	5,840	5,485	5,660
Average	5,823	5,691	5,787

3.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of 493,827 eggs are required to meet the program release goal of 400,000 smolts. Between 1998 and 2007, the egg take goal was reached 50% of the time (Table 3.6).
Table 3.6. Numbers of eggs taken from steelhead broodstock, 1998-2007.

Brood year	Number of eggs taken
1998	224,315
1999	303,083
2000	280,872
2001	549,464
2002	503,030
2003	532,708
2004	408,538
2005	672,667
2006	546,382
2007	462,662
Average	448,372

Number of acclimation days

Juvenile steelhead were transferred from Chelan FH to Turtle Rock FH in December 2006 and from Eastbank FH to Turtle Rock FH in January 2007. At Turtle Rock FH, juvenile steelhead were reared on Columbia River water (range, 111-148 d) before being trucked and released into the Wenatchee River and tributaries.

Acclimation of Wenatchee juvenile steelhead has occurred on occasion in the Chiwawa Ponds when space is available. At Chiwawa Ponds, steelhead were reared under the same water source as spring Chinook (Chiwawa and Wenatchee River water). Typically, Wenatchee steelhead are reared on Columbia River water from January through April before being trucked and released into the Wenatchee Basin (Table 3.7).

Table 3.7. Water source and mean acclimation period for Wenatchee steelhead, brood years 1998-2006.

Brood year	Release year	Parental origin	Water source	Number of Days
1998	1999	H x H	Wenatchee/Chiwawa	36
		H x W	Wenatchee/Chiwawa	36
		W x W	Wenatchee/Chiwawa	36
1999	2000	H x H	Wenatchee/Chiwawa	138
		H x W	Wenatchee/Chiwawa	138
		W x W	Wenatchee/Chiwawa	138
		H x W	Eastbank	0
		W x W	Eastbank	0
2000	2001	Hx H	Wenatchee/Chiwawa	122
		H x W	Wenatchee/Chiwawa	122
		H x W	Wenatchee/Chiwawa	122
		W x W	Wenatchee/Chiwawa	122
2001	2002	H x H	Columbia	92
		H x H	Wenatchee/Chiwawa	63
		H x W	Columbia	92
		H x W	Wenatchee/Chiwawa	63
		W x W	Columbia	153
2002	2003	HxH	Columbia	98
		H x W	Columbia	98
		W x W	Columbia	117
2003	2004	H x H	Columbia	88
		H x W	Wenatchee/Chiwawa	84
		W x W	Columbia	148
2004	2005	H x H	Columbia	160
		H x W	Columbia	160
		W x W	Columbia	160
2005	2006	H x H	Columbia	116
		H x W	Columbia	113
		W x W	Columbia	141
2006	2007	Early H x W	Columbia	111
		Late H x W	Columbia	112
		W x W	Columbia	148

Release Information

Numbers released

The release of 2006 brood Wenatchee steelhead achieved 75% of the 400,000 target goal with about 299,937 fish released directly into the Wenatchee and Chiwawa rivers and Nason Creek (Table 3.8). Distribution of juvenile steelhead released in each of the three basins was determined by the mean proportion of steelhead redds in each basin. About 31.0% and 16.3% of the steelhead were released in Nason Creek and the Chiwawa River, respectively. The balance of the program was split between the Wenatchee River downstream from Tumwater Dam (12.6\%) and the Wenatchee River upstream from the dam (40.1\%).
Table 3.8. Numbers of steelhead smolts released from the hatchery, brood years 1998-2006. The release target for steelhead is 400,000 smolts.

Brood year	Release year	Number of smolts		
1998	1999	172,078		
1999	2000	175,661		
2000	2001	184,639		
2001	2002	335,933		
2002	2003	302,060		
2003	2004	374,867		
2004	2005	294,114		
2005	2006	452,184		
2006	2007	299,937		
Average				287,941

Numbers elastomer tagged

Wenatchee hatchery steelhead from the 2006 brood were marked with elastomer tags in the clear tissue posterior of the eye to denote parental origin. About 52% of the juveniles released were also adipose fin clipped (Table 9).
Table 3.9. Release location and marking scheme for the 1998-2006 brood Wenatchee steelhead.

Brood year	Release location	Parental origin	Ad-clip (\%)	VIE color/side	Tag rate	Number released
1998	Chiwawa River	H x H	0.0	Red Left	0.994	52,765
	Chiwawa River	Hx W	0.0	Green Left	0.990	37,013
	Chiwawa River	W x W	0.0	Orange Left	0.827	82,300
1999	Wenatchee River	H x H	0.0	Green Left	0.911	45,347
	Wenatchee River	H x W	0.0	Orange Left	0.927	30,713
	Chiwawa River	Hx H	0.0	Red Right	0.936	25,622
	Chiwawa River	H x W	0.0	Green Right	0.936	43,379
	Chiwawa River	W x W	0.0	Orange Right	0.936	30,600

Brood year	Release location	Parental origin	Ad-clip (\%)	VIE color/side	Tag rate	Number released
2000	Chiwawa River	H x H	0.0	Red Left	0.963	33,417
	Chiwawa River	H x W	0.0	Green Left	0.963	57,716
	Chiwawa River	H x W	0.0	Green Right	0.949	48,029
	Chiwawa River	W x W	0.0	Orange Right	0.949	45,477
2001	Nason Creek	H x W	0.0	Green Right	0.934	75,276
	Nason Creek	W x W	0.0	Orange Right	0.934	48,115
	Chiwawa River	H x W	0.0	Green Left	0.895	92,487
	Chiwawa River	H x H	0.0	Red Left	0.895	120,055
2002	Chiwawa River	H x H	0.0	Red Left	0.920	156,145
	Chiwawa River	H x W	0.0	Green Left	0.928	33,528
	Nason Creek	W x W	0.0	Orange Right	0.928	112,387
2003	Wenatchee River	Hx H	0.0	Red Left	0.968	117,663
	Chiwawa River	H x W	0.0	Green Left	0.927	191,796
	Nason Creek	W x W	0.0	Orange Right	0.962	65,408
2004	Wenatchee River	Hx H	0.50	Red Left	0.804	39,636
	Chiwawa River	H x W	0.0	Green Left	0.977	153,959
	Nason Creek	W x W	0.0	Pink Right	0.940	100,519
2005	Wenatchee River	Hx H	100.0	Red Left	0.983	104,552
	Wenatchee River	H x W	61.6	Green Left	0.979	190,319
	Chiwawa River	H x W	61.6	Green Left	0.979	18,634
	Chiwawa River	W x W	0.0	Pink Right	0.969	14,124
	Nason Creek	W x W	0.0	Pink Right	0.969	124,555
2006	Wenatchee River	H x W (early)	100.0	Green Right	0.918	66,022
	Wenatchee River	H x W (late)	67.1	Green Left	0.935	92,176
	Chiwawa River	H x W (late)	67.1	Green Left	0.935	41,240
	Chiwawa River	W x W	0.0	Pink Right	0.945	7,500
	Nason Creek	W x W	0.0	Pink Right	0.945	92,999

Numbers PIT tagged

2006 Brood Wenatchee Summer Steelhead (WxW)—A total of 10,019 WxW steelhead were PIT tagged at the Chelan Falls Hatchery between 21 and 23 August 2006 (Table 3.10). The mean size of steelhead tagged was 72 mm ; no fish smaller than 60 mm were tagged. Fish were not fed for 24 hours before or after tagging. Four days following tagging, the fish were transferred to raceways
outside the hatchery complex. These fish were transported to the Turtle Rock Hatchery on 4 December. None of these fish were adipose fin clipped.

A total of 9,515 PIT-tagged WxW steelhead were released during spring 2007 (Table 3.10). Of the 10,019 WxW steelhead tagged, 152 died. Most of these (47\%) were fish tagged on the third day (23 August). Another 352 shed their tags. Most of these (61\%) were also fish tagged on the third day. Most shedding occurred within three weeks after tagging.

The relatively large loss of steelhead and PIT tags from the third tagging group may be related to the short period of time between tagging and being transferred to another raceway. These fish were also off food for a shorter period of time than the other two tagging groups. It is recommended that the time period between tagging and moving be increased for future tagging events.

Table 3.10. Summary of PIT-tagging activities for WxW steelhead from the Chelan Falls Hatchery, 2006. Dead fish counted before 15 September likely represent deaths associated with tagging; deaths after 15 September were probably not related to tagging.

Tagging date	Number of fish tagged	Number of fish that died		Number of tags shed	Number of tagged fish alive
		After 9/15			3,187
$8 / 21$	3,301	24	16	64	3,313
$8 / 22$	3,418	24	17	214	3,015
$8 / 23$	3,300	57	14	$\mathbf{3 5 2}$	$\mathbf{9 , 5 1 5}$
Total	$\mathbf{1 0 , 0 1 9}$	$\mathbf{1 0 5}$	$\mathbf{4 7}$		

2006 Brood Wenatchee Summer Steelhead (early-spawn HxW)³_A total of 10,035 early-spawn HxW steelhead were PIT tagged at the Eastbank Hatchery (raceway 4) on 5-7 September 2006 (Table 3.11). The mean size of steelhead tagged was 85 mm ; no fish smaller than 60 mm were tagged. Fish were not fed for 24 hours before or after tagging. These fish were transported to the Turtle Rock Hatchery in early January 2007. All of these fish were adipose fin clipped.
A total of 9,533 PIT-tagged HxW steelhead were released during spring 2007 (Table 3.11). Of the 10,035 steelhead tagged, 479 died and another 24 shed their tags.
Table 3.11. Summary of PIT-tagging activities for early-spawn HxW steelhead from the Eastbank Hatchery, 2006. Dead fish counted before 15 September likely represent deaths associated with tagging; deaths after 15 September were probably not related to tagging.

Tagging date	Number of fish tagged	Number of fish that died		Number of tags shed	Number of tagged fish alive
		Before 9/15	After 9/15		3,172
$9 / 5$	3,504	5	151	6	3,317
$9 / 6$	3,200	2	173	9	3,044
$9 / 7$	$\mathbf{1 0 , 0 3 5}$	$\mathbf{9}$	146	9	$\mathbf{2 4}$
Total		$\mathbf{4 7 0}$	533		

3 This is a mixed group consisting of about 55,000 early-spawn HxW and about $15,000 \mathrm{HxH}$ steelhead. Because most (78\%) of the fish are HxW juveniles, the group is referred to as "early-spawn HxW."

2006 Brood Wenatchee Summer Steelhead (HxW)—A total of 10,031 HxW steelhead were PIT tagged at the Eastbank Hatchery (raceway 3) on 11-13 September 2006 (Table 3.12). The mean size of steelhead tagged was 80 mm ; no fish smaller than 60 mm were tagged. Fish were not fed for 24 hours before or after tagging. These fish were transported to the Turtle Rock Hatchery in early January 2007. None of these fish were adipose fin clipped.

A total of 9,089 PIT-tagged HxW steelhead were released during spring 2007 (Table 3.12). Of the 10,031 steelhead tagged, 922 died and another 20 shed their tags. The relatively high mortality rate was associated with a power outage on 7 January 2007, which caused an anoxic condition that killed at least 836 tagged fish in the hatchery. ${ }^{4}$
Table 3.12. Summary of PIT-tagging activities for HxW steelhead from the Eastbank Hatchery, 2006. Dead fish counted before 15 September likely represent deaths associated with tagging; deaths after 15 September were probably not related to tagging. A power outage on 7 January 2007 killed about 836 PIT-tagged fish.

Tagging date	Number of fish tagged	Number of fish that died		Number of tags shed	Number of tagged fish alive
		After 9/15			
$9 / 11$	3,315	1	279	6	3,199
$9 / 12$	3,552	1	346	6	2,861
$9 / 13$	3,164	2	293	8	$\mathbf{9 0 8 9}$
Total	$\mathbf{1 0 , 0 3 1}$	$\mathbf{4}$	$\mathbf{9 1 8}$	$\mathbf{2 0}$	

2007 Brood Wenatchee Summer Steelhead (WxW) -A total of 10,051 steelhead were tagged at the Chelan Hatchery during 24-27 September 2007. These fish came from raceway 2 and consisted of wild x wild crosses.

As of the end of January 2008, a total of 43 tagged steelhead have died and no shed tags have been identified. This leaves a total of 10,008 tagged steelhead alive at the hatchery. These fish were transferred to the Turtle Rock Hatchery on 19 January. They will remain at this facility until release in the spring of 2008.
2007 Brood Wenatchee Summer Steelhead (HxW-early production)—A total of 10,052 steelhead were tagged at Eastbank Hatchery between 4 and 13 September 2007. These fish came from raceway 4 and consisted of hatchery x wild-early spawn crosses.

As of the end of January 2008, a total of 48 tagged steelhead have died and another 10 have shed their tags. This leaves an estimated 9,994 tagged steelhead alive at the hatchery. These fish were transferred to the Turtle Rock Hatchery between 4 and 6 February 2008 where they will remain until release in the spring of 2008.

2007 Brood Wenatchee Summer Steelhead (HxW-Iate production)—A total of 10,063 steelhead were tagged at Eastbank Hatchery between 4 and 13 September 2007. These fish came from raceway 3 and consisted of hatchery x wild-late spawn crosses.

[^2]As of the end of January 2008, a total of 41 tagged steelhead have died and another 71 have shed their tags. This leaves an estimated 9,951 tagged steelhead alive at the hatchery. These fish were transferred to the Turtle Rock Hatchery between 4 and 6 February 2008 where they will remain until release in the spring of 2008.

Fish size and condition at release

All 2006 brood steelhead were trucked and released as yearling smolts in May of 2007. Of the three parental groups, only the early H x W group exceeded length and weight targets. The late $\mathrm{H} \times \mathrm{W}$ and the $\mathrm{W} \times \mathrm{W}$ group (which is typically the last group ponded and therefore has a shorter rearing period) did not meet size-at-release targets. All three groups did not meet the target for coefficient of variation for fork length (Table 3.13).
Table 3.13. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of steelhead smolts released from the hatchery, brood years 1998-2006. Size targets are provided in the last row of the table.

Brood year	Release year	Parental origin	Fork length (mm)		Mean weight	
			Mean	CV	Grams (g)	Fish/pound
1998	1999	H x H	201	11.1	92.3	5
		H x W	190	12.8	76.9	6
		W x W	173	12.0	55.3	8
1999	2000	H x H	181	8.9	70.6	6
		H x W	187	7.2	75.3	6
		W x W	184	11.3	71.5	6
2000	2001	Hx H	218	15.2	122.4	4
		H x W	209	10.6	107.5	4
		W x W	205	10.7	100.9	5
2001	2002	H x H	179	17.4	67.0	7
		H x W	192	15.6	82.8	6
		W x W	206	11.6	102.6	4
2002	2003	H x H	194	13.1	83.0	6
		H x W	191	13.0	77.4	6
		W x W	180	19.1	70.3	7
2003	2004	Hx H	191	14.4	73.1	6
		H x W	199	12.9	83.9	5
		W x W	200	11.1	90.1	5
2004	2005	H x H	204	11.3	87.2	6
		H x W	202	13.5	71.9	5
		W x W	198	12.4	76.6	6
2005	2006	Hx H	215	12.6	116.6	4
		H x W	198	11.8	86.3	5

Brood year	Release year	Parental origin	Fork length (mm)		Mean weight	
			Mean	CV	Grams (g)	Fish/pound
		W x W	189	15.4	55.3	6
2006	2007	H x H (early)	213	12.1	109.6	4
		H x W (late)	186	11.8	68.3	7
		W x W	178	11.1	58.6	8
Targets			198	9.0	75.6	6

Survival Estimates

Overall survival of Wenatchee steelhead from green (unfertilized) egg to release was significantly below the standard set for the program, primarily because of poor green egg-to-eyed egg and eyed egg-to-ponding survival (Table 3.14). In addition, nearly 8% of the 2006 brood $\mathrm{H} x \mathrm{~W}$ component died of asphyxiation at Eastbank Hatchery because of a severe January 2007 wind storm that knocked out power to the facility (including pumps) for several hours. The Wenatchee steelhead program, from its inception, has experienced highly variable fertilization rates. It is unknown at this time what mechanisms may be influencing stock performance at these stages. Early post ponding mortality in the W x W group resulting from chronic bacterial cold water disease was abated with treatments of florfenicol.

Table 3.14. Hatchery life-stage survival rates (\%) for steelhead, brood years 1998-2006. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0 ~ d}$ after ponding	$\mathbf{1 0 0} \mathbf{d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	92.0	100.0		91.7	99.2	98.8	97.8	99.9	76.7
1999	91.2	100.0	66.9	93.0	95.9	94.9	93.1	99.7	58.0
2000	83.9	96.2	77.6	86.7	99.3	98.9	97.7	99.5	65.7
2001	90.0	100.0	73.0	91.8	99.1	97.8	91.3	99.7	61.1
2002	99.0	100.0	69.2	93.1	95.9	94.4	89.6	89.6	57.7
2003	87.0	96.8	86.3	83.8	97.2	94.8	97.6	85.3	70.6
2004	97.6	98.5	83.4	93.7	97.8	94.1	92.2	99.9	72.0
2005	91.3	95.1	81.3	92.1	95.6	91.8	89.7	99.6	67.2
2006	99.1	95.3	73.2	85.4	95.4	94.6	87.8	98.5	54.9
Standard	$\mathbf{9 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{9 2 . 0}$	$\mathbf{9 8 . 0}$	$\mathbf{9 7 . 0}$	$\mathbf{9 3 . 0}$	$\mathbf{9 0 . 0}$	$\mathbf{9 5 . 0}$	$\mathbf{8 1 . 0}$

3.3 Disease Monitoring

Rearing of the 2006 brood Wenatchee summer steelhead was typical to previous years with fish being held on Chelan spring, Eastbank well, and Columbia River water before being released directly into Nason Creek and the Chiwawa and Wenatchee rivers. Mortality due to bacterial cold water disease (BCWD) began to increase in the W x W juveniles at Chelan in May, shortly after
ponding. Aggressive Florfenicol treatments appeared to abate the condition and losses resulting from BCWD quickly declined.

3.4 Natural Juvenile Productivity

During 2007, juvenile steelhead were sampled at the Upper Wenatchee, Lower Wenatchee, and Chiwawa traps and counted during snorkel surveys within the Chiwawa basin.

Parr Estimates

A total of $14,073(\pm 10.5 \%)$ subyearling ($<100 \mathrm{~mm}$) and 8,448 ($\pm 9.7 \%$) yearling ($100-200 \mathrm{~mm})^{5}$ steelhead/rainbow were estimated in the Chiwawa River basin in August 2007 (Table 3.15 and 3.16). During the survey period 1992-2007, numbers of subyearling and yearling steelhead/rainbow have ranged from 1,410 to 45,727 and 2,533 to 22,128, respectively, in the Chiwawa Basin (Table 3.15 and 3.16; Figure 3.1). Numbers of all fish counted in the Chiwawa Basin are reported in Appendix A.

Juvenile steelhead/rainbow were distributed primarily throughout the lower seven reaches of the Chiwawa River (downstream from Rock Creek). Their densities were highest in the lower portions of the river and in tributaries. Subyearling steelhead/rainbow most often used riffle and multiple channel habitats in the Chiwawa River, although they also associated with woody debris in pool and glide habitat. In tributaries they were generally most abundant in small pools. Those that were observed in riffles selected stations in quiet water behind small and large boulders or occupied stations in quiet water along the stream margin. In pool and multiple-channel habitats, subyearling steelhead/rainbow used the same kinds of habitat as subyearling Chinook.

Yearling steelhead/rainbow most often used pool, riffle, and multiple-channel habitats. Those that used pools were usually in deeper water than subyearling steelhead/rainbow and Chinook. Like subyearling steelhead/rainbow, yearling steelhead/rainbow selected stations in quiet water behind boulders in riffles, but the two age groups rarely occurred together. Yearling steelhead/rainbow appeared to use deeper and faster water than did subyearling steelhead/rainbow.
Table 3.15. Total numbers of subyearling steelhead/rainbow trout estimated in different steams in the Chiwawa Basin during snorkel surveys in August 1992-2007; NS = not sampled.

Sample Year	Chiwawa River	Phelps Creek	Chikamin Creek	Rock Creek	Peven Creek	Big Meadow Creek	Alder Creek	Brush Creek	\mathbf{Y} Creek	Total
1992	4,927	NS	$\mathbf{4 , 9 2 7}$							
1993	3,463	0	356	185	NS	NS	NS	NS	NS	$\mathbf{4 , 0 0 4}$
1994	953	0	256	24	0	177	0	0	0	$\mathbf{1 , 4 1 0}$
1995	6,005	0	744	90	0	371	40	107	0	$\mathbf{7 , 3 5 7}$
1996	3,244	0	71	40	0	763	127	0	0	$\mathbf{4 , 2 4 5}$
1997	6,959	224	84	324	0	1,124	58	50	0	$\mathbf{8 , 8 2 3}$
1998	2,972	22	280	96	113	397	18	22	0	$\mathbf{3 , 9 2 1}$
1999	5,060	20	253	189	0	255	34	27	0	$\mathbf{5 , 8 3 8}$
2000	NS									

[^3]| Sample Year | Chiwawa River | Phelps Creek | Chikamin Creek | Rock Creek | Peven Creek | Big Meadow Creek | Alder Creek | Brush Creek | Y Creek | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 35,759 | 192 | 1,449 | 1,826 | 0 | 6,345 | 156 | 0 | 0 | 45,727 |
| 2002 | 12,137 | 0 | 2,252 | 889 | 0 | 4,948 | 277 | 18 | 0 | 20,521 |
| 2003 | 9,911 | 296 | 996 | 1,166 | 96 | 5,366 | 73 | 116 | 0 | 18,020 |
| 2004 | 8,464 | 110 | 583 | 113 | 40 | 957 | 35 | 78 | 0 | 10,380 |
| 2005 | 4,852 | 120 | 2,931 | 477 | 45 | 2,973 | 65 | 0 | 0 | 11,463 |
| 2006 | 10,669 | 21 | 858 | 872 | 34 | 3,647 | 73 | 71 | 0 | 16,245 |
| 2007 | 8,442 | 53 | 2,137 | 348 | 11 | 2,955 | 65 | 28 | 34 | 14,073 |
| Average | 8,254 | 76 | 946 | 474 | 26 | 2,329 | 79 | 40 | 3 | 11,797 |

Table 3.16. Total numbers of yearling steelhead/rainbow trout estimated in different steams in the Chiwawa Basin during snorkel surveys in August 1992-2007; NS = not sampled.

Sample Year	Chiwawa River	Phelps Creek	Chikamin Creek	Rock Creek	Peven Creek	Big Meadow Creek	Alder Creek	Brush Creek	Y Creek	Total
1992	2,533	NS	2,533							
1993	2,530	0	228	102	NS	NS	NS	NS	NS	2,860
1994	4,972	0	476	296	5	107	0	0	0	5,856
1995	8,769	0	494	71	0	183	0	0	0	9,517
1996	11,381	0	6	27	0	435	0	0	0	11,849
1997	6,574	160	0	105	0	66	0	0	0	6,905
1998	10,403	0	133	49	0	0	0	0	0	10,585
1999	21,779	0	68	201	0	82	0	0	0	22,130
2000	NS									
2001	9,368	16	186	407	0	646	0	0	0	10,623
2002	7,200	0	199	165	0	1,526	0	0	0	9,090
2003	4,745	362	426	599	0	47	0	0	0	6,179
2004	7,700	107	209	0	0	174	0	0	0	8,190
2005	4,624	63	957	257	0	287	0	0	0	6,188
2006	7,538	76	748	1,186	0	985	0	0	0	10,533
2007	6,976	0	945	96	0	431	0	0	0	8,448
Average	7,806	56	363	254	0	382	0	0	0	8,766

Figure 3.1. Numbers of subyearling and yearling steelhead/rainbow trout within the Chiwawa River Basin in August 1992-2007; ND = no data.

Emigrant and Smolt Estimates

Numbers of steelhead smolts and emigrants were estimated at the Upper Wenatchee, Chiwawa, and Lower Wenatchee traps in 2007.

Chiwawa Trap

The Chiwawa Trap operated between 27 February and 27 November 2007. During that time period the trap was inoperable for 23 days because of high river flows, debris, snow/ice, or mechanical
failure. The trap operated in two different positions depending on stream flow; lower position at flows greater than $12 \mathrm{~m}^{3} / \mathrm{s}$ and an upper position at flows less than $12 \mathrm{~m}^{3} / \mathrm{s}$. Monthly captures of all fish collected at the Chiwawa Trap are reported in Appendix B.

A total of 152 wild steelhead/rainbow smolts, 1,964 hatchery smolts, and 1,056 wild parr were captured at the Chiwawa Trap. Nearly all (98\%) of the hatchery smolts were collected in May, while most (82\%) of the wild steelhead smolts were captured during March and April (Figure 3.2). Although steelhead/rainbow parr emigrated throughout the sampling period, most emigrated during March through June and in August (Figure 3.2). No mark-recapture efficiency trials were conducted with steelhead/rainbow at the Chiwawa Trap to estimate total population sizes.

Juvenile Steelhead

Figure 3.2. Monthly captures of wild smolts, wild parr, and hatchery smolt steelhead/rainbow at the Chiwawa Trap, 2007.

Upper Wenatchee Trap

The Upper Wenatchee Trap operated nightly between 4 March and 23 July 2007. During the 4.5month sampling period, a total of 15 wild steelhead/rainbow smolts, 178 hatchery smolts, and 65 wild parr were captured at the Upper Wenatchee Trap. Monthly captures of all fish collected at the Upper Wenatchee Trap are reported in Appendix B.

Lower Wenatchee Trap

The Lower Wenatchee Trap operated nightly between 1 February and 5 August 2007. During that time period, the trap was inoperable for 14 days because of high river flows, debris, snow/ice, or mechanical failure. During the five-month sampling period, a total of 433 wild steelhead/rainbow smolts, 2,697 hatchery smolts, and 62 wild parr were captured at the Lower Wenatchee Trap. Based on capture efficiencies estimated from the flow model, the total number of wild yearling steelhead/rainbow that emigrated past the Lower Wenatchee Trap was 85,443 ($\pm 94,717$). Most of the wild yearling steelhead/rainbow migrated during April and May. Nearly all (98\%) the hatchery
yearling steelhead/rainbow migrated during May. Monthly captures of all fish collected at the Lower Wenatchee Trap are reported in Appendix B.

PIT Tagging Activities

A total of 3,139 juvenile steelhead/rainbow trout (2,950 wild and 189 hatchery) were PIT tagged and released in 2007 throughout the Wenatchee Basin (Table 3.17). Most (67\%) of these were tagged in the Chiwawa Basin and in the Wenatchee River between Tumwater and Lake Wenatchee. Few were tagged and released at the Upper Wenatchee trap. A total of 461 juvenile steelhead/rainbow trout were tagged and released at the Lower Wenatchee trap. See Appendix C for a complete list of all fish captured, tagged, lost, and released.

Table 3.17. Numbers of wild and hatchery steelhead/rainbow trout that were captured, tagged, and released at different locations within the Wenatchee Basin, 2007. Numbers of fish that died or shed tags are also given.

Sampling location	Origin	Number captured for tagging	Number tagged	Number that died	Number of shed tags	Total number of fish released
Chiwawa Trap	Wild	885	840	8	0	832
	Hatchery	4	3	0	0	3
	Total	889	843	8	0	835
Chiwawa River	Wild	179	167	0	0	167
	Hatchery	52	47	0	0	47
	Total	231	214	0	0	214
Upper Wenatchee Trap	Wild	41	38	1	0	37
	Hatchery	0	0	0	0	0
	Total	41	38	1	0	37
Upper Wenatchee River	Wild	1,020	1,001	0	0	1,001
	Hatchery	69	64	0	0	64
	Total	1,089	1,065	0	0	1,065
Nason Creek ${ }^{\text {a }}$	Wild	483	453	1	0	452
	Hatchery	116	75	0	0	75
	Total	599	528	1	0	527
Lower Wenatchee Trap	Wild	473	462	1	0	461
	Hatchery	0	0	0	0	0
	Total	473	462	1	0	461
Totals	Wild	3,081	2,961	11	0	2,950
	Hatchery	241	189	0	0	189
	Total	3,322	315	11	0	3,139

${ }^{\text {a }}$ An additional 1,312 wild steelhead/rainbow were tagged and released by the Yakama Nation at the Nason Creek smolt trap.

3.5 Spawning Surveys

Surveys for steelhead redds were conducted during March through May, 2007, in the Wenatchee River (including Beaver and Chiwaukum creeks), Chiwawa River (including Rock, Chikamin, Meadow, Twin, Alder, and Clear creeks), Nason Creek (including White Pine, Roaring, and an unnamed stream), Icicle Creek, Peshastin Creek (including Mill, Ingalls, Ruby, Tronsen, Scotty, Shaser, and Schafer creeks), Little Wenatchee River, and White River (including the Napeequa River and Panther Creek). Surveys were conducted in both index and non-index areas throughout the Wenatchee Basin (see Appendix D for more details).

Redd Counts

A total of 159 steelhead redds were counted in the Wenatchee Basin in 2007 (Table 3.18). This is about a 60% decrease from the estimate in 2006 (the lower count may be in part related to the poor survey conditions encountered during the spawning surveys in 2007; see Appendix D). Most spawning occurred in Nason Creek (49\%) and the Wenatchee River (29\%) (Table 3.18; Figure 3.3). Peshastin Creek contained 11% of all redds in the Wenatchee Basin. No redds were observed in the Little Wenatchee River and the number of redds in the Chiwawa Basin was well below the average for that area.

Table 3.18. Numbers of steelhead redds estimated within different streams/watersheds within the Wenatchee Basin, 2001-2007; NS = not sampled. Redd counts beginning in 2004 have been conducted within the same areas and with the same methods. Therefore, comparing redd numbers before 2004 with estimates since may not be valid.

Survey year	Number of steelhead redds								
	Chiwawa	Nason	Little Wenatchee	White	Wenatchee River $^{\mathbf{a}}$	Icicle	Peshastin	Total	
2001	25	27	NS	NS	116	19	NS	$\mathbf{1 8 7}$	
2002	80	80	1	0	315	27	NS	$\mathbf{5 0 3}$	
2003	64	121	5	3	248	16	15	$\mathbf{4 7 2}$	
2004	62	127	0	0	151	23	34	$\mathbf{3 9 7}$	
2005	162	412	0	2	459	8	97	$\mathbf{1 , 1 4 0}$	
2006	19	77	NS	0	191	41	67	$\mathbf{3 9 5}$	
2007	11	78	0	1	46	6	17	$\mathbf{1 5 9}$	
Average $^{\boldsymbol{b}}$	$\mathbf{6 4}$	$\mathbf{1 7 4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2 1 2}$	$\mathbf{2 0}$	54	$5 \mathbf{5 2 3}$	

${ }^{a}$ Includes redds in Beaver and Chiwaukum creeks.
${ }^{\mathrm{b}}$ The average is based on estimates from 2004 to present.

Figure 3.3. Percent of the total number of steelhead redds counted in different streams/watersheds within the Wenatchee Basin during March through May, 2007.

Redd Distribution

Steelhead redds were not evenly distributed among reaches within survey streams in 2007 (Table 3.19). Most of the spawning in the Chiwawa Basin occurred in Reach 1 and in Clear Creek. No redds were observed in Chikamin, Meadow, or Alder creeks. Most of the spawning in the Nason Creek basin occurred in Nason Creek (primarily in Reaches 2 and 3), with no spawning in tributaries. All spawning in the Peshastin Creek basin occurred in Peshastin Creek (mostly in Reach 2). No redds were found in Peshastin Creek tributaries. About 95\% of the spawning in the Wenatchee River occurred upstream from Tumwater Dam. Of the 159 total redds estimated in the Wenatchee Basin in 2007, 84\% (134 redds) occurred upstream from Tumwater Dam. The remaining 25 redds occurred in the lower Wenatchee River, Peshastin Creek, and Icicle Creek.

Table 3.19. Numbers and percentages of steelhead redds counted within different streams/watersheds within the Wenatchee Basin during March through May, 2007.

Stream/watershed	Reach	Number of redds	Percent of redds within stream/watershed
Chiwawa	Chiwawa 1	3	27.3
	Rock Creek	--	--
	Chikamin Creek	0	0.0
	Meadow Creek	0	0.0
	Alder Creek	0	0.0
	Clear Creek	8	72.7
Nason	Total	$\mathbf{1 1}$	$\mathbf{1 0 0}$
	Nason 1	11	14.1
	Nason 2	25	32.1

Stream/watershed	Reach	Number of redds	Percent of redds within stream/watershed
	Nason 3	35	44.9
	Nason 4	7	8.9
	White Pine Creek	0	0.0
	Un-named Creek	0	0.0
	Roaring Creek	0	0.0
	Total	78	100
White	White 2	0	0.0
	White 3	1	100.0
	Panther Creek	0	0.0
	Naqeequa River	0	0.0
	Total	1	100
Icicle	Icicle	6	100.0
	Total	6	100
Peshastin	Peshastin 1	6	35.3
	Peshastin 2	11	64.7
	Mill Creek	0	0.0
	Ingalls Creek	--	--
	Tronsen Creek	0	0.0
	Scotty Creek	0	0.0
	Shaser Creek	0	0.0
	Schafer Creek	0	0.0
	Total	17	100
Wenatchee	Wenatchee 1	--	--
	Wenatchee 2	0	0.0
	Wenatchee 3	--	--
	Wenatchee 4	--	--
	Wenatchee 5	--	--
	Wenatchee 6	2	4.4
	Wenatchee 7	--	--
	Wenatchee 8	0	0.0
	Wenatchee 9	10	21.7
	Wenatchee 10	34	73.9
	Beaver Creek	0	0.0
	Chiwaukum Creek	--	--
	Total	46	100

Spawn Timing

Steelhead began spawning during the second week of April in the Wenatchee River and Nason Creek and progressed upstream as water temperatures increased. Spawning occurred at temperatures between 3.2 and $6.9^{\circ} \mathrm{C}$. Most spawning began when mean daily temperatures reached about $4.2^{\circ} \mathrm{C}$. Peak spawning in the Wenatchee River occurred the third week of April, in Peshastin Creek the fourth week of April, and in Nason Creek the first week of May (Figure 3.4).

Steelhead Redds

Figure 3.4. Numbers of steelhead redds counted during different weeks in different index areas within the Wenatchee Basin, March through May 2007.

Spawning Escapement

Spawning escapement for steelhead upstream from Tumwater Dam was calculated as the number of redds (upstream from the dam) times the fish per redd ratio (based on sex ratios estimated at Tumwater Dam using video surveillance). The estimated fish per redd ratio for steelhead in 2007 was 1.94 (Table 3.20). Multiplying this ratio by the total number of redds upstream from the dam resulted in a total spawning escapement of 260 steelhead (Table 3.20). This means that of the 657 steelhead counted at Tumwater, only about 40% of them spawned upstream from the dam. This estimate was lower than the average of 50%.
The low estimated spawning escapement in 2007 may have resulted from the difficult survey conditions that biologists experienced in that year. That is, poor survey conditions may have obscured redds that were missed by the biologists. The effect of other factors, such as pre-spawning mortality, fallback, illegal harvest, etc. remain unknown.

Table 3.20. Numbers of steelhead counted at Tumwater Dam, fish/redd estimates (based on male-to-female ratios estimated at Tumwater Dam), numbers of steelhead redds counted upstream from Tumwater Dam, total spawning escapement upstream from Tumwater Dam (estimated as the total number of redds times the fish/redd ratio), and the proportion of the Tumwater Dam count that made up the spawning escapement.

| Survey year | $\begin{array}{c}\text { Total count } \\ \text { at Tumwater } \\ \text { Dam }\end{array}$ | Fish/redd | $\begin{array}{c}\text { Number of redds } \\ \text { Index area }\end{array}$ | | | $\begin{array}{c}\text { Non-index } \\ \text { area }\end{array}$ | Total redds |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Spawning

escapement

Tumwater

count that

spawned\end{array}\right\}\)
${ }^{\mathrm{a}}$ The average is based on estimates from 2004 to present.

3.6 Life History Monitoring

Life history characteristics of steelhead were assessed by examining fish collected at broodstock collection sites, examining videotape at Tumwater Dam, and by reviewing tagging data and fisheries statistics. Some statistics could not be calculated at this time because few fish have been tagged with CWTs. All steelhead released from the hatchery received elastomer tags and about 30,000 were PIT tagged. With the placement of remote PIT tag detectors in spawning streams in 2007, statistics such as origin on spawning grounds, stray rates, and SARs can be estimated more accurately.

Migration Timing

There was little difference in migration timing of wild and hatchery fish enumerated at Tumwater Dam (Table 3.21; Figure 3.5). Steelhead passed Tumwater Dam during most months with the majority passing during July through October and April. The highest proportion of both wild and hatchery fish migrated during October.
Table 3.21. The proportion of wild and hatchery steelhead enumerated at Tumwater Dam during different months of the migration period, 1999-2007. The presence of eroded fins and/or missing adipose fins was used to distinguish hatchery fish from wild fish during video monitoring at Tumwater Dam. Proportions include steelhead collected for broodstock. $\mathrm{N}=$ sample size.

Brood year	Origin	Proportion of steelhead enumerated at Tumwater Dam												N
		Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	
1999	Wild	0.018	0.245	0.182	0.100	0.027	0.164	0.000	0.000	0.000	0.055	0.200	0.009	110
	Hatch	0.128	0.179	0.167	0.026	0.000	0.154	0.000	0.000	0.000	0.090	0.218	0.038	78
2000	Wild	0.007	0.058	0.306	0.252	0.191	0.043	0.000	0.000	0.004	0.054	0.068	0.018	278
	Hatch	0.004	0.057	0.323	0.217	0.129	0.008	0.000	0.000	0.000	0.114	0.141	0.008	263
2001	Wild	0.011	0.198	0.263	0.171	0.177	0.004	0.000	0.000	0.000	0.042	0.124	0.011	475

Brood year	Origin	Proportion of steelhead enumerated at Tumwater Dam												N
		Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	
	Hatch	0.000	0.120	0.133	0.104	0.219	0.016	0.000	0.000	0.003	0.110	0.258	0.037	383
2002	Wild	0.001	0.144	0.127	0.162	0.218	0.158	0.006	0.000	0.001	0.068	0.096	0.018	991
	Hatch	0.001	0.015	0.056	0.195	0.366	0.196	0.001	0.000	0.003	0.040	0.098	0.029	734
2003	Wild	0.000	0.153	0.376	0.155	0.066	0.002	0.040	0.056	0.042	0.050	0.054	0.006	924
	Hatch	0.001	0.073	0.140	0.086	0.047	0.010	0.053	0.208	0.066	0.208	0.107	0.003	910
2004	Wild	0.006	0.100	0.110	0.132	0.312	0.084	0.000	0.000	0.005	0.035	0.204	0.013	866
	Hatch	0.010	0.112	0.085	0.117	0.291	0.039	0.000	0.000	0.003	0.062	0.224	0.060	1,038
2005	Wild	0.018	0.084	0.066	0.358	0.262	0.038	0.002	0.000	0.000	0.038	0.122	0.013	1,192
	Hatch	0.054	0.156	0.024	0.316	0.175	0.021	0.000	0.000	0.000	0.030	0.176	0.047	1,489
2006	Wild	0.011	0.076	0.026	0.048	0.485	0.045	0.000	0.003	0.005	0.087	0.195	0.018	619
	Hatch	0.000	0.087	0.012	0.089	0.417	0.043	0.000	0.060	0.006	0.161	0.105	0.019	515
2007	Wild	0.000	0.117	0.229	0.236	0.125	0.010	0.003	0.000	0.013	0.036	0.210	0.021	385
	Hatch	0.003	0.092	0.020	0.069	0.102	0.007	0.003	0.000	0.020	0.102	0.507	0.076	304
Average	Wild	0.007	0.120	0.168	0.193	0.231	0.058	0.008	0.009	0.009	0.051	0.132	0.014	5,840
	Hatch	0.018	0.101	0.079	0.171	0.217	0.047	0.009	0.039	0.013	0.091	0.179	0.036	5,710

Steelhead Migration Timing

Figure 3.5. Proportion of wild and hatchery steelhead sampled at Tumwater Dam for the combined brood years of 1999-2007.

Age at Maturity

Nearly all steelhead broodstock collected at Tumwater and Dryden dams lived in saltwater 1 to 2 years (saltwater age) (Table 3.22; Figure 3.6). Very few saltwater age-3 fish returned and those that did were wild fish. In general there was little difference between the saltwater age of wild and
hatchery fish. A slightly greater number of wild fish returned as saltwater age-2 fish than age- 1 fish. In contrast, a slightly greater number of hatchery fish returned as saltwater-1 fish.

Table 3.22. Proportions of wild and hatchery steelhead broodstock of different ages collected at Tumwater and Dryden dams, 1998-2006. Age represents the number of years the fish lived in salt water.

Sample year	Origin	Saltwater age			Sample size
		1	2	3	
1998	Wild	0.39	0.61	0.00	35
	Hatchery	0.21	0.79	0.00	43
1999	Wild	0.50	0.48	0.02	58
	Hatchery	0.82	0.18	0.00	67
2000	Wild	0.56	0.44	0.00	39
	Hatchery	0.68	0.32	0.00	101
2001	Wild	0.52	0.48	0.00	64
	Hatchery	0.15	0.85	0.00	114
2002	Wild	0.56	0.44	0.00	99
	Hatchery	0.95	0.05	0.00	113
2003	Wild	0.13	0.85	0.02	63
	Hatchery	0.29	0.71	0.00	92
2004	Wild	0.95	0.05	0.00	85
	Hatchery	0.95	0.05	0.00	132
2005	Wild	0.22	0.78	0.00	95
	Hatchery	0.21	0.79	0.00	114
2006	Wild	0.29	0.71	0.00	101
	Hatchery	0.60	0.40	0.00	98
2007	Wild	0.40	0.59	0.00	79
	Hatchery	0.62	0.38	0.00	97
Average	Wild	0.45	0.54	0.01	92
	Hatchery	0.55	0.45	0.00	97

Steelhead Age Structure

Figure 3.6. Proportions of wild and hatchery steelhead of different saltwater ages sampled at Tumwater Dam for the combined years 1998-2006.

Size at Maturity

On average, hatchery steelhead collected at Tumwater and Dryden dams were about 2 cm smaller than wild steelhead (Table 3.23). This may be related to the fact that slightly more wild steelhead return as saltwater age-2 fish than hatchery steelhead.
Table 3.23. Mean fork length (cm) at age (saltwater ages) of hatchery and wild steelhead collected from broodstock, 1998-2007; $\mathrm{N}=$ sample size and SD = 1 standard deviation.

Return year	Origin	Steelhead fork length (cm)								
		1-Salt			2-Salt			3-Salt		
		Mean	N	SD	Mean	N	SD	Mean	N	SD
1998	Wild	63	15	4	79	20	5	-	0	-
	Hatchery	61	9	4	73	34	4	-	0	-
1999	Wild	65	29	5	74	28	5	77	1	-
	Hatchery	62	54	4	73	12	4	-	0	-
2000	Wild	64	22	3	74	17	5	-	0	-
	Hatchery	60	57	3	71	27	4	-	0	-
2001	Wild	61	33	6	77	31	5	-	0	-
	Hatchery	62	17	4	72	97	4	-	0	-
2002	Wild	64	55	4	77	44	4	-	0	-
	Hatchery	63	106	4	73	6	4	-	0	-
2003	Wild	69	8	6	77	52	5	91	1	-
	Hatchery	66	27	4	75	65	4	-	0	-
2004	Wild	63	73	6	78	4	2	-	0	-

Return year	Origin	Steelhead fork length (cm)								
		1-Salt			2-Salt			3-Salt		
		Mean	N	SD	Mean	N	SD	Mean	N	SD
	Hatchery	61	59	3	73	3	1	-	0	-
2005	Wild	59	21	4	74	74	5	-	0	-
	Hatchery	59	23	4	72	89	4	-	0	-
2006	Wild	63	27	5	75	67	6	-	0	-
	Hatchery	61	41	4	72	27	5	-	0	-
2007	Wild	64	31	6	76	46	5	-	0	-
	Hatchery	60	60	4	71	36	5	-	0	-

Contribution to Fisheries

Nearly all harvest on Wenatchee steelhead occurs within the Columbia basin. Harvest rates on steelhead in the Lower Columbia River fisheries (both tribal and non-tribal) are generally less than 5-10\% (NMFS 2004). WDFW regulates steelhead harvest in the Upper Columbia. Under certain conditions, WDFW may allow a harvest on hatchery steelhead (adipose fin clipped fish). The intent is to reduce the number of hatchery steelhead that exceed habitat seeding levels in spawning areas and to increase the proportion of wild steelhead in spawning populations.

The Hatchery Evaluation Technical Team (HETT) is currently developing methods for calculating harvest rates on Wenatchee steelhead. These methods will be presented to the Hatchery Committee for their review in 2008.

Origin on Spawning Grounds

At this time, origin of steelhead (wild or hatchery) on spawning grounds cannot be determined precisely. However, based on scales collected during steelhead run composition sampling at Dryden Dam in 2006 (2007 spawners), naturally produced steelhead made up 37% of the escapement. More precise estimates of wild and hatchery spawners within tributaries can be generated after remote PIT tag detectors are installed within spawning tributaries.

Straying

Stray rates are currently difficult to estimate because fish are not handled on spawning grounds. As remote PIT-tag detectors are installed in spawning streams, we will be able to more accurately determine steelhead stray rates.

Genetics

A report on the genetic analysis of Wenatchee steelhead will be completed in 2008.

Natural Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population. For brood years 1989-2001, NRR in the Wenatchee averaged 0.83
(range, 0.07-3.13) (Table 3.24). NRRs for more recent brood years will be calculated as soon as the data are available.

Table 3.24. Spawning escapements, natural origin recruits (NOR), and natural replacement rates (NRR) for Wenatchee steelhead, 1989-2001. Numbers of hatchery and wild steelhead were based on radio telemetry results, numbers of steelhead passing Priest and Wells dams, and the number of steelhead harvested or removed fro broodstock. (The numbers in this table may change as the HETT and HC refine the methods for estimating steelhead escapement, NORs, and NRRs.)

Brood year	Spawning escapement			NOR	NRR
	Hatchery	Wild	Total		348
1989	1,849	1,001	2,851	342	0.122
1990	1,487	936	2,423	321	0.141
1991	990	481	1,471	262	0.218
1992	1,333	888	2,221	241	0.118
1993	2,951	566	3,516	342	0.068
1994	985	309	1,294	427	0.265
1995	1,637	303	1,940	1,037	0.220
1996	1,036	409	1,445	1,609	0.717
1997	245	269	514	1,225	3.129
1998	391	278	668	796	1.832
1999	114	268	382	1,260	2.085
2000	738	406	1,144	1,301	1.101
2001	1,065	773	1,838	731	0.707
Average	$\mathbf{1 , 1 4 0}$	530	$\mathbf{1 , 6 7 0}$	0.825	

Hatchery Replacement Rates

Hatchery replacement rates were estimated as hatchery adult-to-adult returns. These rates should be greater than the NRRs and greater than or equal to 19.2 (the value in BAMP; Murdoch and Peven 2005). In years with data, HRRs and adjusted HRRs were consistently greater than NRRs (Table 3.25). In contrast, HRRs exceeded the BAMP target of 19.2 in only one year and adjusted HRRs exceeded the BAMP target in two of the six years (Table 3.25).
Table 3.25. Hatchery replacement rates (HRR), adjusted HRR (for estimated tag loss), NRR, and BAMP target (19.2) for Wenatchee steelhead, 1998-2000. (The numbers in this table may change as the HETT and HC refine the methods for estimating steelhead HRRs and NRRs.)

Brood year	HRR	Adjusted HRR	NRR	BAMP
1998	1.89	3.49	1.83	19.2
1999	15.47	23.16	2.09	19.2
2000	2.60	3.33	1.10	19.2
2001	57.97	63.37	0.71	19.2
2002	11.76	12.18		19.2
2003	6.56	6.56		19.2

Brood year	HRR	Adjusted HRR	NRR	BAMP
Average	16.04	18.68	1.43	19.2

Smolt-to-Adult Survivals

Smolt-to-adult ratios (SARs) are calculated as the number of returning hatchery adults divided by the number of hatchery smolts released. SARs are generally based on CWT returns. However, Wenatchee steelhead have not been extensively tagged with CWTs. Therefore elastomer-tagged fish were used to estimate SARs from release to capture at Priest Rapids Dam. Two different estimates are provided. One (unadjusted) is based on elastomer tag recaptures at Priest Rapids Dam; the other (adjusted) is corrected for tag loss after release (based on the number of unmarked hatchery adults that could not be accounted for). SARs for steelhead may change once a more accurate methodology for estimating adult survival has been developed.

Unadjusted SARs for Wenatchee steelhead ranged from 0.0017 to 0.0307 (mean = 0.0076) for brood years 1996-2003 (Table 3.26). Accounting for post-release tag loss, SARs ranged from 0.0016 to 0.0336 (mean $=0.0105$) for brood years 1998-2003.

Table 3.26. Smolt-to-adult ratios (SARs) for Wenatchee hatchery steelhead, 1996-2002; NA = not available. Unadjusted estimates were based on elastomer tags recaptured at Priest Rapids Dam. Adjusted estimates were corrected for tag loss after release.

Brood year	Number released	SAR (unadjusted)	SAR (adjusted)
1996	348,693	0.0034	NA
1997	429,422	0.0041	NA
1998	172,078	0.0009	0.0016
1999	175,661	0.0110	0.0165
2000	184,639	0.0017	0.0022
2001	335,933	0.0307	0.0336
2002	302,060	0.0063	0.0065
2003	374,867	0.0027	0.0027
Average	278,355	$\mathbf{0 . 0 0 7 6}$	$\mathbf{0 . 0 1 0 5}$

3.7 ESA/HCP Compliance

Broodstock Collection

Collection of brood year 2006 broodstock for Wenatchee steelhead at Tumwater and Dryden dams began on 5 July and ended on 11 November 2005 and represented a slightly shortened collection duration from the 1 July - 12 November collection period detailed in the 2005 broodstock collection protocol. The broodstock collection protocols specified a total collection of 208 steelhead, including 104 natural-origin steelhead. Actual broodstock collection totaled 199 steelhead collected at Tumwater and Dryden dams, including 101 natural-origin fish (50.8\% of the total collection),
consistent with the 2005 protocol and the ESA Permit 1395 target of 50\% natural-origin broodstock composition.

About 140 steelhead were handled and released at Dryden Dam during Wenatchee steelhead broodstock collection. These fish were released because the weekly quota for either hatchery or wild steelhead had been attained, but not both, or because they were non-target (red VIE), or they were unidentifiable hatchery-origin steelhead. All steelhead released were allowed to fully recover from the anesthesia and released immediately upstream from the Dryden Dam trap site.
In addition to steelhead encountered at Dryden Dam during steelhead broodstock collection, 121 spring Chinook salmon and four bull trout were captured and released unharmed immediately upstream from the trap facility. Consistent with ESA Section 10 Permit 1395 impact minimization measures, all ESA species handled at this site were subject of water-to-water transfers.

Hatchery Rearing and Release

Although nearly 8% of the 2006 brood H x W component died of asphyxiation at Eastbank Hatchery because of a power outage associated with a winter storm, the 2006 brood Wenatchee steelhead reared throughout all life-stages without significant mortality events (defined as $>10 \%$ population mortality associated with a single event). However, the 2006 brood had poor fertilization to eyedegg and eyed-egg to ponding survival resulting in an unfertilized-to-release survival of 54.9\%, considerably less than the program target of 81% (see Section 3.2).
Juvenile rearing occurred at three separate facilities including Eastbank Fish Hatchery, Chelan Falls Fish Hatchery, and Turtle Rock Fish Hatchery. Multiple facilities were used to take advantage of variable water temperatures to manipulate growth of juveniles from different parental crosses. Typically, wild steelhead spawn later than their hatchery cohort and are therefore reared at Chelan Falls Fish Hatchery on warmer water to accelerate their growth so they achieve a size at release similar to HxH and HxW parental cross progeny reared on cooler water at Eastbank Fish Hatchery. All parental cross groups receive final rearing at Turtle Rock Fish Hatchery on Columbia River surface water before direct release (scatter planting) in the Wenatchee River basin.
The 2006 brood steelhead smolt release in the Wenatchee Basin totaled 299,937smolts, representing approximately 75% of the program target of 400,000 smolts identified in the Rocky Reach and Rock Island Dam HCPs and in ESA Section 10 Permit 1395. As specified in ESA Section 10 Permit 1395, all steelhead smolts released were externally marked or tagged and a representative number were PIT tagged (see Section 3.2)

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery facilities during the period 1 January 2007 through 31 December 2007. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2007 are provided in Appendix E.

Smolt and Emigrant Trapping

Per ESA Section 10 Permit No. 1395, the permit holders are authorized a direct take of 20% of the emigrating steelhead population and a lethal take not to exceed 2% of the fish captured (NMFS
2003). Based on the estimated wild steelhead population (smolt trap expansion) and hatchery juvenile steelhead population estimate (hatchery release data) for the Wenatchee Basin, the reported steelhead encounters during 2007 emigration complied with take provisions in the Section 10 permit and are detailed in Table 3.27. Additionally, juvenile fish captured at the trap locations were handled consistent with provisions in ESA Section 10 Permit 1395 Section B.

Table 3.27. Estimated take of Upper Columbia River steelhead resulting from juvenile emigration monitoring in the Wenatchee Basin, 2006. NA = not available.

Trap location	Population estimate				Number trapped				Total	Take allowed by Permit
	Wild ${ }^{\text {a }}$	Hatchery ${ }^{\text {b }}$	Parr ${ }^{\text {c }}$	Fry	Wild	Hatchery	Parr	Fry		
Chiwawa Trap										
Population	NA	48,890	NA	NA	152	1,964	1,056	0	3,172	
Encounter rate	NA	NA	NA	NA	NA	0.0402	NA	NA	NA	0.20
Mortality	NA	NA	NA	NA	0	0	4	NA	4	
Mortality rate	NA	NA	NA	NA	0.0000	0.0000	0.0038	NA	0.0013	0.02
Upper Wenatchee Trap										
Population	1,085	299,937	4,833	NA	15	178	65	0	258	
Encounter rate	NA	NA	NA	NA	0.0138	0.0006	0.0134	NA	0.0008	0.20
Mortality	NA	NA	NA	NA	0	0	0	0	0	
Mortality rate	NA	NA	NA	NA	0.0000	0.0000	0.0000	NA	0.0000	0.02
Lower Wenatchee Trap										
Population	85,443	299,937	9,839	NA	433	2,697	62	0	3,192	
Encounter rate	NA	NA	NA	NA	0.0051	0.0090	0.0063	NA	0.0081	0.20
Mortality	NA	NA	NA	NA	3	0	1	NA	3	
Mortality rate	NA	NA	NA	NA	0.0069	0.0000	0.0161	NA	0.0009	0.02
Wenatchee Basin Total										
Population	85,443	299,937		NA	600	4,869	1,183	0	6,652	
Encounter rate	NA	NA	NA	NA	0.0070	0.0162	NA	NA	NA	0.20
Mortality	NA	NA	NA	NA	3	0	1	NA	7	
Mortality rate	NA	NA	NA	NA	0.0050	0.000	0.0008	NA	0.0011	0.02

${ }^{\text {a }}$ Smolt production estimates based on juvenile emigration monitoring (Miller 2008).
${ }^{\text {b }} 2007$ smolt release data for the Wenatchee basin.
${ }^{\text {c }}$ Estimated parr emigrating past juvenile trap sites (Miller et al. 2008)

Spawning Surveys

Steelhead spawning ground surveys were conducted in the Wenatchee Basin during 2007, as authorized by ESA Section 10 Permit No. 1395. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

Stock Assessment at Priest Rapids Dam

Upper Columbia River steelhead stock assessment sampling at Priest Rapids Dam (PRD) is authorized through ESA Section 10 Permit No. 1395 (NMFS 2003). Permit authorizations include interception and biological sampling of 10% of the UCR steelhead passing PRD to determine upriver adult population size, estimate hatchery to wild ratios, determine age-class contribution, and evaluate the need for managing hatchery steelhead consistent with ESA recovery objectives, which include fully seeding spawning habitat with naturally produced Upper Columbia River steelhead supplemented with artificially propagated enhancement steelhead (NMFS 2003). The 2007-08 runcycle summary is pending the completion of the run-cycle (31 May 2008) and final age-at-return assessment based on scale analysis (will be included as Appendix F).

SECTION 4: WENATCHEE SOCKEYE SALMON

4.1 Broodstock Sampling

This section focuses on results from sampling 2005 and 2006 Wenatchee sockeye broodstock, which were collected at Tumwater Dam. The 2005 brood begins the tracking of the life cycle of sockeye that were released as parr into Lake Wenatchee in 2006 and some of which began smolt migrations in 2007. The 2006 brood is included because juveniles from this brood were released as parr in the lake in 2007. Complete information is not currently available for the 2007 brood (this information will be provided in the 2008 annual report). Collection of sockeye broodstock targets naturally produced fish and equal numbers of male and female fish.

Origin of Broodstock

The 2005 broodstock consisted of mostly naturally produced sockeye collected at Tumwater Dam between 15 July and 22 August 2005 (Table 4.1). A total of 165 sockeye were spawned of which 159 were naturally produced fish; the remaining six fish were of unknown origin. The 2006 broodstock consisted of mostly naturally produced Wenatchee sockeye salmon collected at Tumwater Dam between 17 July and 3 August 2006 (Table 4.1). A total of 214 naturally produced sockeye were spawned.

Table 4.1. Numbers of wild and hatchery sockeye salmon collected for broodstock, numbers that died before spawning, and numbers of sockeye spawned, 1989-2006. Unknown origin fish (i.e., undetermined by scale analysis, no CWT or fin clips, and no additional hatchery marks) were considered naturally produced. Mortality includes sockeye that died of natural causes typically near the end of spawning and were not needed for the program, surplus sockeye killed at spawning, sockeye that died but were not recovered from the net pens, and sockeye that may have jumped out of the net pens.

Brood year	Wild sockeye					Hatchery sockeye					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
1989	299	93	47	115	44	0	0	0	0	0	115
1990	333	7	7	302	17	0	0	0	0	0	302
1991	357	18	16	199	124	0	0	0	0	0	199
1992	362	18	5	320	19	0	0	0	0	0	320
1993	307	79	21	207	0	0	0	0	0	0	207
1994	329	15	9	236	69	5	0	0	5	0	241
1995	218	5	7	194	12	3	0	0	3	0	197
1996	291	2	0	225	64	20	0	0	0	20	225
1997	283	12	3	192	76	19	0	0	19	0	211
1998	225	37	25	122	41	6	0	0	6	0	128
1999	90	7	1	79	3	60	0	0	60	0	139
2000	256	19	1	170	66	5	0	0	5	0	175
2001	252	27	10	200	15	8	1	0	7	0	207
2002	257	0	1	256	0	0	0	0	0	0	256
2003	261	12	9	198	42	0	0	0	0	0	198
2004	211	13	12	177	9	0	0	0	0	0	177

| 2005 | 243 | 29 | 12 | 166 | 36 | 0 | 0 | 0 | 0 | 0 | 166 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 260 | 2 | 4 | 214 | 40 | 0 | 0 | 0 | 0 | 0 | 214 |
| Average | 269 | 22 | $\mathbf{1 1}$ | $\mathbf{1 9 8}$ | $\mathbf{3 8}$ | $\mathbf{6}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{1}$ | $\mathbf{2 0 4}$ |

Age/Length Data

Ages of sockeye were determined from scales and otoliths collected from broodstock. The 2005 return was comprised primarily of age-4 returning adults (74.2\%; Table 4.2). Age-5 adults made up 25.8% of the remaining broodstock. No age-6 fish were collected. The 2006 return consisted primarily of age-5 adults (65.5%; Table 4.2). Age- 4 and 6 sockeye made up 34.0% and 0.5% of the 2006 return, respectively.
Table 4.2. Percent of hatchery and wild sockeye salmon of different ages (total age) collected from broodstock, 1994-2006.

Return year	Origin	Total age		
		4	5	6
1994	Wild	57.3	41.7	1.0
	Hatchery	40.0	60.0	0.0
1995	Wild	77.3	20.7	2.0
	Hatchery	66.7	33.3	0.0
1996	Wild	65.8	34.2	0.0
	Hatchery	0.0	0.0	0.0
1997	Wild	86.5	13.5	0.0
	Hatchery	57.9	42.1	0.0
1998	Wild	9.9	88.6	1.5
	Hatchery	66.7	33.3	0.0
1999	Wild	21.8	74.7	3.5
	Hatchery	90.0	8.3	1.7
2000	Wild	97.7	2.3	0.0
	Hatchery	100.0	0.0	0.0
2001	Wild	69.9	29.6	0.5
	Hatchery	71.4	28.6	0.0
2002	Wild	31.6	67.6	0.8
	Hatchery	0.0	0.0	0.0
2003	Wild	2.6	90.5	6.9
	Hatchery	0.0	0.0	0.0
2004	Wild	97.5	2.0	0.5
	Hatchery	0.0	0.0	0.0
2005	Wild	74.2	25.8	0.0
	Hatchery	0.0	0.0	0.0
2006	Wild	34.0	65.5	0.5
	Hatchery	0.0	0.0	0.0

Return year	Origin	Total age		
		4	5	6
Average	Wild	55.9	42.8	1.3
	Hatchery	70.4	29.4	0.2

Lengths of sockeye for the 2005 and 2006 return years are provided in (Table 4.3). Lengths of age4, 5, and 6 sockeye sampled in 2006 averaged 52, 56, and 56 cm , respectively.

Table 4.3. Mean fork length (cm) at age (total age) of hatchery and wild sockeye salmon collected for broodstock, 1994-2006; SD = 1 standard deviation.

Return year	Origin	Sockeye fork length (cm)								
		Age-4			Age-5			Age-6		
		Mean	N	SD	Mean	N	SD	Mean	N	SD
1994	Wild	56	125	3	55	91	3	54	2	3
	Hatchery	57	2	1	56	3	1	-	0	-
1995	Wild	51	153	2	55	41	4	54	4	5
	Hatchery	53	2	4	59	1	-	-	0	-
1996	Wild	52	146	4	53	76	3	-	0	-
	Hatchery	-	0	-	-	0	-	-	0	-
1997	Wild	50	166	3	53	26	5	-	0	-
	Hatchery	54	11	4	59	8	2	-	0	-
1998	Wild	51	13	4	55	117	3	53	2	3
	Hatchery	52	4	2	55	2	8	-	0	-
1999	Wild	52	19	4	50	65	4	56	3	1
	Hatchery	50	54	3	56	5	4	56	1	-
2000	Wild	52	167	2	54	4	3	-	0	-
	Hatchery	54	5	1	-	0	-	-	0	-
2001	Wild	54	151	3	56	65	4	58	1	-
	Hatchery	51	5	5	55	2	4	-	0	-
2002	Wild	54	77	2	56	165	4	57	2	0
	Hatchery	-	0	-	-	0	-	-	0	-
2003	Wild	54	5	4	60	172	2	60	13	4
	Hatchery	-	0	-	-	0	-	-	0	-
2004	Wild	53	192	3	56	4	3	63	1	-
	Hatchery	-	0	-	-	0	-	-	0	-
2005	Wild	51	132	3	57	46	4	-	0	-
	Hatchery	-	0	-	-	0	-	-	0	-
2006	Wild	52	70	3	56	135	4	54	2	3
	Hatchery	-	0	-	-	0	-	-	0	-

Sex Ratios

Male sockeye in the 2005 return made up about 54% of the adults collected, resulting in an overall male to female ratio of 1.15:1.00 (Table 4.4). In 2006, males made up about 50% of the adults collected, resulting in an overall male to female ratio of 1.00:1.00. Ratios for both years are at or near the $1: 1$ ratio target in the broodstock protocol.
Table 4.4. Numbers of male and female wild and hatchery sockeye collected for broodstock, 1989-2006. Ratios of males to females are also provided.

Return year	Number of wild sockeye			Number of hatchery sockeye			$\begin{gathered} \text { Total M/F } \\ \text { ratio* } \end{gathered}$
	Males (M)	Females (F)	M/F	Males (M)	Females (F)	M/F	
1989	162	137	1.18:1.00	-	-	-	1.18:1.00
1990	177	156	1.13:1.00	-	-	-	1.13:1.00
1991	260	97	2.68:1.00	-	-	-	2.68:1.00
1992	180	182	0.99:1.00	-	-	-	0.99:1.00
1993	130	177	0.73:1.00	-	-	-	0.73:1.00
1994	162	167	0.97:1.00	1	4	0.25:1.00	0.95:1.00
1995	102	116	0.88:1.00	1	2	0.50:1.00	0.87:1.00
1996	150	161	0.93:1.00	-	-	-	0.93:1.00
1997	139	144	0.97:1.00	10	9	1.11:1.00	0.97:1.00
1998	115	110	1.05:1.00	2	4	0.50:1.00	1.03:1.00
1999	22	68	0.32:1.00	37	23	1.61:1.00	0.65:1.00
2000	155	101	1.53:1.00	3	2	1.50:1.00	1.53:1.00
2001	114	138	0.83:1.00	4	4	1.00:1.00	0.83:1.00
2002	128	129	0.99:1.00	-	-	-	0.99:1.00
2003	161	100	1.61:1.00	-	-	-	1.61:1.00
2004	108	103	1.05:1.00	-	-	-	1.05:1.00
2005	130	113	1.15:1.00	-	-	-	1.15:1.00
2006	130	130	1.00:1.00	-	-	-	1.00:1.00
Total	2,525	2,329	1.08:1.00	58	48	1.21:1.00	1.09:1.00

Fecundity

Fecundities for the 2005 and 2006 returns of sockeye salmon averaged 2,718 and 2,656 eggs per female, respectively (Table 4.5). These fecundities are close to the 18-year average of 2,615. Fecundities for this program are based upon the total (pooled) number of eyed eggs divided by the number of females spawned. Mean fecundities derived from individual fecundities cannot be calculated because of the need to pool three females per incubation tray.

Table 4.5. Mean fecundity of female sockeye salmon collected for broodstock, 1989-2006. Fecundities were determined from pooled egg lots and were not identified for individual females.

Return year	Mean fecundity
1989	2,344
1990	2,225
1991	2,598
1992	2,341
1993	2,340
1994	2,798
1995	2,295
1996	2,664
1997	2,447
1998	2,813
1999	2,319
2000	2,673
2001	2,960
2002	2,856
2003	3,511
2004	2,505
2005	2,718
2006	2,656
Average	2,615

4.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of 246,914 eggs are required to meet the program release goal of 200,000 smolts. Between 1989 and 2006, the egg take goal was reached in most years (Table 4.6). The number of eggs taken in 2006 was above the egg take target by 18%.
Table 4.6. Numbers of eggs taken from sockeye broodstock, 1989-2006.

Return year	Number of eggs taken
1989	133,600
1990	333,779
1991	231,254
1992	381,561
1993	231,700

Return year	Number of eggs taken
1994	338,562
1995	247,900
1996	314,390
1997	254,459
1998	163,278
1999	190,732
2000	227,234
2001	301,925
2002	356,982
2003	319,470
2004	225,499
2005	211,985
2006	292,136
2007	292,136
Average	264,247

Number of acclimation days

Wenatchee sockeye have only been acclimated on Lake Wenatchee water. For brood years 1989 through 1998, unfed fry were transferred from Eastbank FH to Lake Wenatchee Net Pens until release (Table 4.7). Juvenile sockeye were reared at Eastbank FH (1999 brood - present) until July in an effort to increase growth before release.
Table 4.7. Water source and mean acclimation period for Wenatchee sockeye, brood years 1989-2005.

Brood year	Release year	Transfer date	Release date	Number of Days	Water source
1989	1990	5-Apr	24-Oct	202	Lake Wenatchee
1990	1991	10-Apr	19-Oct	192	Lake Wenatchee
1991	1992	1-Apr	20-Oct	202	Lake Wenatchee
1992	1993	5-Apr	7-Sep	155	Lake Wenatchee
		5-Apr	26-Oct	204	Lake Wenatchee
1993	1994	5-Apr	1-Sep	149	Lake Wenatchee
		5-Apr	17-Oct	195	Lake Wenatchee
1994	1995	4-Apr	15-Sep	164	Lake Wenatchee
		4-Apr	23-Oct	202	Lake Wenatchee
1995	1996	4-Apr	25-Oct	204	Lake Wenatchee
1996	1997	4-Apr	22-Oct	201	Lake Wenatchee
1997	1998	1-Apr	9-Nov	222	Lake Wenatchee
1998	1999	1-Apr	29-Oct	211	Lake Wenatchee

Brood year	Release year	Transfer date	Release date	Number of Days	Water source
1999	2000	25-Jul	28-Aug	34	Lake Wenatchee
		26-Jul	1-Nov	98	Lake Wenatchee
2000	2001	2-Jul	27-Aug	56	Lake Wenatchee
		3-Jul	27-Sep	86	Lake Wenatchee
2001	2002	15-Jul	28-Aug	44	Lake Wenatchee
		16-Jul	22-Sep	68	Lake Wenatchee
2002	2003	30-Jun	25-Aug	56	Lake Wenatchee
		1-Jul	22-Oct	113	Lake Wenatchee
2003	2004	6-Jul	25-Aug	50	Lake Wenatchee
		7-Jul	3-Nov	119	Lake Wenatchee
2004	2005	5-Jul	29-Aug	55	Lake Wenatchee
		6-Jul	2-Nov	120	Lake Wenatchee
2005	2006	11-Jul	30-Oct	111	Lake Wenatchee

Release Information

Numbers released

The 2005 Wenatchee sockeye program achieved 70.3% of the 200,000 target goal with about 140,542 fish being released (Table 4.8).
Table 4.8. Numbers of sockeye parr released, brood years 1989-2005. The release target for sockeye is 200,000 fish.

Brood year	Release year	Number released
1989	1990	260,400
1990	1991	372,102
1991	1992	167,523
1992	1993	340,557
1993	1994	190,443
1994	1995	252,859
1995	1996	150,808
1996	1997	284,630
1997	1998	197,195
1998	1999	121,344
1999	2000	167,955
2000	2001	190,174
2001	2002	200,938
2002	2003	315,783

Brood year	Release year	Number released		
2003	2004	240,459		
2004	2005	172,923		
2005	2006	140,542		
Average				221,567

Numbers tagged

A total of 15,049 juvenile sockeye were PIT tagged at the Eastbank Hatchery during 12-20 June 2007. These fish were transported to the Lake Wenatchee net pens on 9 July and released into the lake on 31 October 2007. At the time of release, a total of 65 fish had died and another 220 had shed their tags. Thus, the total number of PIT-tagged sockeye released into the lake was 14,764.

Fish size and condition at release

The 2005 brood sockeye were released as parr in 2006 and emigrated as yearling smolts in spring of 2007. Size at release was 112.0% and 192.5% of the fork length and weight goals, respectively. The 2005 brood year was below the CV goal for length by 16.7% (Table 4.9).
Table 4.9. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of sockeye released, brood years 1989-2005. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1989	1990	128	-	18.2	25
1990	1991	131	-	18.9	24
1991	1992	117	3.0	20.6	22
1992	1993	73	6.8	4.2	44
1993	1994	103	-	13.6	40
1994	1995	75	6.1	4.5	38
1995	1996	137	8.2	14.7	30
1996	1997	107	5.6	15.1	30
1997	1998	122	6.1	21.3	21
1998	1999	112	5.4	17.0	27
1999	2000	94	9.5	9.5	48
		134	11.5	31.3	15
2000	2001	123	6.5	22.3	20
		146	8.4	26.0	12
2001	2002	118	7.4	20.7	22
		135	7.3	30.5	15
2002	2003	73	5.6	4.4	104

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
		118	7.7	13.7	23
		145	9.4	38.6	13
2003	2004	79	4.6	4.8	96
		118	5.9	17.0	26
		158	8.1	44.3	10
2004	2005	116	4.5	17.2	18
		151	7.0	39.3	12
2005	2006	149	7.5	43.7	10
Targets		133	9.0	22.7	20

Survival Estimates

Overall survival of Wenatchee sockeye from green (unfertilized) egg to release was below the standard set for the program as a result of poor green egg-to-eye and eye-to-ponding survival. Investigations to determine the effects of holding adults on warm surface water at Lake Wenatchee on gamete maturation/viability in addition to reducing negative phototactic behavior at swim up (potential influences on survival at the fertilization to ponding stages) should be considered (Table 4.10).

Table 4.10. Hatchery life-stage survival rates (\%) for sockeye salmon, brood years 1989-2005. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	$\begin{gathered} \text { Eyed } \\ \text { egg- } \\ \text { ponding } \end{gathered}$	30 d after ponding	$\begin{gathered} 100 \mathrm{~d} \\ \text { after } \\ \text { ponding } \end{gathered}$	```Ponding to release```	Transport to release	Unfertilized egg-release
	Femal e	Male							
1989	41.6	100.0	88.1	63.9	99.2	98.9	98.1	65.2	55.2
1990	96.2	99.4	90.8	96.3	99.9	99.2	95.0	98.4	83.0
1991	91.8	94.1	79.2	94.8	99.8	99.3	96.4	96.4	72.4
1992	91.1	98.8	92.3	98.0	99.9	99.8	98.6	98.8	89.2
1993	57.1	99.2	89.2	98.3	99.6	99.1	93.7	93.8	82.2
1994	89.8	99.2	79.2	96.0	99.5	98.6	98.3	98.2	74.7
1995	97.5	99.1	87.5	95.0	99.0	93.3	73.2	73.2	60.8
1996	99.2	100.0	95.1	98.7	99.7	99.3	96.4	96.5	90.5
1997	92.8	99.3	84.8	97.9	97.9	97.6	95.5	94.9	79.3
1998	75.4	95.5	77.7	98.4	98.6	98.2	97.1	97.2	74.3
1999	92.3	100.0	92.2	97.3	99.6	99.3	98.2	99.7	88.1
2000	84.5	98.1	93.8	97.7	96.7	96.1	91.4	96.8	83.7
2001	75.4	99.2	78.5	97.6	98.0	97.6	86.9	95.1	66.6

Brood year	Collection to spawning		Unfertilized egg-eyed	$\begin{gathered} \text { Eyed } \\ \text { egg- } \\ \text { ponding } \end{gathered}$	30 d after ponding	100 d after ponding	```Ponding to release```	Transport to release	Unfertilized egg-release
	Femal e	Male							
2002	100.0	100.0	95.7	97.8	99.6	99.2	94.6	99.8	88.5
2003	91.0	98.1	87.2	96.9	99.0	98.2	94.8	95.5	80.1
2004	88.7	92.6	88.0	93.1	97.9	97.4	93.7	96.1	76.7
2005	98.5	98.5	85.3	94.9	97.8	96.6	95.5	99.2	77.2
Standard	90.0	85.0	92.0	98.0	97.0	93.0	90.0	95.0	81.0

4.3 Disease Monitoring

Rearing of the 2005 brood sockeye was typical to previous years with fish being held on Lake Wenatchee water in net pens for 111 days before being released directly into the lake. Mortality due to Columnaris began to increase in the juveniles in late August about 2 weeks after the last adult sockeye broodstock were transferred from Tumwater Dam to holding pens at lake Wenatchee. A 2\% TM-100 treatment was initiated for control, which abated the condition. No further outbreaks or disease issues were observed or detected.

4.4 Natural Juvenile Productivity

During 2007, juvenile sockeye salmon were sampled at the Upper Wenatchee and Lower Wenatchee traps.

Emigrant and Smolt Estimates

Upper Wenatchee Trap

The Upper Wenatchee Trap operated nightly between 4 March and 23 July 2007. During the 4.5month sampling period, a total of 38,628 wild sockeye and 2,387 hatchery sockeye smolts were captured at the Upper Wenatchee Trap. Based on a pooled daily trap efficiency of 1.4% for wild sockeye (based on 9 mark-recapture trials) and 1.4% for hatchery sockeye (based on 5 markrecapture trials), the total number of smolts that emigrated past the trap in 2007 was 2,797,313 $(\pm 131,973)$ wild and $183,475(\pm 36,799)$ hatchery sockeye. This was the first brood year, since 1999, that all hatchery sockeye parr were released at a similar size and time and the third brood year that hatchery smolt estimates for the late release group were greater than the number of fish released. Because the estimated number of hatchery smolts was greater than the number of parr released, we assumed that survival was 100% and adjusted the smolt estimate accordingly (Table 4.11).
Overestimates of hatchery sockeye smolts may be the result of some hatchery fish migrating at age-2 or an underestimate of the actual trap efficiency. We suggest the later, because coded wire tags recovered from outmigrating smolts between 2001 and 2005 indicated that all hatchery smolts emigrated as age- 1 fish the spring following release. Additional studies are needed to determine the source of errors in trap efficiency estimates and to find possible alternatives. Monthly captures of all fish and results of capture efficiency tests at the Upper Wenatchee Trap are reported in Appendix B.

Table 4.11. Estimated numbers of wild and hatchery sockeye smolts that emigrated from Lake Wenatchee during run years 1997-2007.

Run year	Numbers of sockeye smolts	
	Wild smolts	Hatchery smolts
1997	55,359	28,828
1998	$1,447,259$	55,985
1999	$1,944,966$	112,524
2000	985,490	24,684
2001	39,353	94,046
2002	729,716	121,511
2003	$5,303,056$	140,322
2004	$5,771,187$	216,023
2005	723,413	122,399
2006	$1,266,971$	159,500
2007	$2,797,313$	140,542
Average	$\mathbf{1 , 9 1 4 , 9 1 7}$	$\mathbf{1 1 0 , 5 7 9}$

Age classes of wild sockeye smolts were determined from a length frequency analysis based on scales collected randomly each year since 1997 (Table 4.12). For the available run years, most wild sockeye smolts migrated as age $1+$ fish. Only in two years (1997 and 2005) did more smolts migrate as age $2+$ fish. Relatively few smolts migrated at age $3+$.

Table 4.12. Age structure and estimated number of wild sockeye smolts that emigrated from Lake Wenatchee, 1997-2007.

Run year	Proportion of wild smolts			Total wild emigrants
	Age 1+	Age 2+	Age 3+	
1997	0.075	0.906	0.019	55,359
1998	0.955	0.037	0.008	$1,447,259$
1999	0.619	0.381	0.000	$1,944,966$
2000	0.599	0.400	0.001	985,490
2001	0.943	0.051	0.006	39,353
2002	0.961	0.039	0.000	729,716
2003	0.740	0.260	0.000	$5,303,056$
2004	0.929	0.071	0.000	$5,771,187$
2005	0.168	0.707	0.125	723,413
2006	0.994	0.006	0.000	$1,266,971$
2007	0.959	0.722	$\boldsymbol{0 . 2 6 3}$	0.038
Average			$\mathbf{0 . 0 1 5}$	$\mathbf{1 , 9 1 4 , 9 7 , 3 1 3}$

Lower Wenatchee Trap

The Lower Wenatchee Trap operated nightly between 1 February and 5 August 2007. Due to high river flows, debris, snow/ice, or mechanical failure, trap 1 and trap 2 were inoperable for 14 and 68 days, respectively. During the seven-month sampling period, a total of 6,340 wild sockeye smolts and 248 hatchery sockeye smolts were captured at the Lower Wenatchee Trap. Most of the smolts migrated during April and May. Monthly captures and mortalities of all fish collected at the Lower Wenatchee Trap are reported in Appendix B.

Freshwater Productivity

Egg-smolt survival estimates for wild sockeye salmon are provided in Table 4.13. Estimates of egg deposition were calculated based on the spawner escapement at Tumwater Dam and the sex ratio and fecundity of the broodstock. Egg-smolt survival rates for brood years 1995-2003 have ranged from 0.012 to 0.212 (mean $=0.092$).

Table 4.13. Estimated egg deposition (estimated as mean fecundity times estimated number of females), numbers of smolts, and survival rates for wild Wenatchee sockeye salmon, 1995-2006; NA = not available.

Brood year	Number of females	Mean fecundity	Total eggs	Numbers of wild smolts				Egg-smolt survival
				Age 1+	Age 2+	Age 3+	Total	
1995	2,136	2,295	4,902,120	4,174	53,549	0	57,723	0.012
1996	3,767	2,664	10,035,288	1,382,133	741,032	985	2,124,150	0.212
1997	5,404	2,447	13,223,588	1,203,934	394,196	236	1,598,366	0.121
1998	2,024	2,813	5,693,512	590,309	2,007	0	592,316	0.104
1999	513	2,319	1,189,647	37,110	28,459	0	65,569	0.055
2000	11,413	2,673	30,506,949	701,257	1,378,795	0	2,080,052	0.068
2001	21,685	2,960	64,187,600	4,024,884	409,754	90,427	4,525,065	0.070
2002	17,226	2,856	49,197,456	5,361,433	511,453	0	5,872,886	0.119
2003	2,158	3,511	7,576,738	166,385	7,602	8,392	182,379	0.024
2004	15,469	2,505	38,749,845	1,259,369	106,298	NA	NA	NA
2005	5,867	2,718	15,946,506	2,682,623	NA	NA	NA	NA
2006	4,273	2,656	11,349,088	NA	NA	NA	NA	NA
Average	7,661	2,701	20,692,361	1,583,056	363,315	11,116	1,899,834	0.092

Juvenile survival rates for hatchery sockeye salmon are provided in Table 4.14. Release-smolt survival rates for brood years 1995-2005 have ranged from 0.000 to 1.000 (mean $=0.556$). Eggsmolt survival rates for the same brood years ranged from 0.000 to 0.707 (mean $=0.263$). On average, egg-smolt survival of hatchery sockeye is about three times greater than egg-smolt survival of wild sockeye. On three separate occasions, however, the estimated number of hatchery smolts equaled or exceeded the number of hatchery parr released in the lake. As noted above, this suggests that the pooled trap efficiencies are biased high.

Table 4.14. Juvenile survival rates for hatchery Wenatchee sockeye, brood years 1995-2005; NA = not available.

Brood year	Number of eggs	Number of parr released	Date of release	Estimated number of smolts	Egg-smolt survival	Release-smolt survival
1995	247,900	150,808	10/25/96	28,828	0.116	0.191
1996	314,390	284,630	10/22/97	55,985	0.178	0.197
1997	254,459	197,195	11/9/98	112,524	0.442	0.571
1998	163,278	121,344	10/27/99	24,684	0.151	0.203
1999	190,732	84,466	8/28/00	30,326	0.159	0.359
		83,489	11/1/00	63,720	0.334	0.763
2000	227,234	92,055	8/27/01	30,918	0.136	0.336
		98,119	9/27/01	90,593	0.399	0.923
2001	301,925	96,486	8/28/02	36,484	0.121	0.378
		104,452	9/23/02	103,838	0.344	0.994
2002	356,982	98,509	6/16/03	5,192	0.015	0.053
		104,855	8/25/03	98,412	0.276	0.939
		112,419	10/22/03	112,419	0.315	1.000
2003	319,470	32,755	6/15/04	0	0.000	0.000
		104,879	8/25/04	19,574	0.061	0.187
		102,825	11/3/04	102,825	0.322	1.000
2004	225,499	81,428	8/29/05	159,500	0.707	0.922
		91,495	11/2/05			
2005	211,985	70,386	10/30/06	140,542	0.663	1.000
		70,156	10/30/06			

4.5 Spawning Surveys

Spawning surveys were conducted in the Little Wenatchee and White (including the Napeequa River) rivers from 30 August to 19 October 2007. Surveys in 2007 only included counting numbers of live sockeye spawners. No redds were counted in 2007 (see Appendix G for more details).

Spawn Timing

Sockeye began spawning during the first week of September and peaked around the third week of September (Figure 4.1). Peak spawning was determined using the total number of spawners observed on the spawning grounds.

Figure 4.1. Numbers of sockeye spawners counted during different weeks in different sampling streams within the Wenatchee Basin, August through October 2007.

Spawning Escapement

Spawning escapement of sockeye salmon in 2007 was estimated using the area-under-the-curve (AUC) method (i.e., escapement = (AUC/redd residence time) x observer efficiency). This method relied on weekly counts of live sockeye and assumed a redd residence time of 11 days and an observer efficiency of 100%. Both redd residence time and observer efficiency will be evaluated in the Wenatchee Basin in 2008.

Area-under-the-curve

Based on the AUC approach, the estimated total spawning escapement of sockeye in the Wenatchee basin in 2007 was 1,870 (Table 4.15). About 92% of the escapement spawned in the White River (including the Napeequa River).
Table 4.15. Peak numbers of live spawners and total spawning escapement estimates for sockeye salmon in the Wenatchee Basin, August through October 2007.

Sampling area	Peak number of live fish	Spawning escapement
Little Wenatchee	102	150
White River	1,183	1,720
Total	$\mathbf{1 , 2 8 5}$	$\mathbf{1 , 8 7 0}$

The spawning escapement of 1,870 Wenatchee sockeye is less than the 1989-2007 average of 15,520 and is one of the lowest on record (Table 4.16).

Table 4.16. Spawning escapements for sockeye salmon in the Wenatchee Basin for return years 1989-2007; NA = not available. Total escapements before 2003 were based on counts at Tumwater Dam.

Return year	Spawning escapement		
	Little Wenatchee	White	Total
1989	NA	NA	$\mathbf{2 8 , 7 7 8}$
1990	NA	NA	$\mathbf{2 5 , 1 7 7}$
1991	NA	NA	$\mathbf{2 6 , 5 6 5}$
1992	NA	NA	$\mathbf{2 2 , 6 2 8}$
1993	NA	NA	$\mathbf{2 9 , 9 5 2}$
1994	NA	NA	$\mathbf{9 , 4 4 7}$
1995	NA	NA	$\mathbf{4 , 2 7 2}$
1996	NA	NA	$\mathbf{7 , 5 3 4}$
1997	NA	NA	$\mathbf{1 0 , 8 0 8}$
1998	NA	NA	$\mathbf{4 , 0 4 7}$
1999	NA	NA	$\mathbf{1 , 0 2 5}$
2000	NA	NA	$\mathbf{2 0 , 7 5 1}$
2001	NA	NA	$\mathbf{2 9 , 1 3 4}$
2002	$N A$	NA	$\mathbf{2 7 , 5 6 5}$
2003	NA	NA	$\mathbf{4 , 7 0 4}$
2004	NA	NA	$\mathbf{2 5 , 8 3 4}$
2005	NA	NA	$\mathbf{8 , 5 8 2}$
2006	574	5,634	$\mathbf{6 , 2 0 8}$
2007	150	1,720	$\mathbf{1 , 8 7 0}$
$\boldsymbol{A v e r a g e}$	362	3,677	$\mathbf{1 5 , 5 2 0}$

4.6 Carcass Surveys

Carcass surveys were conducted in the Little Wenatchee and White (including the Napeequa River) rivers from 10 September to 23 October 2007.

Number sampled

A total of 383 sockeye carcasses were sampled during August through October, 2007, in the Wenatchee Basin (Table 4.17). This is considerably lower than the 15-year average of 2,256 carcasses. Most of the carcasses sampled in 2007 were collected in the White River basin (96% or 366 carcasses) (Figure 4.2). The remaining 4\% were sampled in the Little Wenatchee River (17 carcasses).

Table 4.17. Numbers of sockeye carcasses sampled within different streams/watersheds within the Wenatchee Basin, 1989-2006.

Survey year	Numbers of sockeye carcasses			
	Little Wenatchee	White	Napeequa	Total
1993	90	195	0	$\mathbf{2 8 5}$
1994	121	165	0	$\mathbf{2 8 6}$
1995	0	56	0	$\mathbf{5 6}$
1996	43	1,387	3	$\mathbf{1 , 4 3 3}$
1997	69	1,425	41	$\mathbf{1 , 5 3 5}$
1998	61	524	4	$\mathbf{5 8 9}$
1999	40	186	0	$\mathbf{2 2 6}$
2000	821	5,494	0	$\mathbf{6 , 3 1 5}$
2001	650	3,127	55	$\mathbf{3 , 7 7 7}$
2002	506	1,002	14	$\mathbf{7 , 8 1 9}$
2003	86	6,960	138	$\mathbf{1 , 1 0 2}$
2004	1	7	0	$\mathbf{7 , 7 2 3}$
2005	101	2,158	38	$\mathbf{8}$
2006	17	263	20	$\mathbf{2 , 2 9 7}$
2007	215			$\mathbf{3 8 3}$
Average			2,256	

Sockeye Carcasses

Figure 4.2. Percent of the total number of sockeye carcasses sampled in different streams/watersheds within the Wenatchee Basin during August through October, 2007.

Carcass Distribution and Origin

Sockeye carcasses were not evenly distributed among reaches within survey streams in 2007 (Table 4.18). Carcasses were only found in Reaches 2 (Lost Creek to Rainy Creek) on the Little Wenatchee. Most (99\%) of the carcasses sampled in the White River basin were in Reach 2 (Sears Creek Bridge to Napeequa River). About 1% of the carcasses sampled in the White River basin were in the Napeequa River.
Table 4.18. Numbers of carcasses sampled within different streams/watersheds within the Wenatchee Basin during August through September, 2007.

Stream/watershed	Reach	Total carcasses
Little Wenatchee	Little Wen 1	0
	Little Wen 2	17
	Little Wen 3	0
	Total	17
White	White 1	0
	White 2	363
	White 3	0
	Napeequa 1	3
	Total	366
Grand Total		383

Numbers of wild and hatchery origin sockeye carcasses sampled in 2007 will be available after analysis of marks/tags and scales. Based on the available data (1993-2006), the largest percentage of both wild and hatchery sockeye spawned in Reach 2 on the White River (Table 4.19 and Figure 4.3). However, a greater percentage of wild fish were found in Reach 2 than hatchery fish. The opposite occurred in Reach 2 on the Little Wenatchee. A larger percentage of hatchery fish were found there compared to wild fish.

Table 4.19. Numbers of wild and hatchery sockeye carcasses sampled within different reaches in the Wenatchee Basin, 1993-2006. Reach codes are described in Table 2.9.

Survey year	Origin	Numbers of sockeye carcasses					
		Little Wenatchee		White River			Total
		L2	L3	H1	H2	Q1	
1993	Wild	86	0	0	183	0	269
	Hatchery	4	0	0	12	0	16
1994	Wild	112	0	0	155	0	267
	Hatchery	9	0	0	9	0	18
1995	Wild	0	0	0	55	0	55
	Hatchery	0	0	0	1	0	1
1996	Wild	41	0	0	1,299	3	1,343
	Hatchery	2	0	0	88	0	90
1997	Wild	65	0	0	1,411	40	1,516
	Hatchery	4	0	0	11	1	16

Survey year	Origin	Numbers of sockeye carcasses					
		Little Wenatchee		White River			Total
		L2	L3	H1	H2	Q1	
1998	Wild	61	0	0	515	4	580
	Hatchery	0	0	0	9	0	9
1999	Wild	30	0	0	164	0	194
	Hatchery	10	0	0	22	0	32
2000	Wild	694	0	3	5,239	0	5,936
	Hatchery	127	0	0	252	0	379
2001	Wild	625	0	0	3,063	0	3,688
	Hatchery	25	0	0	64	0	89
2002	Wild	504	0	0	7,207	55	7,766
	Hatchery	2	0	0	51	0	53
2003	Wild	81	0	0	993	14	1,088
	Hatchery	5	0	0	9	0	14
2004	Wild	606	0	0	6,755	166	7,527
	Hatchery	19	0	0	205	22	246
2005	Wild	201	0	5	2,966	21	3,193
	Hatchery	1	0	0	8	0	9
2006	Wild	80	0	0	2,112	36	2,228
	Hatchery	21	0	0	46	2	69
Average	Wild	228	0	1	2,294	24	2,546
	Hatchery	16	0	0	56	2	74

Wenatchee Sockeye Salmon

Figure 4.3. Distribution of wild and hatchery produced carcasses in different reaches in the Wenatchee Basin, pooled data from 1993-2005. Reach codes are described in Table 2.9; L = Little Wenatchee, H = White River, and $\mathrm{Q}=$ Napeequa River.

Sampling Rate

The sampling rate of sockeye carcasses differed among basins, with a higher sampling rate in the White than in the Little Wenatchee (Table 4.20). Nevertheless, the overall sampling rate for both basins combined equaled the target of 20%.
Table 4.20. Numbers of carcasses, estimated spawning escapements, and sampling rates for sockeye salmon in the Wenatchee Basin, 2007.

Sampling basin	Total number of carcasses	Total spawning escapement	Sampling rate
Little Wenatchee	17	150	0.11
White	366	1,720	0.21
Total	$\mathbf{3 8 3}$	$\mathbf{1 , 8 7 0}$	$\mathbf{0 . 2 0}$

Length Data

Mean lengths ($\mathrm{POH}, \mathrm{cm}$) of male and female sockeye carcasses sampled during surveys in the Wenatchee Basin in 2007 are provided in Table 4.21. On average, males were slightly smaller than females.

Table 4.21. Mean lengths (postorbital-to-hypural length; cm) and standard deviations (in parentheses) of male and female sockeye carcasses sampled in different streams/watersheds in the Wenatchee Basin, 2007; $\mathrm{N}=$ number of fish sampled.

Stream/watershed		Male		Female	
		Length (cm)	\mathbf{N}	Length (cm)	
Little Wenatchee River	0	--	0	--	
White River	7	$39.9(6.8)$	10	$42.2(1.7)$	
Napeequa River	0	--	0	--	
Wenatchee River	0	--	0	--	
Total	7	$39.9(6.8)$	$\mathbf{1 0}$	$\mathbf{4 2 . 2 ~ (1 . 7) ~}$	

4.7 Life History Monitoring

Life history characteristics of Wenatchee sockeye were assessed by examining carcasses on spawning grounds and fish sampled at broodstock collection sites, and by reviewing tagging data and fisheries statistics.

Migration Timing

There was little difference in migration timing of hatchery and wild sockeye past Tumwater Dam during the 2007 migration period (Table 4.22). When the data were pooled for the 1998-2007 survey period, there was a difference in migration timing of wild and hatchery sockeye (Table 4.22; Figure 4.4). Most hatchery and wild sockeye migrated upstream past Tumwater dam during July through early August; however, on average, hatchery fish tended to migrate earlier than did wild fish. The peak migration time for hatchery sockeye was the second week of July, while the peak for wild
sockeye was the fourth week of July (Figure 4.4). It should be noted that the return of hatchery sockeye in 2001 was large compared to other years and this return class skewed the pooled estimate to an earlier migration timing. In most other years, there was little difference in migration timing of hatchery and wild sockeye observed at Tumwater Dam.

Table 4.22. The proportion of wild and hatchery sockeye observed (with video sampling) passing Tumwater Dam each week from late June through early October, 1998-2007. Data for 1998 through 2003 were based on videotapes and broodstock trapping and may not reflect the actual number of hatchery sockeye salmon. All sockeye were visually examined during trapping from 2004 to present.

Survey year	Origin	Proportion of sockeye sampled at Tumwater Dam weekly															Sample size
		Jun	Jul				Aug					Sep				$\begin{gathered} \text { Oct } \\ \hline 15 \end{gathered}$	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14		
1998	Wild	0.000	0.000	0.131	0.613	0.205	0.033	0.015	0.002	0.001	0.001	0.000	0.000	0.000	0.000	0.000	4,173
	Hatch	0.000	0.000	0.129	0.355	0.258	0.097	0.097	0.065	0.000	0.000	0.000	0.000	0.000	0.000	0.000	31
1999	Wild	0.000	0.000	0.000	0.000	0.000	0.007	0.036	0.315	0.405	0.180	0.032	0.020	0.006	0.000	0.000	908
	Hatch	0.000	0.000	0.000	0.000	0.000	0.004	0.019	0.322	0.447	0.152	0.034	0.015	0.008	0.000	0.000	264
2000	Wild	0.001	0.000	0.008	0.292	0.502	0.160	0.030	0.004	0.002	0.001	0.000	0.000	0.000	0.000	0.000	18,390
	Hatch	0.005	0.002	0.029	0.292	0.453	0.178	0.035	0.003	0.003	0.000	0.001	0.000	0.000	0.000	0.000	2,589
2001	Wild	0.000	0.000	0.000	0.321	0.443	0.236	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1,047
	Hatch	0.000	0.156	0.426	0.162	0.114	0.084	0.044	0.005	0.005	0.003	0.000	0.000	0.000	0.000	0.000	31,586
2002	Wild	0.000	0.000	0.000	0.063	0.610	0.214	0.076	0.027	0.007	0.002	0.001	0.001	0.000	0.000	0.000	27,241
	Hatch	0.000	0.000	0.000	0.034	0.603	0.188	0.114	0.041	0.007	0.005	0.003	0.003	0.000	0.000	0.000	580
2003	Wild	0.000	0.003	0.223	0.515	0.201	0.032	0.014	0.007	0.002	0.001	0.002	0.000	0.000	0.001	0.000	4,699
	Hatch	0.003	0.000	0.176	0.408	0.288	0.077	0.035	0.011	0.003	0.000	0.000	0.000	0.000	0.000	0.000	375
2004	Wild	0.000	0.063	0.469	0.302	0.112	0.025	0.010	0.011	0.001	0.003	0.002	0.001	0.001	0.000	0.000	31,409
	Hatch	0.000	0.101	0.552	0.251	0.073	0.002	0.002	0.009	0.005	0.002	0.002	0.001	0.000	0.001	0.000	1,758
2005	Wild	0.001	0.057	0.273	0.409	0.108	0.025	0.025	0.008	0.011	0.032	0.030	0.009	0.010	0.001	0.001	14,176
	Hatch	0.000	0.214	0.167	0.190	0.071	0.000	0.071	0.095	0.024	0.024	0.048	0.048	0.000	0.000	0.048	42
2006	Wild	0.000	0.000	0.012	0.423	0.441	0.059	0.042	0.015	0.005	0.001	0.000	0.000	0.000	0.000	0.000	9,151
	Hatch	0.000	0.000	0.012	0.213	0.197	0.049	0.367	0.122	0.030	0.008	0.000	0.002	0.000	0.000	0.000	507
2007	Wild	0.000	0.000	0.026	0.114	0.383	0.280	0.070	0.055	0.033	0.019	0.010	0.002	0.003	0.002	0.002	2,542
	Hatch	0.000	0.000	0.000	0.077	0.308	0.262	0.138	0.123	0.046	0.031	0.000	0.000	0.000	0.015	0.000	65
Ave	Wild	0.000	0.025	0.181	0.280	0.335	0.103	0.035	0.016	0.008	0.007	0.005	0.002	0.001	0.000	0.000	113,736
	Hatch	0.000	0.136	0.386	0.175	0.145	0.088	0.047	0.010	0.008	0.004	0.001	0.001	0.000	0.000	0.000	37,797

Sockeye Migration Timing

Migration Week
Figure 4.4. Proportion of wild and hatchery sockeye observed (using video) passing Tumwater Dam each week during their migration period late-June through early-October; data were pooled over survey years 1998-2007.

Age at Maturity

Although sample sizes are small, it appears that most wild sockeye returned as age-5 fish, while most hatchery sockeye returned as age-4 fish (Table 4.23; Figure 4.5). Only wild fish have returned at age-6.
Table 4.23. Proportions of wild and hatchery sockeye of different ages (total age) sampled in broodstock and on spawning grounds, 1994-2006.

Survey year	Origin	Total age						Sample size
		2	3	4	5	6	7	
1994	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.00	0.88	0.13	0.00	0.00	16
1995	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.00	0.00	1.00	0.00	0.00	1
1996	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.00	1.00	0.00	0.00	0.00	82
1997	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.00	0.77	0.23	0.00	0.00	13
1998	Wild	0.00	0.08	0.85	0.08	0.00	0.00	26
	Hatchery	0.00	0.00	0.64	0.36	0.00	0.00	11
1999	Wild	0.00	0.00	0.18	0.73	0.10	0.00	113
	Hatchery	0.00	0.00	0.65	0.35	0.00	0.00	31

Survey year	Origin	Total age						Sample size
		2	3	4	5	6	7	
2000	Wild	0.00	0.00	0.00	1.00	0.00	0.00	1
	Hatchery	0.00	0.00	0.98	0.02	0.00	0.00	359
2001	Wild	0.00	0.00	0.76	0.24	0.00	0.00	29
	Hatchery	0.00	0.00	0.75	0.25	0.00	0.00	171
2002	Wild	0.00	0.00	0.20	0.80	0.00	0.00	5
	Hatchery	0.00	0.00	0.29	0.71	0.00	0.00	63
2003	Wild	0.00	0.00	0.00	1.00	0.00	0.00	5
	Hatchery	0.00	0.33	0.67	0.00	0.00	0.00	6
2004	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.02	0.93	0.05	0.00	0.00	244
2005	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.13	0.75	0.13	0.00	0.00	8
2006	Wild	0.00	0.00	0.34	0.65	0.01	0.00	207
	Hatchery	0.00	0.00	1.00	0.00	0.00	0.00	65
Average	Wild	0.00	0.01	0.35	0.61	0.03	0.00	386
	Hatchery	0.00	0.01	0.87	0.12	0.00	0.00	1,070

Sockeye Age Structure

Figure 4.5. Proportions of wild and hatchery sockeye salmon of different total ages sampled at Tumwater Dam and on spawning grounds in the Wenatchee Basin for the combined years 1994-2006.

Size at Maturity

Although sample sizes are small, there was virtually no difference in mean sizes of hatchery and wild sockeye salmon sampled in the Wenatchee Basin (Table 4.24). Future analyses will compare sizes of hatchery and wild fish of the same age groups and gender.

Table 4.24. Mean lengths ($\mathrm{POH} ; \mathrm{cm}$) and variability statistics for wild and hatchery sockeye salmon sampled at Tumwater Dam (broodstock) and on spawning grounds in the Wenatchee Basin, 1994-2006; SD $=1$ standard deviation.

Survey year	Origin	Sample size	Sockeye length (POH; cm)			
			Mean	SD	Minimum	Maximum
1994	Wild	0	-	-	-	-
	Hatchery	14	42	3	37	47
1995	Wild	0	-	-	-	-
	Hatchery	1	53	-	53	53
1996	Wild	0	-	-	-	-
	Hatchery	5	51	3	49	55
1997	Wild	6	40	3	38	45
	Hatchery	17	41	3	37	50
1998	Wild	585	43	3	34	50
	Hatchery	20	43	3	40	51
1999	Wild	99	42	3	36	50
	Hatchery	31	41	3	36	47
2000	Wild	1	48	-	48	48
	Hatchery	377	40	2	30	49
2001	Wild	29	42	2	38	47
	Hatchery	184	43	3	35	51
2002	Wild	5	42	1	40	43
	Hatchery	52	44	3	37	49
2003	Wild	5	44	4	38	47
	Hatchery	13	42	5	30	48
2004	Wild	0	-	-	-	-
	Hatchery	230	40	3	33	49
2005	Wild	0	-	-	-	-
	Hatchery	8	43	9	35	64
2006	Wild	248	45	4	34	52
	Hatchery	17	41	5	31	48
Pooled	Wild	978	43	3	34	52
	Hatchery	969	43	4	30	64

Contribution to Fisheries

The total number of hatchery and wild sockeye captured in different fisheries is provided in Tables 4.25 and 4.26. Harvest on hatchery sockeye was minimal during brood years 1989-2001. In contrast, harvest on wild sockeye was relatively high for brood years 1989-1993. Thereafter, harvest was low.

Table 4.25. Estimated number and percent (in parentheses) of hatchery Wenatchee sockeye captured in different fisheries.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational ${ }^{\text {a }}$ (sport)	
1989	0 (0)	0 (0)	0 (0)	0 (0)	0
1990	0 (0)	0 (0)	0 (0)	0 (0)	0
1991	0 (0)	0 (0)	0 (0)	0 (0)	0
1992	0 (0)	0 (0)	0 (0)	0 (0)	0
1993	0 (0)	0 (0)	0 (0)	639 (100)	639
1994	0 (0)	0 (0)	0 (0)	0 (0)	0
1995	0 (0)	0 (0)	0 (0)	0 (0)	0
1996	0 (0)	0 (0)	0 (0)	0 (0)	0
1997	0 (0)	0 (0)	0 (0)	0 (0)	0
1998	0 (0)	0 (0)	0 (0)	0 (0)	0
1999	0 (0)	0 (0)	0 (0)	0 (0)	0
2000	0 (0)	0 (0)	5 (100)	0 (0)	5
2001	0 (0)	0 (0)	3 (100)	0 (0)	3

${ }^{\mathrm{a}}$ Includes the Lake Wenatchee fishery.

Table 4.26. Estimated number and percent (in parentheses) of wild Wenatchee sockeye captured in different fisheries.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational (sport)	
1989	$0(0)$	$1,247(96)$	$57(4)$	$0(0)$	1,304
1990	$0(0)$	$1,973(23)$	$79(1)$	$6,523(76)$	8,575
1991	$0(0)$	$1,898(23)$	$56(1)$	$6,311(76)$	8,265
1992	$0(0)$	$893(20)$	$39(1)$	$3,565(79)$	4,497
1993	$0(0)$	$341(5)$	$57(1)$	$6,400(94)$	6,798
1994	$0(0)$	$0(0)$	$85(100)$	$0(0)$	85
1995	$0(0)$	$0(0)$	$0(0)$	$0(0)$	0
1996	$0(0)$	$0(0)$	$0(0)$	$0(0)$	0
1997	$0(0)$	$0(0)$	$0(0)$	$0(0)$	0
1998	$0(0)$	$0(0)$	$0(0)$	$0(0)$	0
1999	$0(0)$	$0(0)$	$0(0)$	$0(0)$	0

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational (sport)	
2000					
2001					

${ }^{\text {a }}$ Includes the Lake Wenatchee fishery.

Straying

Stray rates were determined by examining CWTs recovered on spawning grounds within and outside the Wenatchee Basin. Targets for strays based on return year (recovery year) outside the Wenatchee Basin should be less than 5%. The target for brood year strays should also be less than 5%.

There is no record that Wenatchee sockeye have strayed into other spawning areas outside the Wenatchee Basin. This may be related to the lack of carcass surveys in other locations. Nevertheless, the existing data indicate that Wenatchee sockeye stray at a rates less than the target of 5%.

Based on brood year analysis, virtually no Wenatchee sockeye have strayed into non-target spawning areas or hatchery programs (Table 4.27). These data indicate that Wenatchee sockeye stray at rates less than the target of 5%.
Table 4.27. Number and percent of hatchery Wenatchee sockeye that homed to target spawning areas and the target hatchery program, and number and percent that strayed to non-target spawning areas and hatchery programs, by brood years 1990-2001. Hatchery sockeye from brood years 1995-1998 were not tagged because of columnaris disease. Percent stays should be less than 5\%.

Brood year	Homing				Straying			
	Target streams		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1990	402	99.5	2	0.5	0	0.0	0	0.0
1991	1	100.0	0	0.0	0	0.0	0	0.0
1992	92	98.9	0	0.0	0	0.0	1	1.1
1993	29	96.7	1	3.3	0	0.0	0	0.0
1994	66	94.3	4	5.7	0	0.0	0	0.0
1995	-	-	-	-	-	-	-	-
1996	-	-	-	-	-	-	-	-
1997	-	-	-	-	-	-	-	-
1998	-	-	-	-	-	-	-	-
1999	65	100.0	0	0.0	0	0.0	0	0.0
2000	571	100.0	0	0.0	0	0.0	0	0.0
2001	20	100.0	0	0.0	0	0.0	0	0.0
Total	1,246	99.4	7	0.6	0	0.0	1	0.1

Genetics

Genetic studies were conducted to determine the potential impacts of the Wenatchee sockeye supplementation program on natural origin sockeye in the upper Wenatchee Basin (Blankenship et al. 2008; the entire report is appended as Appendix H). Specifically, the objective of the study was to determine if the genetic composition of the Lake Wenatchee sockeye population had been altered by the supplementation program, which was based on the artificial propagation of a small subset of the Wenatchee population. Microsatellite DNA allele frequencies were used to differentiate between temporally replicated collections of natural and hatchery-origin sockeye in the Wenatchee Basin. A total of 13 collections of Wenatchee sockeye were analyzed; eight temporally replicated collections of natural-origin sockeye and five temporally replicated collections of hatchery-origin sockeye. Paired natural-hatchery collections were available from return years 2000, 2001, 2004, 2006, and 2007.

Overall, the study showed that allele frequency distributions were consistent over time, regardless of origin, resulting in small, insignificant measures of genetic differentiation among collections. This indicates that there was no year-to-year differences in allele frequencies between natural and hatchery-origin sockeye. In addition, the analyses found no differences between pre- and postsupplementation collections. Thus, it was concluded that the allele frequencies of the broodstock collections equaled the allele frequency of the natural collections.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 1989-2005, the PNI was equal to or greater than 0.8 (Table 4.28). This indicates that the natural environment has a greater influence on adaptation of Wenatchee sockeye than does the hatchery environment.
Table 4.28. Proportionate natural influence (PNI) of the Wenatchee sockeye supplementation program for brood years 1989-2005. PNI was calculated as the proportion of naturally produced sockeye in the hatchery broodstock (pNOB) divided by the proportion of hatchery sockeye on the spawning grounds (pHOS) plus pNOB. NOS = number of natural origin sockeye on the spawning grounds; HOS = number of hatchery origin sockeye on the spawning grounds; NOB = number of natural origin sockeye collected for broodstock; and HOB = number of hatchery origin sockeye included in hatchery broodstock.

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1989	28,778	0	0.00	115	0	1.00	1.0
1990	25,177	0	0.00	302	0	1.00	1.0
1991	26,565	0	0.00	199	0	1.00	1.0
1992	22,628	0	0.00	320	0	1.00	1.0

Brood year	Spawners				Broodstock		
	NOS	HOS	pHOS	NOB	HOB	pNOB	PNI
1993	27,226	2,726	0.09	207	0	1.00	0.9
1994	8,840	607	0.06	236	5	0.98	0.9
1995	4,216	56	0.01	199	3	0.99	1.0
1996	7,067	467	0.06	225	0	1.00	0.9
1997	10,722	86	0.01	192	19	0.91	1.0
1998	4,015	32	0.01	151	6	0.96	1.0
1999	894	131	0.13	68	60	0.53	0.8
2000	19,589	1,162	0.06	170	5	0.97	0.9
2001	28,347	787	0.03	200	7	0.97	1.0
2002	27,378	187	0.01	256	0	1.00	1.0
2003	4,814	51	0.01	198	0	1.00	1.0
2004	26,605	954	0.03	180	0	1.00	1.0
2005	13,995	39	0.00	166	0	1.00	1.0

Natural Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population. For brood years 1989-2000, NRR in the Wenatchee averaged 0.96 (range, 0.12-4.23) if harvested fish were not included in the estimate and 1.00 (range, 0.12-4.51) if harvested fish were included in the estimate (Table 4.29).
Table 4.29. Spawning escapements, natural origin recruits (NOR), and natural replacement rates (NRR; with and without harvest) for wild sockeye salmon in the Wenatchee basin, 1989-2000. (The numbers in this table may change as the HETT and HC refine the methods for estimating sockeye NORs, and NRRs.)

Brood year	Escapement	NOR	NRR	
			Harvest not included	Harvest included
1989	28,778	30,487	1.05	1.06
1990	25,177	6,164	0.24	0.24
1991	26,565	5,908	0.22	0.22
1992	22,628	6,337	0.28	0.28
1993	29,952	13,164	0.44	0.44
1994	9,447	1,188	0.13	0.13
1995	4,272	532	0.12	0.12
1996	7,534	34,009	4.23	4.51
1997	10,808	40,354	3.41	3.73
1998	4,047	16,488	3.87	4.07
1999	1,025	469	0.44	0.46
2000	20,751	$\mathbf{3 5 , 6 8 8}$	$\mathbf{1 5 , 8 9 9}$	1.65
Average	$\boldsymbol{1 5 , 9 1 5}$	$\boldsymbol{0 . 9 6}$	1.72	

Hatchery Replacement Rates

Hatchery replacement rates (HRR) were estimated as hatchery adult-to-adult returns. These rates should be greater than the NRRs and greater than or equal to 5.40 (the value in BAMP; Murdoch and Peven 2005). HRRs exceeded NRRs in 7 of the 12 years of data regardless if harvest was included or not in the estimates (Table 4.30). Hatchery replacement rates for Wenatchee sockeye have equaled or exceeded the BAMP target of 5.40 in only two years if harvest is not included and three years if harvest is included in the estimate (Table 4.30).
Table 4.30. Hatchery replacement rates (HRR), NRR, and BAMP target (5.40) for sockeye salmon in the Wenatchee basin, 1989-2000; NA = not available. (The numbers in this table may change as the HETT and HC refine the methods for estimating sockeye HRRs and NRRs.)

Brood year	Harvest not included			Harvest included		
	HRR	NRR	BAMP	HRR	NRR	BAMP
1989	11.3	1.05	5.40	13.9	1.06	5.40
1990	1.6	0.24	5.40	1.6	0.24	5.40
1991	0.1	0.22	5.40	0.1	0.22	5.40
1992	1.5	0.28	5.40	1.5	0.28	5.40
1993	0.3	0.44	5.40	0.3	0.44	5.40
1994	0.2	0.13	5.40	0.2	0.13	5.40
1995	0.5	0.12	5.40	0.5	0.12	5.40
1996	6.0	4.23	5.40	6.3	4.51	5.40
1997	2.9	3.41	5.40	3.4	3.73	5.40
1998	0.8	3.87	5.40	0.9	4.07	5.40
1999	0.4	0.44	5.40	0.4	0.46	5.40
2000	4.8	1.65	5.40	7.2	1.72	5.40
Average	2.5	$\mathbf{1 . 3 4}$	5.40	3.0	$\mathbf{1 . 4 2}$	5.40

Juvenile-to-Adult Survivals

When possible, both parr-to-adult ratios (PAR) and smolt-to-adult ratios (SAR) were calculated for hatchery sockeye salmon. Ratios were calculated as the number of hatchery adults divided by the number of hatchery parr released or the estimated number of smolts emigrating from Lake Wenatchee. Survival ratios were based on CWT returns, when available, or on the estimated number of hatchery adults recovered on the spawning grounds, in broodstock, and harvested. For the available brood years, PARs have ranged from 0.0002 to 0.0136 for hatchery sockeye salmon and SARs have ranged from 0.0007 to 0.0254 (Table 4.31).

Table 4.31. Parr-to-adult ratios (PAR) and smolt-to-adult ratios (SAR) for Wenatchee hatchery sockeye salmon, brood years 1990-2002.

Brood year	Number of parr released	Number of smolts	Estimated adult recaptures	PAR	SAR
1989	260,400		3,548	0.0136	
1990	372,102		500	0.0013	
1991	167,523		29	0.0002	
1992	340,557		503	0.0015	
1993	190,443		84	0.0004	
1994	252,859		48	0.0002	0.0 .00354
1995	150,808	28,828	107	0.0007	0.0068
1996	284,630	55,985	1,421	0.0050	0.0067
1997	197,195	112,524	768	0.0039	0.0007
1998	121,344	24,684	166	0.0014	0.0115
1999	167,955	94,046	66	0.0004	0.0 .009
2000	190,174	121,511	1,399	0.0074	0.0 .0032
Average	224,666	72,930	720	0.0032	

4.8 ESA/HCP Compliance

Broodstock Collection

The 2005 sockeye broodstock collections at Tumwater Dam occurred concurrently with spring Chinook reproductive success monitoring and evaluation activities (BPA Project No. 2003-039-00) and Wenatchee steelhead broodstock collection activities authorized through ESA permits 1196 and 1395, respectively. No ESA-listed spring Chinook or steelhead takes occurred during sockeye broodstock collections at Tumwater Dam that were outside those authorized through ESA Section 10 permits 1196 and 1395.

Hatchery Rearing and Release

The 2004 Wenatchee sockeye program released 225,670 juveniles, representing 111% of the program production objective and 100.3% of the 10% production overage allowance in ESA Section 10 Permit 1347.

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2007 are provided in Appendix E.

Smolt and Emigrant Trapping

ESA-listed spring Chinook and steelhead were encountered during operation of the upper and lower Wenatchee traps. ESA takes are reported in the steelhead (Section 3.8) and spring Chinook (Section 5.8) sections and will not be repeated here.

Spawning Surveys

Sockeye spawning ground surveys conducted in the Wenatchee Basin during 2007 were consistent with ESA Section 10 Permit No. 1347. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

SECTION 5: WENATCHEE (CHIWAWA) SPRING CHINOOK

Although this section of the report focuses on results from monitoring the Chiwawa spring Chinook program, information on spring Chinook collected throughout the Wenatchee basin is also provided.

5.1 Broodstock Sampling

This section focuses on results from sampling 2005-2007 Chiwawa spring Chinook broodstock, which were collected at the Chiwawa weir and at Tumwater Dam. Some information for the 2007 return is not available at this time (e.g., age structure and final origin determination). This information will be provided in the 2008 annual report.

Origin of Broodstock

Hatchery origin adults made up between 65-76\% of the Chiwawa spring Chinook broodstock for return years 2005-2007 (Table 5.1). Hatchery origin adults were collected at both Tumwater Dam and the Chiwawa weir. In an effort to partially address straying of Chiwawa spring Chinook to other tributaries in the basin and secondarily to ensure meeting adult collection quotas, hatchery origin adults were collected to the greatest extent possible at Tumwater Dam. Natural origin fish were collected only at the Chiwawa weir. Broodstock were trapped at Tumwater Dam from late May through August and at the Chiwawa weir from mid June through August.

Table 5.1. Numbers of wild and hatchery Chiwawa spring Chinook collected for broodstock, numbers that died before spawning, and numbers of Chinook spawned, 1989-2007. Unknown origin fish (i.e., undetermined by scale analysis, no CWT or fin clips, and no additional hatchery marks) were considered naturally produced. Mortality includes fish that died of natural causes typically near the end of spawning and were not needed for the program or were surplus fish killed at spawning.

Brood year	Wild spring Chinook					Hatchery spring Chinook					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
1989	28	0	0	28	0	0	0	0	0	0	28
1990	19	1	0	18	0	0	0	0	0	0	18
1991	32	0	5	27	0	0	0	0	0	0	27
1992	113	0	0	78	35	0	0	0	0	0	78
1993	100	3	3	94	0	0	0	0	0	0	94
1994	9	0	1	8	0	4	0	0	4	0	12
1995	No Program										
1996	8	0	0	8	0	10	0	0	10	0	18
1997	37	0	5	32	0	83	1	3	79	0	111
1998	13	0	0	13	0	35	1	0	34	0	47
1999	No Program										
2000	10	0	1	9	0	38	1	16	21	0	30
2001	115	2	0	113	0	267	8	0	259	0	372
2002	21	0	1	20	0	63	1	11	51	0	71
2003	44	1	2	41	0	75	2	20	53	0	94
2004	100	1	16	83	0	196	30	34	132	0	215
2005	98	1	6	91	0	185	3	1	181	0	279

Brood year	Wild spring Chinook					Hatchery spring Chinook					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
2006	95	0	4	91	0	303	0	29	224	50	315
2007	45	1	1	43	0	124	2	18	104	0	147
Average ${ }^{\text {a }}$	52	1	3	47	2	81	3	8	68	3	115

${ }^{\text {a }}$ Origin determinations should be considered preliminary pending scale analyses.

Age/Length Data

Ages were determined from scales and/or coded wire tags (CWT) collected from broodstock. For both the 2005 and 2006 returns, most adults, regardless of origin, were age- 4 Chinook (Table 5.2). A larger percentage of the age-5 Chinook were natural origin fish, whereas a larger percentage of the age-3 fish were hatchery origin fish.
Table 5.2. Percent of hatchery and wild spring Chinook of different ages (total age) collected from broodstock, 1991-2006.

Return year	Origin	Total age			
		2	3	4	5
1991	Wild	0.0	15.6	59.4	25.0
	Hatchery	0.0	0.0	0.0	0.0
1992	Wild	0.0	0.0	0.0	0.0
	Hatchery	0.0	0.0	0.0	0.0
1993	Wild	0.0	0.0	22.0	78.0
	Hatchery	0.0	0.0	0.0	0.0
1994	Wild	0.0	0.0	28.6	71.4
	Hatchery	0.0	0.0	50.0	50.0
1995	Wild	No program			
	Hatchery				
1996	Wild	0.0	28.6	71.4	0.0
	Hatchery	0.0	50.0	50.0	0.0
1997	Wild	0.0	0.0	87.5	12.5
	Hatchery	0.0	1.2	98.8	0.0
1998	Wild	0.0	0.0	63.6	36.4
	Hatchery	0.0	0.0	62.9	37.1
1999	Wild	No program			
	Hatchery				
2000	Wild	0.0	20.0	70.0	10.0
	Hatchery	0.0	76.3	23.7	0.0
2001	Wild	0.0	2.8	94.4	2.8
	Hatchery	0.0	1.5	98.5	0.0
2002	Wild	0.0	0.0	66.7	33.3

Return year	Origin	Total age			
		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
	Hatchery	0.0	0.0	93.4	6.6
2003	Wild	0.0	27.0	2.7	70.3
	Hatchery	0.0	21.3	5.3	73.3
2004	Wild	1.1	4.3	89.4	5.3
	Hatchery	0.0	36.9	63.1	0.0
2005	Wild	0.0	1.1	84.5	14.4
	Hatchery	0.0	4.3	94.6	1.1
2006	Wild	0.0	1.1	71.1	27.8
	Hatchery	0.0	1.4	81.3	17.3
Average	Wild	$\mathbf{0 . 2}$	$\mathbf{4 . 4}$	$\mathbf{6 7 . 5}$	$\mathbf{2 8 . 0}$
	Hatchery	$\mathbf{0 . 0}$	$\mathbf{1 1 . 2}$	$\mathbf{7 8 . 7}$	$\mathbf{1 0 . 2}$

There was little difference in mean lengths between hatchery and natural origin broodstock of age-4 and 5 Chinook in 2005 and 2006 (Table 5.3). Additionally, for the 2005 and 2006 returns, there was little difference in mean lengths for age-3 natural origin fish. There was, however, a relatively large difference in mean lengths in age-3 hatchery origin fish (7 cm difference) between 2005 and 2006.

Table 5.3. Mean fork length (cm) at age (total age) of hatchery and wild spring Chinook collected from broodstock, 1991-2006; N = sample size and SD = 1 standard deviation.

Return year	Origin	Spring Chinook fork length (cm)											
		Age-2			Age-3			Age-4			Age-5		
		Mean	N	SD									
1991	Wild	-	0	-	-	5	-	-	19	-	-	8	-
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-
1992	Wild	-	0	-	-	0	-	-	0	-	-	0	-
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-
1993	Wild	-	0	-	-	0	-	79	22	3	92	78	4
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-
1994	Wild	-	0	-	-	0	-	79	2	3	96	5	6
	Hatchery	-	0	-	-	0	-	82	2	11	91	2	3
1995	Wild	No program											
1996	Wild	-	0	-	51	2	1	79	5	7	-	0	-
	Hatchery	-	0	-	56	5	4	74	5	6	-	0	-
1997	Wild	-	0	-	-	0	-	80	28	5	99	4	8
	Hatchery	-	0	-	56	1	-	82	82	4	-	0	-
1998	Wild	-	0	-	-	0	-	78	7	13	83	4	18
	Hatchery	-	0	-	-	0	-	77	22	8	93	13	7

Return year	Origin	Spring Chinook fork length (cm)											
		Age-2			Age-3			Age-4			Age-5		
		Mean	N	SD									
1999	Wild	No program											
	Hatchery												
2000	Wild	-	0	-	51	2	3	82	7	4	98	1	-
	Hatchery	-	0	-	58	29	7	79	9	8	-	0	-
2001	Wild	-	0	-	49	3	6	82	101	6	95	3	3
	Hatchery	-	0	-	56	4	7	83	261	5	-	0	-
2002	Wild	-	0	-	-	0	-	79	12	4	96	6	10
	Hatchery	-	0	-	-	0	-	81	57	6	94	4	9
2003	Wild	-	0	-	55	10	5	83	1	-	99	26	6
	Hatchery	-	0	-	59	16	5	86	4	18	96	55	6
2004	Wild	47	1	-	57	4	4	80	84	5	95	5	9
	Hatchery	-	0	-	49	72	6	79	123	6	-	0	-
2005	Wild	-	0	-	49	1	-	80	82	6	96	14	8
	Hatchery	-	0	-	56	8	5	82	175	6	93	2	2
2006	Wild	-	0	-	48	1	-	80	64	7	96	25	5
	Hatchery	-	0	-	49	4	4	80	240	6	95	51	7

Sex Ratios

Male spring Chinook in 2005-2007 return years made up about 52%, 43%, and 51%, respectively, of the adults collected. This resulted in overall male to female ratios of 1.08:1.00, 0.77:1.00, and 1.04:1.00, respectively (Table 5.4). Only returns in 2006 were below the $1: 1$ ratio target in the broodstock protocol. For the 2005 and 2006 return years, natural origin fish consisted of a slightly higher proportion of males than did hatchery origin fish (Table 5.4.).
Table 5.4. Numbers of male and female wild and hatchery spring Chinook collected for broodstock, 19892007. Ratios of males to females are also provided.

Return year	Number of wild spring Chinook			Number of hatchery spring Chinook			$\begin{gathered} \text { Total M/F } \\ \text { ratio } \end{gathered}$
	Males (M)	Females (F)	M/F	Males (M)	Females (F)	M/F	
1989	11	17	0.65:1.00	-	-	-	0.65:1.00
1990	7	12	0.58:1.00	-	-	-	0.58:1.00
1991	13	19	0.68:1.00	-	-	-	0.68:1.00
1992	39	39	1.00:1.00	-	-	-	1.00:1.00
1993	50	50	1.00:1.00	-	-	-	1.00:1.00
1994	5	4	1.25:1.00	2	2	1.00:1.00	1.17:1.00
1995	No program						
1996	6	2	3.00:1.00	8	2	4.00:1.00	3.50:1.00
1997	14	23	0.61:1.00	34	49	0.69:1.00	0.67:1.00

Return year	Number of wild spring Chinook			Number of hatchery spring Chinook			Total M/F ratio	
	Males (M)	Females (F)	M/F	Males (M)	Females (F)	M/F		$1.29: 1.00$
1998	9	4	$2.25: 1.00$	18	17			
1999	No program							
2000	5	5	$1.00: 1.00$	32	6	$5.33: 1.00$	$3.36: 1.00$	
2001	45	70	$0.64: 1.00$	90	177	$0.51: 1.00$	$0.55: 1.00$	
2002	9	12	$0.75: 1.00$	30	33	$0.91: 1.00$	$0.87: 1.00$	
2003	28	16	$1.75: 1.00$	42	33	$1.27: 1.00$	$1.43: 1.00$	
2004	58	42	$1.38: 1.00$	102	94	$1.09: 1.00$	$1.18: 1.00$	
2005	58	40	$1.45: 1.00$	89	96	$0.93: 1.00$	$1.08: 1.00$	
2006	49	46	$1.07: 1.00$	123	179	$0.69: 1.00$	$0.77: 1.00$	
2007	20	25	$0.80: 1.00$	66	58	$1.14: 1.00$	$1.04: 1.00$	
Total	426	426	$\mathbf{1 . 0 0 : 1 . 0 0}$	$\mathbf{6 3 6}$	746	$\mathbf{0 . 8 5 : 1 . 0 0}$	$\mathbf{0 . 9 1 : 1 . 0 0}$	

Fecundity

Mean fecundities for the 2005-2007 returns of spring Chinook ranged from 4,324-4,387 eggs per female (Table 5.5). These fecundities were less than the overall average of 4,786 eggs per female, but were close to the expected fecundity of 4,400 eggs per female assumed in the broodstock protocol. For the three return years, natural origin Chinook produced more eggs per female than did hatchery origin fish (Table 5.5). This could be attributed to differences in size and age of hatchery and natural origin fish described above.
Table 5.5. Mean fecundity of wild, hatchery, and all female spring Chinook collected for broodstock, 19892007; NA = not available.

Return year	Mean fecundity		
	Wild	Hatchery	Total
1989^{*}	NA	NA	2,832
1990^{*}	NA	NA	5,024
1991^{*}	NA	NA	4,600
1992^{*}	NA	NA	$5,199^{\mathrm{a}}$
1993^{*}	NA	NA	5,249
1994^{*}	NA	NA	5,923
1995		No program	
1996^{*}	NA	NA	4,645
1997	4,752	4,479	4,570
1998	5,157	5,376	5,325
1999		No program	
2000	5,028	5,019	5,023
2001	4,530	4,663	4,624
2002	5,024	4,506	4,654

Return year	Mean fecundity		
	Wild	Hatchery	Total
2003	6,191	5,651	5,844
2004	4,846	4,775	4,799
2005	4,365	4,312	4,327
2006	4,773	4,151	4,324
2007	4,722	4,240	4,387
Average	4,939	4,717	$\mathbf{4 , 7 8 5}$

* Individual fecundities were not tracked with females until 1997.
${ }^{\text {a }}$ Estimated as the mean of fecundities two years before and two years after 1992.

5.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of 829,630 eggs are required to meet the program release goal of 672,000 smolts. Between 1989 and 2007, the egg take goal was reached in one of those years (Table 5.6). The green egg takes for 2005-2007 brood years were $65 \%, 90 \%$, and 43% of program goals, respectively.
ESA Permit 1196 sets limits on the percentage of the total run, natural origin run, and a minimum contribution of natural origin fish that must be in the broodstock. Applying these criteria to the low total abundance of spring Chinook salmon to the Chiwawa basin and the low abundance of natural origin fish returning to the basin has resulted in the program not meeting production goals.
Table 5.6. Numbers of eggs taken from spring Chinook broodstock, 1989-2007.

Return year	Number of eggs taken
1989	45,311
1990	60,287
1991	73,601
1992	111,624
1993	257,208
1994	35,539
1995	No program
1996	18,579
1997	312,182
1998	90,521
1999	No program
2000	55,256
2001	$1,099,630$

Return year	Number of eggs taken
2002	196,186
2003	247,501
2004	538,176
2005	536,490
2006	744,344
2007	359,739
Average	$\mathbf{2 8 1 , 3 0 4}$

Number of acclimation days

Early rearing of the 2005 brood Chiwawa spring Chinook was similar to previous years with fish being held on well water before being transferred to Chiwawa Ponds for final acclimation. Beginning in 2006 (2005 brood acclimation), modifications were made to the Chiwawa FH intakes so that Wenatchee River water could be applied to the Chiwawa River intakes during severe cold periods to prevent the formation of frazzle ice. During acclimation of the 2005 brood, fish were acclimated for 202-232 days (depending on volitional or forced release) on Chiwawa River water, with 98 of those days containing a small percentage of Wenatchee River water (Table 5.7). Unlike in previous years, at no time was this brood on 100% Wenatchee River water.
Table 5.7. Number of days spring Chinook broods were acclimated and water source, brood years 1989-2005; NA = not available.

Brood year	Release year	Transfer date	Release date	Number of days and water source		
				Total	Chiwawa	Wenatchee
1989	1991	19-Oct	11-May	204	NA	NA
1990	1992	13-Sep	27-Apr	227	NA	NA
1991	1993	24-Sep	24-Apr	212	NA	NA
1992	1994	30-Sep	20-Apr	202	NA	NA
1993	1995	28-Sep	20-Apr	204	NA	NA
1994	1996	1-Oct	25-Apr	207	NA	NA
1995	1997	No Program				
1996	1998	25-Sep	29-Apr	216	NA	NA
1997	1999	28-Sep	22-Apr	206	NA	NA
1998	2000	27-Sep	24-Apr	210	NA	NA
1999	2001	No Program				
2000	2002	26-Sep	25-Apr	211	NA	NA
2001	2003	22-Oct	1-May	191	NA	NA
2002	2004	25-Sep	2-May	220	NA	NA

Brood year	Release year	Transfer date	Release date	Number of days and water source		
				Total	Chiwawa	Wenatchee
2003	2005	30-Sep	3-May	215	NA	NA
2004	2006	3 -Sep	1-May	240	88-104	124
2005	2007	25-Sep	1-May	217	217	$98^{\text {a }}$
		26-Sep	16-Apr-15-May	202-232	202-232	$98^{\text {a }}$
Average				213	169	111

${ }^{\text {a }}$ Represents the number of days Wenatchee River water was applied to the Chiwawa River intake screen to prevent the formation of frazzle ice.

Release Information

Numbers released

The 2005 brood Chiwawa spring Chinook program achieved 73.5% of the 672,000 target goal with about 494,012 fish being released into the Chiwawa River (Table 5.8). Fish were released in two groups; a volitional release for about one month with the mid-point coinciding with a new moon phase and a forced release also coinciding with the new moon phase. The intent of the two releases is to evaluate the efficacy of release methodology on smolt to adult survival as well as decrease the potential for interactions with naturally produced fish. Fish that were allowed to volitionally migrate on their own may have faster emigration rates, higher smolt to smolt survival, and may be less likely to interact with their natural cohorts. This was the last year for this comparison. Future releases will be volitional unless adult return data indicate that forced release is more favorable than volitional release.

Table 5.8. Numbers of spring Chinook smolts released from the hatchery, 1989-2005. The release target for Chiwawa spring Chinook is 672,000 smolts.

Brood year	Release year	Number of smolts
1989	1991	43,000
1990	1992	53,170
1991	1993	62,138
1992	1994	85,113
1993	1995	223,610
1994	1996	27,226
1995	1997	No program
1996	1998	15,176
1997	1999	266,148
1998	2000	75,906
1999	2001	No program
2000	2002	47,104
2001	2003	377,544

Brood year	Release year	Number of smolts
2002	2004	149,668
2003	2005	222,131
2004	2006	494,517
2005	2006	494,012
Average		$\mathbf{1 7 5 , 7 6 4}$

Numbers tagged

The 2005 brood Chiwawa spring Chinook were 98.6% and 98.8% CWT and adipose fin clipped for the volitional and forced release groups, respectively. In addition, a total of 10,063 juveniles from the 2005 brood were PIT tagged and adipose-fin clipped at Eastbank Hatchery during 28-30 August 2006 (Table 5.9). Of these, 5,032 came from pond 12 and 5,031 from pond 13. Tagged fish from pond 12 were transported to the Chiwawa Hatchery on 25 and 26 September, while those from pond 13 were transported on 27 and 28 September. During spring, 2007, one group of 4,988 tagged Chinook was released volitionally and another group of 4,993 was forced released. Of the total number of spring Chinook PIT tagged (10,063), 74 died and eight others shed their tags (Table 5.9). Some of the mortality was associated with a river otter that was observed moving in and out of the raceways during the winter. ${ }^{6}$
Table 5.9. Summary of PIT tagging activities for spring Chinook (2005 brood) at the Eastbank Hatchery, 2006. Dead fish counted before 15 September likely represent deaths associated with tagging.

Rearing Pond	Number of fish tagged	Number of fish that died		Number of tags shed	Number of tagged fish released
		After 9/15			
12	5,032	4	32	3	4,988
13	5,031	5	33	5	$\mathbf{8}$
Total	$\mathbf{1 0 , 0 6 3}$	$\mathbf{9}$	$\mathbf{6 5}$	$\mathbf{9 8 1}$	

In 2007, a total of 10,055 spring Chinook from the 2006 brood were PIT tagged at the Eastbank Hatchery during 24-26 July 2007. These fish were transferred to the Chiwawa raceways on 26-27 September. As of the end of January 2008, a total of 97 tagged fish have died and another 9 fish have shed their tags. This leaves an estimated 9,949 tagged spring Chinook alive. These fish will be released in spring of 2008 with the rest of the 2006 brood.

Fish size and condition at release

Spring Chinook from the 2005 brood were released as yearling smolts between 16 April and 15 May of 2007. Size at release for both groups was below the targets established for the program. However, the coefficient of variation for fork length was below the target indicating fish were released with an acceptable size distribution (Table 5.10).

[^4]Table 5.10. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of spring Chinook smolts released from the hatchery, 1989-2005. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1989	1991	147	4.4	37.8	12
1990	1992	137	5.0	32.4	14
1991	1993	135	4.2	30.3	15
1992	1994	133	5.0	28.4	16
1993	1995	136	4.5	30.2	15
1994	1996	139	7.1	34.4	13
1995	1997	No Program			
1996	1998	157	5.3	52.1	9
1997	1999	146	7.2	38.7	12
1998	2000	143	9.1	39.5	12
1999	2001	No Program			
2000	2002	150	6.8	46.7	10
2001	2003	142	7.1	37.6	12
2002	2004	146	8.5	40.3	11
2003	2005	161	6.1	50.2	9
2004	2006	143	4.9	36.7	12
2005	2007	$136^{\text {a }}$	4.6	30.8	15
		$129^{\text {b }}$	5.8	26.6	17
Targets		176	9.0	37.8	12

${ }^{\text {a }}$ Forced release group.
${ }^{\mathrm{b}}$ Volitional release group.

Survival Estimates

Overall survival of Chiwawa spring Chinook from green (unfertilized) egg to release was at or above the standard set for the program in all categories (Table 5.11). Pre-spawn survival of adults was also above the standard set for the program.

Table 5.11. Hatchery life-stage survival rates (\%) for spring Chinook, brood years 1989-2005. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0 ~ d}$ after ponding	$\mathbf{1 0 0} \mathbf{d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	100.0	100.0		99.1	99.1	99.0	96.4	99.3	93.6
1990	100.0	85.7	91.8	98.1	99.5	98.9	97.9	99.2	88.2
1991	100.0	100.0	94.4	96.1	99.6	97.9	93.2	95.0	84.5
1992	100.0	100.0	98.4	96.7	99.9	99.9	80.0	80.6	76.2
1993	96.0	98.0	89.7	98.0	99.7	99.3	98.9	99.7	86.9

Brood year	Collection to spawning		Unfertilized egg-eyed	$\begin{gathered} \text { Eyed } \\ \text { egg- } \\ \text { ponding } \end{gathered}$		$100 \mathrm{~d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	Female	Male							
1994	100.0	100.0	98.6	100.0	99.8	99.4	77.0	78.9	75.9
1995	No program								
1996	100.0	100.0	88.3	100.0	93.8	93.0	89.9	97.7	79.4
1997	98.6	100.0	93.2	95.7	98.3	99.6	95.6	99.3	85.3
1998	95.2	100.0	94.5	99.0	98.5	98.3	89.6	99.1	83.9
1999	No program								
2000	100.0	100.0	91.0	98.1	97.2	96.6	95.4	99.3	85.2
2001	97.6	97.0	88.9	98.1	99.7	99.6	51.3	51.8	44.7
2002	97.8	100.0	82.1	98.0	97.4	96.7	94.8	99.1	76.3
2003	93.9	100.0	93.2	97.7	99.5	99.3	98.5	98.1	89.7
2004	97.8	82.5	93.3	98.4	98.8	94.3	93.9	97.2	86.2
2005	97.1	100.0	95.9	98.0	99.2	99.0	97.9	99.1	92.1
Standard	90.0	85.0	92.0	98.0	97.0	93.0	90.0	95.0	81.0

5.3 Disease Monitoring

Mortality from external fungus within the 2005 brood began to increase in juveniles in late October 2006. A 14-day formalin treatment was effective in controlling the fungus. No additional health issues were encountered.

5.4 Natural Juvenile Productivity

During 2007, juvenile spring Chinook were sampled at the Upper Wenatchee, Lower Wenatchee, and Chiwawa traps and counted during snorkel surveys within the Chiwawa Basin.

Parr Estimates

A total of 60,752 ($\pm 12.2 \%)$ subyearling and 41 ($\pm 48.8 \%$) yearling spring Chinook were estimated in the Chiwawa River basin in August 2007 (Table 5.12 and 5.13). During the survey period 19922007, numbers of subyearling and yearling Chinook have ranged from 5,815 to 134,872 and 5 to 563, respectively, in the Chiwawa Basin (Table 5.12 and 5.13; Figure 5.1). Numbers of all fish counted in the Chiwawa basin are reported in Appendix A.

Table 5.12. Total numbers of subyearling spring Chinook estimated in different steams in the Chiwawa Basin during snorkel surveys in August 1992-2007; NS = not sampled.

Sample Year	Number of subyearling spring Chinook									
	Chiwawa River	Phelps Creek	Chikamin Creek	Rock Creek	Peven Creek	Big Meadow Creek	Alder Creek	Brush Creek	Y Creek	Total
1992	45,483	NS	45,483							
1993	77,269	0	1,258	586	NS	NS	NS	NS	NS	79,113
1994	53,492	0	398	474	68	624	0	0	0	55,056
1995	52,775	0	1,346	210	0	683	67	160	0	55,241
1996	5,500	0	29	10	0	248	28	0	0	5,815
1997	15,438	0	56	92	0	480	0	0	0	16,066
1998	65,875	0	1,468	496	57	506	0	13	0	68,415
1999	40,051	0	366	592	0	598	22	0	0	41,629
2000	NS									
2001	106,753	168	2,077	2,855	354	2,332	78	0	0	114,617
2002	117,230	75	8,233	2,953	636	5,021	429	0	297	134,874
2003	80,250	4,508	1,570	3,255	118	1,510	22	45	0	91,278
2004	43,360	102	717	215	54	637	21	71	0	45,177
2005	45,999	71	2,092	660	17	792	0	0	0	49,631
2006	73,478	113	2,500	1,681	51	1,890	62	127	0	79,902
2007	53,863	125	5,235	870	51	538	20	28	22	60,752
Average	58,454	369	1,953	1,068	108	1,220	58	34	25	62,870

Table 5.13. Total numbers of yearling spring Chinook estimated in different steams in the Chiwawa Basin during snorkel surveys in August 1992-2007; NS = not sampled.

Sample Year	Number of yearling spring Chinook									
	Chiwawa River	Phelps Creek	Chikamin Creek	Rock Creek	Peven Creek	Big Meadow Creek	Alder Creek	Brush Creek	Y Creek	Total
1992	563	NS	563							
1993	174	0	0	0	NS	NS	NS	NS	NS	174
1994	14	0	0	4	0	0	0	0	0	18
1995	13	0	0	0	0	0	0	0	0	13
1996	22	0	0	0	0	0	0	0	0	22
1997	5	0	0	0	0	0	0	0	0	5
1998	63	0	0	0	0	0	0	0	0	63
1999	41	0	0	0	0	0	0	0	0	41
2000	NS									
2001	66	0	3	0	0	0	0	0	0	69
2002	32	0	0	0	0	0	0	0	0	32
2003	134	0	0	0	0	0	0	0	0	134
2004	14	0	0	0	0	7	0	0	0	21
2005	62	0	17	0	0	0	0	0	0	79

Sample Year	Number of yearling spring Chinook									
	Chiwawa River	Phelps Creek	Chikamin Creek	Rock Creek	Peven Creek	Big Meadow Creek	Alder Creek	Brush Creek	Y Creek	Total
2006	345	0	0	43	0	0	0	0	0	388
2007	41	0	0	0	0	0	0	0	0	41
Average	106	0	1	3	0	1	0	0	0	111

$\underset{\substack{\text { Age-0 }}}{\text { Chinook Salmon }}$

Figure 5.1. Numbers of subyearling and yearling Chinook salmon within the Chiwawa River Basin in August 1992-2007; ND = no data.

Juvenile Chinook were distributed contagiously among reaches in the Chiwawa River. Their densities were highest in the upper portions of the basin; although the highest density occurred in Chikamin Creek (7,387 fish/ha). Juvenile Chinook were most abundant in multiple channels and least abundant in glides. Most Chinook associated closely with woody debris in multiple channels. These sites (multiple channels) made up 29% of the total area of the Chiwawa Basin, but they provided habitat for 40% of all the subyearling Chinook in the basin in 2007. In contrast, riffles made up 47% of the total area, but provided habitat for only 12% of all juvenile Chinook in the Chiwawa Basin. Pools made up 17% of the total area and provided habitat for 46% of all juvenile Chinook in the basin. Virtually no Chinook used glides that lacked woody debris.

Mean densities of juvenile Chinook in two reaches of the Chiwawa River were generally less than those in corresponding reference areas (Nason Creek and the Little Wenatchee River) (Figure 5.2). Within both the Chiwawa River and its reference areas, pools and multiple channels consistently had the highest densities of juvenile Chinook.

Figure 5.2. Comparison of the 14 -year means of subyearling spring Chinook densities within state/habitat types in reaches 3 and 8 of the Chiwawa River and their matched reference areas on Nason Creek and the Little Wenatchee River. NC = natural channel; S = straight channel; EB = eroded banks; MC = multiple channel.

Smolt and Emigrant Estimates

Numbers of spring Chinook smolts and emigrants were estimated at the Upper Wenatchee, Chiwawa, and Lower Wenatchee traps in 2007.

Chiwawa Trap

The Chiwawa Trap operated between 27 February and 27 November 2007. During that time period the trap was inoperable for 23 days because of high river flows, debris, snow/ice, or mechanical failure. The trap operated in two different positions depending on stream flow; lower position at flows greater than $12 \mathrm{~m}^{3} / \mathrm{s}$ and an upper position at flows less than $12 \mathrm{~m}^{3} / \mathrm{s}$. Daily trap efficiencies were estimated from two regression models depending on trap position and age class of fish (e.g., subyearling and yearling). The daily number of fish captured was expanded by the estimated trap efficiency to estimate daily total emigration. Monthly captures of all fish and results of markrecapture efficiency tests at the Chiwawa Trap are reported in Appendix B.
Wild yearling spring Chinook (2005 brood year) were primarily captured from March to June 2007 (Figure 5.3). Based on capture efficiencies estimated from the flow model, the total number of wild yearling Chinook emigrating from the Chiwawa River was 69,064 ($\pm 35,747$). Combining the total number of subyearling spring Chinook $(108,595)$ that emigrated during the fall of 2006 with the total number of yearling Chinook $(69,064)$ that emigrated during 2007 resulted in a total emigrant estimate of $177,659(\pm 74,108)$ spring Chinook for the 2005 brood year (Table 5.14).

Juvenile Spring Chinook

Figure 5.3. Monthly captures of wild subyearling, wild yearling, and hatchery yearling spring Chinook at the Chiwawa Trap, 2007.

Table 5.14. Numbers of juvenile spring Chinook at different life stages in the Chiwawa Basin for brood years 1991-2007; NS = not sampled.

Brood year	Number of redds	Egg deposition	Number of parr	Number of smolts produced within Chiwawa Basin $^{\mathbf{a}}$	Total number of smolts $^{\mathbf{b}}$	Number of emigrants
1991	104	478,400	$45,483^{\text {c }}$	42,525	42,525	NS
1992	302	$1,570,098$	79,113	39,723	56,763	65,541

Brood year	Number of redds	Egg deposition	Number of parr	Number of smolts produced within Chiwawa Basin	Total number of smolts	Number of emigrants
1993	106	556,394	55,056	8,662	17,926	22,698
1994	82	485,686	55,240	16,472	22,145	25,067
1995	13	66,248	5,815	3,830	5,230	5,951
1996	23	106,835	16,066	15,475	17,922	19,183
1997	82	374,740	68,415	28,334	39,044	44,562
1998	41	218,325	41,629	23,068	24,953	25,923
1999	34	166,090	NS	10,661	13,953	15,649
2000	128	642,944	114,617	40,831	50,634	55,685
2001	1,078	$4,984,672$	134,874	86,482	389,940	546,266
2002	345	$1,605,630$	91,278	90,948	152,547	184,279
2003	111	648,684	45,177	16,755	27,897	33,637
2004	241	$1,156,559$	49,631	72,080	101,172	116,158
2005	332	$1,436,564$	79,902	69,064	140,737	177,659
2006	297	$1,284,228$	60,752	-	-	-
2007	283	$1,241,521$	-	-	-	-
Average	212	$\mathbf{1 , 0 0 1 , 3 8 9}$	$\mathbf{6 2 , 8 7 0}$	37,661	73,567	95,590

${ }^{\text {a }}$ The estimated number of smolts (yearlings) that are produced entirely within the Chiwawa Basin. Smolt estimates for brood years 1992-1996 were calculated with a mark-recapture model; brood years 1997-2005 were calculated with a flow model.
${ }^{\mathrm{b}}$ These numbers represent Chiwawa smolts produced within the entire Wenatchee Basin. This assumes that 66% of the subyearling migrants from the Chiwawa basin survive to smolt in the Wenatchee Basin, regardless of the number of subyearling migrants (i.e., no density dependence). Smolt estimates for brood years 1992-1996 were calculated with a mark-recapture model; brood years 1997-2005 were calculated with a flow model.
${ }^{\text {c }}$ Estimate only includes numbers of Chinook in the Chiwawa River. Tributaries were not sampled at that time.

Wild subyearling spring Chinook (2006 brood year) were captured between 8 June and 27 November 2007. Based on capture efficiencies estimated from the flow model for both the upper position and lower position, the total number of wild subyearling (fry and parr) Chinook from the Chiwawa River was 70,262 ($\pm 19,317$). Removing fry from the estimate, a total of $62,922(\pm 13,424)$ parr emigrated from the Chiwawa Basin in 2007. Although subyearlings migrated during most months of sampling, the majority (63\%) migrated during August, September, and October (Figure 5.3).

Yearling spring Chinook sampled in 2007 averaged 91 mm in length, 8.6 g in weight, and had a mean condition of 1.10 (Table 5.15). These size estimates were similar to the overall mean of yearling spring Chinook sampled in previous years (overall means: $94 \mathrm{~mm}, 9.4 \mathrm{~g}$, and condition of 1.10). Subyearling spring Chinook sampled in 2007 at the Chiwawa Trap averaged 72 mm in length, averaged 4.5 g , and had a mean condition of 1.13 (Table 5.15). These sizes comport well with the overall mean of subyearling spring Chinook sampled in previous years (overall means, $77 \mathrm{~mm}, 5.7$ g , and condition of 1.10).

Table 5.15. Mean fork length (mm), weight (g), and condition factor of subyearling and yearling spring Chinook collected in the Chiwawa Trap, 1996-2007. Numbers in parentheses indicate 1 standard deviation.

Sample year	Life stage	Sample size ${ }^{\text {a }}$	Mean size		
			Length (mm)	Weight (g)	Condition (K)
1996	Subyearling	514	78 (25)	6.9 (4.2)	1.11 (0.11)
	Yearling	1,589	94 (9)	9.5 (3.0)	1.11 (0.08)
1997	Subyearling	840	86 (8)	7.5 (2.1)	1.16 (0.08)
	Yearling	1,114	100 (7)	10.2 (2.6)	1.02 (0.10)
1998	Subyearling	3,743	82 (11)	6.2 (2.2)	1.08 (0.09)
	Yearling	2,663	97 (7)	10.3 (2.8)	1.12 (0.23)
1999	Subyearling	569	89 (9)	8.5 (2.4)	1.15 (0.07)
	Yearling	3,664	95 (8)	9.6 (3.4)	1.09 (0.19)
2000	Subyearling	1,810	85 (10)	7.4 (2.4)	1.15 (0.10)
	Yearling	1,891	97 (8)	10.5 (5.2)	1.13 (0.07)
2001	Subyearling	4,657	82 (11)	6.6 (3.4)	1.14 (0.09)
	Yearling	2,935	97 (7)	10.5 (2.4)	1.15 (0.08)
2002	Subyearling	6,130	64 (12)	3.0 (1.6)	1.06 (0.10)
	Yearling	1,735	94 (8)	9.0 (2.3)	1.09 (0.08)
2003	Subyearling	3,679	64 (12)	3.2 (1.7)	1.08 (0.10)
	Yearling	2,657	87 (9)	7.2 (3.5)	1.07 (0.10)
2004	Subyearling	2,278	75 (16)	4.3 (2.1)	0.92 (0.16)
	Yearling	1,032	91 (9)	8.5 (2.7)	1.09 (0.10)
2005	Subyearling	2,702	73 (12)	4.6 (2.2)	1.08 (0.09)
	Yearling	803	96 (9)	9.9 (2.8)	1.08 (0.08)
2006	Subyearling	3,462	76 (11)	5.1 (2.0)	1.12 (0.21)
	Yearling	4,645	95 (7)	9.4 (2.3)	1.10 (0.13)
2007	Subyearling	1,718	72 (11.5)	4.5 (2.1)	1.13 (0.16)
	Yearling	2,245	91 (7.8)	8.6 (2.5)	1.10 (0.09)
Average	Subyearling	2,675	77.2	5.7	1.10
	Yearling	2,248	94.4	9.4	1.10

${ }^{\text {a }}$ Sample size represents the number of fish that were measured for both length and weight.

Upper Wenatchee Trap

The Upper Wenatchee Trap operated nightly between 4 March and 23 July 2007. During the fivemonth sampling period, a total of 1,597 wild yearling Chinook, 213 wild subyearling Chinook, and 750 hatchery yearling Chinook were captured at the Upper Wenatchee Trap. Monthly captures of all fish collected at the Upper Wenatchee Trap are reported in Appendix B.

Lower Wenatchee Trap

The Lower Wenatchee Trap operated nightly between 1 February and 5 August 2007. During that time period the trap was inoperable for 14 days because of high river flows, debris, snow/ice, or
mechanical failure. During the seven-month sampling period, a total of 1,906 wild yearling Chinook, 86,142 wild subyearling Chinook (mostly summer Chinook), and 45,467 hatchery yearling Chinook were captured at the Lower Wenatchee Trap. Based on capture efficiencies estimated from the flow model, the total number of wild yearling Chinook that emigrated past the Lower Wenatchee Trap was 311,699 ($\pm 293,886$). The majority (53\%) of these fish emigrated during March. Monthly captures of all fish collected at the Lower Wenatchee Trap are reported in Appendix B.

PIT Tagging Activities

A total of 13,980 juvenile Chinook (6,239 subyearling and 7,741 yearlings) were PIT tagged and released in 2007 throughout the Wenatchee Basin (Table 5.16). Most of these (77\%) were tagged in the Chiwawa Basin (10,796 at the trap and 20 upstream from the trap). Few were tagged and released in Nason Creek or the upper Wenatchee River. A total of 1,641 yearling Chinook were tagged and released at the Lower Wenatchee trap. See Appendix C for a complete list of all fish captured, tagged, lost, and released.

Table 5.16. Numbers of wild Chinook that were captured, tagged, and released at different locations within the Wenatchee Basin, 2007. Numbers of fish that died or shed tags are also given.

Sampling location	Life stage	Number captured for tagging	Number tagged	Number that died	Number of shed tags	Total number of fish released
Chiwawa Trap	Subyearling	6,676	6,155	17	1	6,137
	Yearling	4,798	4,689	30	0	4,659
	Total	11,474	10,844	47	1	10,796
Chiwawa River	Subyearling	23	21	1	0	20
	Yearling	1	0	0	0	0
	Total	24	21	1	0	20
Upper Wenatchee Trap	Subyearling	21	20	5	0	15
	Yearling	1,493	1,456	21	1	1,434
	Total	1,514	1,476	26	1	1,449
Upper Wenatchee River	Subyearling	68	61	0	0	61
	Yearling	0	0	0	0	0
	Total	68	61	0	0	61
Nason Creek ${ }^{\text {a }}$	Subyearling	7	7	1	0	6
	Yearling	7	7	0	0	7
	Total	14	14	1	0	13
Lower Wenatchee Trap	Subyearling	0	0	0	0	0
	Yearling	1,690	1,646	5	0	1,641
	Total	1,690	1,646	5	0	1,641
Totals	Subyearling	6,795	6,264	24	1	6,239
	Yearling	7,989	7,798	56	1	7,741
	Total	14,784	14,062	80	2	13,980

${ }^{\text {a }}$ An additional 489 wild subyearling and 582 wild yearling Chinook were tagged and released by the Yakama Nation at the Nason Creek smolt trap.

Freshwater Productivity

Both productivity and survival estimates for different life stages of spring Chinook in the Chiwawa Basin are provided in Table 5.17. Estimates for brood year 2005 fall within the ranges estimated over the period of brood years 1991-2004. During that period, freshwater productivities ranged from 125-1,015 parr/redd, 169-779 smolts/redd, and 214-834 emigrants/redd. Survivals during the same period ranged from 2.7-19.1\% for egg-parr, 3.2-16.8\% for egg-smolt, and 4.1-18.0\% for eggemigrants. Overwinter survival rates for juvenile spring Chinook within the Chiwawa Basin have ranged from 15.7-100.0\%.

Table 5.17. Productivity (fish/redd) and survival (\%) estimates for different juvenile life stages of spring Chinook in the Chiwawa Basin for brood years 1991-2006; ND = no data. These estimates were derived from data in Table 5.14.

Brood year	Parr/Redd	Smolts/Redd					
		Emigrants/ Redd	Egg-Parr $(\%)$	Parr-Smolt $(\%)$	Egg-Smolt $(\%)$	Egg- Emigrant $(\%)$	
1991	437	409	ND	9.5	93.5	8.9	ND
1992	262	188	217	5.0	50.2	3.6	4.2
1993	519	169	214	9.9	15.7	3.2	4.1
1994	674	270	306	11.4	29.8	4.6	5.2
1995	447	402	458	8.8	65.9	7.9	9.0
1996	699	779	834	15.0	96.3	16.8	18.0
1997	834	476	543	18.3	41.4	10.4	11.9
1998	1,015	609	632	19.1	55.4	11.4	11.9
1999	ND	410	460	ND	ND	8.4	9.4
2000	895	396	435	17.8	35.6	7.9	8.7
2001	125	362	507	2.7	64.1	7.8	11.0
2002	265	442	534	5.7	99.6	9.5	11.5
2003	407	251	303	7.0	37.1	4.3	5.2
2004	206	420	482	4.3	100.0	8.7	10.0
2005	241	424	535	5.6	86.4	9.8	12.4
2006	205	-	-	4.7	-	-	-
Average	287	365	459	6.0	$\mathbf{6 2 . 8}$	7.6	$\mathbf{9 . 5}$

${ }^{\text {a }}$ These estimates include Chiwawa smolts produced within the Wenatchee Basin. This assumes that 66% of the subyearling migrants survive to smolt, regardless of the number of subyearling migrants (i.e., no density dependence). Smolt estimates for brood years 1992-1996 were calculated with a mark-recapture model; brood years 1997-2005 were calculated with a flow model.
${ }^{\mathrm{b}}$ These estimates represent overwinter survival within the Chiwawa Basin. It does not include Chiwawa smolts produced outside the Chiwawa Basin. As noted in footnote 1, smolts/redd and egg-smolt survival include Chiwawa smolts produced in the Wenatchee basin.

Seeding level (egg deposition) explained most of the variability in productivity and survival of juvenile spring Chinook in the Chiwawa Basin. That is, for estimates based on "within-ChiwawaBasin" life stages (e.g., parr and within-Chiwawa-Basin smolts), survival and productivity decreased as seeding levels increased (Figure 5.4). This suggests that density dependence regulates juvenile
productivity and survival within the Chiwawa Basin. This form of population regulation is less apparent with total smolts (i.e., Chiwawa smolts produced within the Wenatchee Basin) and total emigrants. However, one would expect the number of emigrants to increases as seeding levels exceed the capacity of the Chiwawa Basin.

Figure 5.4. Relationships between seeding levels (egg deposition) and juvenile life-stage survivals and productivities for Chiwawa spring Chinook, 1991-2006. Total smolts are Chiwawa smolts produced within and outside the Chiwawa Basin (assumes a 66% survival on subyearling emigrants). Chiwawa smolts are smolts produced only in the Chiwawa Basin.

5.5 Spawning Surveys

Surveys for spring Chinook redds were conducted during August through September, 2007, in the Chiwawa River (including Rock and Chikamin creeks), Nason Creek, Icicle Creek, Peshastin Creek (including Ingalls Creek), Upper Wenatchee River (including Chiwaukum Creek), Little Wenatchee River, and White River (including the Napeequa River and Panther Creek).

Redd Counts

A total of 466 spring Chinook redds were counted in the Wenatchee Basin in 2007 (Table 5.18). This is lower than the average of 503 redds counted during the period 1989-2007 in the Wenatchee Basin. Most spawning occurred in the Chiwawa River (61\% or 283 redds) (Table 5.18; Figure 5.5). Nason Creek contained 22\% (101 redds), Little Wenatchee contained 5\% (22 redds), White River contained 4% (20 redds), Icicle contained 4% (17 redds), and the Upper Wenatchee River and Peshastin Creek each contained 2\%.

Table 5.18. Numbers of spring Chinook redds counted within different streams/watersheds within the Wenatchee Basin, 1989-2007. Redd counts in Peshastin Creek in 2001 and $2002\left(^{*}\right)$ were elevated because the U.S. Fish and Wildlife Service planted 487 and 350 spring Chinook adults, respectively, into the stream. These counts were not included in the total or average calculations.

Sample year	Number of spring Chinook redds							
	Chiwawa	Nason	Little Wenatchee	White	Wenatchee River	Icicle	Peshastin	Total
1989	314	98	45	64	94	24	NS	639
1990	255	103	30	22	36	50	4	500
1991	104	67	18	21	41	40	1	292
1992	302	81	35	35	38	37	0	528
1993	106	223	61	66	86	53	5	600
1994	82	27	7	3	6	15	0	140
1995	13	7	0	2	1	9	0	32
1996	23	33	3	12	1	12	1	85
1997	82	55	8	15	15	33	1	209
1998	41	29	8	5	0	11	0	94
1999	34	8	3	1	2	6	0	54
2000	128	100	9	8	37	68	0	350
2001	1,078	374	74	104	218	88	173*	2,109
2002	345	294	42	42	64	245	107*	1,139
2003	111	83	12	15	24	18	60	323
2004	241	169	13	22	46	30	55	576
2005	332	193	64	86	143	8	3	829
2006	297	152	21	31	27	50	10	588
2007	283	101	22	20	12	17	11	466
Average	220	116	25	30	47	43	9	503

Spring Chinook Redds

Figure 5.5. Percent of the total number of spring Chinook redds counted in different streams/watersheds within the Wenatchee Basin during August through September, 2007.

Redd Distribution

Spring Chinook redds were not evenly distributed among reaches within survey streams in 2007 (Table 5.19). Most of the spawning in the Chiwawa Basin occurred in Reaches 1, 2, 5, and 6. Over half of all the spawning in the Chiwawa Basin occurred in the lower two reaches (RM 0.0-19.3; from the mouth to Rock Creek). Few fish spawned in Rock and Chikamin creeks. The spatial distribution of redds in Nason Creek was more even than in the Chiwawa basin, with the proportion of redds ranging from 0.22 to 0.29 among the four reaches in Nason Creek. Nearly 82% of all spawning in the Little Wenatchee River occurred in Reach 3 (RM 5.2-9.2; Lost Creek to Rainy Creek). On the White River, 80\% occurred in Reach 3 (RM 11.0-12.9; Napeequa River to Grasshopper Meadows). Nearly all the spawning in the Wenatchee River occurred upstream from the mouth of the Chiwawa River. Of the few fish that spawned in the Peshastin Creek watershed, Chinook placed nearly equal numbers of redds in Ingalls Creek and the lower reach of Peshastin Creek.

Table 5.19. Numbers and percentages of spring Chinook redds counted within different streams/watersheds within the Wenatchee Basin during August through September, 2007.

Stream/watershed	Reach	Number of redds	Percent of redds within stream/watershed
Chiwawa	Chiwawa 1	44	15.6
	Chiwawa 2	122	43.1
	Chiwawa 3	9	3.2
	Chiwawa 4	28	9.9
	Chiwawa 5	30	10.6
	Chiwawa 6	44	15.6
	Rock 1	5	1.8
	Chikamin 1	1	0.4
	Total	283	100.0
Nason	Nason 1	22	21.8
	Nason 2	29	28.7
	Nason 3	28	27.7
	Nason 4	22	21.8
	Total	101	100.0
Little Wenatchee	Little Wen 2	4	18.2
	Little Wen 3	18	81.8
	Total	22	100.0
White	White 2	2	10.0
	White 3	16	80.0
	Napeequa 1	0	0.0
	Panther 1	2	10.0
	Total	20	100.0
Wenatchee River	Wen 9	1 (+1 in Chiwaukum Creek)	16.7
	Wen 10	10	83.3
	Total	12	100.0
Icicle	Icicle 1	17	100.0
	Total	17	100.0
Peshastin	Peshastin 1	5	45.5
	Peshastin 2	0	0.0
	Ingalls	6	54.5
	Total	11	100.0
Grand Total		466	

Spawn Timing

Spring Chinook began spawning during the second week of August in the Chiwawa River, White River, and Nason Creek, the third week on the Little Wenatchee River, and the fifth week on the

Upper Wenatchee River (Figure 5.6). Spawning generally peaked the fourth or fifth week of August in all systems except the Upper Wenatchee. Because of warmer water temperatures, peak spawning in the Wenatchee River occurred during the first week of September. All spawning was completed by the end of September.
The temporal distribution of spawning activity in the Chiwawa River in 2007 occurred slightly earlier compared to the 16-year mean spawning distribution (Figure 5.7). The greatest difference in distributions was noted in late August and September. Compared with the 16-year distribution, the 2007 distribution showed a less spiked spawning activity and activity in 2007 ended about one week earlier compared to the mean.

Spring Chinook Redds

Figure 5.6. Proportion of spring Chinook redds counted during different weeks in different sampling streams within the Wenatchee Basin, August through September 2007.

Chiwawa Spring Chinook

Figure 5.7. Comparison of the number of new spring Chinook redds counted during different weeks in the Chiwawa Basin, August through September, 2007, to the 16-year average.

Spawning Escapement

Spawning escapement for spring Chinook was calculated as the number of redds times the male-tofemale ratio (i.e., fish per redd expansion factor) estimated from broodstock and fish sampled at adult trapping sites. The estimated fish per redd ratio for spring Chinook upstream from Tumwater in 2007 was 4.58 (based on sex ratios estimated at Tumwater Dam). The estimated fish per redd ratio for spring Chinook downstream from Tumwater (Icicle and Peshastin creeks) was 1.86 (derived from broodstock collected at the Leavenworth National Fish Hatchery). Multiplying these ratios by the number of redds counted in the Wenatchee Basin resulted in a total spawning escapement of 2,059 spring Chinook (Table 5.20). The Chiwawa Basin had the highest spawning escapement (1,296 Chinook), while Peshastin Creek and the Upper Wenatchee had the lowest.

Table 5.20. Number of redds, fish per redd ratios, and total spawning escapement for spring Chinook in the Wenatchee Basin, 2007. Spawning escapement was estimated as the product of redds times fish per redd.

Sampling area	Total number of redds	Fish/redd	Total spawning escapement
Chiwawa	283	4.58	1,296
Nason	101	4.58	463
Upper Wenatchee River	12	4.58	55
Icicle	17	1.86	32
Little Wenatchee	22	4.58	101
White	20	4.58	92
Peshastin	11	1.86	20
	466		2,059

The estimated total spawning escapement of 2,059 spring Chinook in 2007 was greater than the 1989-2007 average of 1,157 spring Chinook (Table 5.21). The large escapement in the Chiwawa Basin in 2007 was almost three times the escapement in Nason Creek, the second most abundant stream in the Wenatchee Basin (Table 5.21).

Table 5.21. Spawning escapements for spring Chinook in the Wenatchee Basin for return years 19892007; NA = not available.

Return year	Upper basin spawning escapement						Lower basin spawning escapement			Total
	Fish/redd	Chiwawa	Nason	Little Wenatchee	White	Wenatchee River	Fish/redd	Icicle	Peshastin	
1989	2.27	713	222	102	145	213	2.27	54	NA	1,449
1990	2.24	571	231	67	49	81	2.24	112	9	1,120
1991	2.33	242	156	42	49	96	2.33	93	2	680
1992	2.24	676	181	78	78	85	2.24	83	0	1,181
1993	2.20	233	491	134	145	189	2.20	117	11	1,320
1994	2.24	184	60	16	7	13	2.24	34	0	314
1995	2.51	33	18	0	5	3	2.51	23	0	82
1996	2.53	58	83	8	30	3	2.53	30	3	215
1997	2.22	182	122	18	33	33	2.22	73	2	463
1998	2.21	91	64	18	11	0	2.21	24	0	208
1999	2.77	94	22	8	3	6	2.77	17	0	150
2000	2.44	312	244	22	20	90	2.44	166	0	854
2001	2.31	2,490	864	171	240	504	2.31	203	365	4,837
2002	2.05	707	603	86	86	131	2.05	502	223	2,338
2003	2.43	270	202	29	36	58	2.43	44	146	785
2004	3.56	858	507	39	66	138	1.79	54	97	1,759
2005	1.80	598	347	115	155	257	1.75	14	5	1,491
2006	1.78	529	271	37	55	48	1.80	90	18	1,048
2007	4.48	1,296	463	101	92	55	1.86	32	20	2,059
Average	2.45	534	271	57	69	105	2.22	93	50	1,176

5.6 Carcass Surveys

Surveys for spring Chinook carcasses were conducted during August through September in the Chiwawa River (including Rock and Chikamin creeks), Nason Creek, Icicle Creek, Peshastin Creek (including Ingalls Creek), Upper Wenatchee River, Little Wenatchee River, and White River (including the Napeequa River and Panther Creek).

Number sampled

A total of 526 spring Chinook carcasses were sampled during August through September in the Wenatchee Basin (Table 5.22). Most were sampled in the Chiwawa Basin (48% or 250 carcasses) and Nason Creek (38% or 201 carcasses) (Figure 5.8). A total of 25 carcasses were sampled in the
upper Wenatchee River, 16 in the Little Wenatchee, 15 in Icicle, 13 in the White River, and 6 in Peshastin Creek.

Table 5.22. Numbers of spring Chinook carcasses sampled within different streams/watersheds within the Wenatchee Basin, 1996-2007.

Survey year	Number of spring Chinook carcasses							
	Chiwawa	Nason	Little Wenatchee	White	Wenatchee River	Icicle	Peshastin	Total
1996	22	3	0	2	0	1	0	$\mathbf{2 8}$
1997	13	42	3	8	1	28	1	$\mathbf{9 6}$
1998	24	25	3	2	1	6	0	$\mathbf{6 1}$
1999	15	5	0	0	2	1	0	$\mathbf{2 3}$
2000	122	110	8	1	37	52	0	$\mathbf{3 3 0}$
2001	751	388	68	74	213	163	63	$\mathbf{1 , 7 2 0}$
2002	190	292	30	24	34	91	49	$\mathbf{7 1 0}$
2003	70	100	8	8	12	37	42	$\mathbf{2 7 7}$
2004	178	186	1	13	29	16	40	$\mathbf{4 6 3}$
2005	391	217	48	52	120	2	0	$\mathbf{8 3 0}$
2006	241	190	13	25	15	7	0	$\mathbf{4 9 1}$
2007	250	201	16	13	25	15	6	$\mathbf{5 2 6}$
Average	$\mathbf{1 8 9}$	$\mathbf{1 4 7}$	$\mathbf{1 7}$	$\mathbf{1 9}$	$\mathbf{4 1}$	35	$\mathbf{1 7}$	$\mathbf{4 6 3}$

Spring Chinook Carcasses

Figure 5.8. Percent of the total number of spring Chinook carcasses sampled in different streams/watersheds within the Wenatchee Basin during August through September, 2007.

Carcass Distribution and Origin

Spring Chinook carcasses were not evenly distributed among reaches within survey streams in 2007 (Table 5.23). Most of the carcasses in the Chiwawa Basin occurred in Reaches 1 and 2 (downstream from Rock Creek). In Nason Creek, most carcasses (45\%) were collected in Reach 2 and the fewest (10\%) in Reach 4. Nearly 94% of all carcasses sampled in the Little Wenatchee River occurred in Reach 3 (Lost Creek to Rainy Creek). On the White River, about 77\% occurred in Reach 3 (Napeequa River to Grasshopper Meadows). Almost all carcasses sampled in the Wenatchee River were found upstream from the mouth of the Chiwawa River. All fish sampled in the Peshastin Creek watershed were in Reach 1 (mouth to Camas Creek).

Table 5.23. Numbers and percentages of carcasses sampled within different streams/watersheds within the Wenatchee Basin during August through September, 2007.

Stream/watershed	Reach	Total carcasses	Percent of carcasses within stream/watershed
Chiwawa	Chiwawa 1	45	18.0
	Chiwawa 2	133	53.2
	Chiwawa 3	18	7.2
	Chiwawa 4	18	7.2
	Chiwawa 5	20	8.0
	Chiwawa 6	14	5.6
	Rock 1	0	0.0
	Chikamin 1	2	0.8
	Total	250	100.0
Nason	Nason 1	56	27.9
	Nason 2	90	44.8
	Nason 3	34	16.9
	Nason 4	21	10.4
	Total	201	100.0
Little Wenatchee	Little Wen 2	1	6.3
	Little Wen 3	15	93.7
	Total	16	100.0
White	White 2	1	7.7
	White 3	10	76.9
	Napeequa 1	0	0.0
	Panther 1	2	15.4
	Total	13	100.0
Wenatchee River	Wen 9	3	12.0
	Wen 10	22	88.0
	Total	25	100.0
Icicle	Icicle 1	15	100.0
	Total	15	100.0
Peshastin	Peshastin 1	6	100.0

Stream/watershed	Reach	Total carcasses	Percent of carcasses within stream/watershed	
	Peshastin 2	0	0.0	
	Ingalls	0	0.0	
	Total	6	100.0	
	Grand Total			

Of the 526 carcasses sampled in 2007, 82% were hatchery fish (Table 5.24; these numbers may change after analysis of CWTs and scales). In the Chiwawa Basin, the spatial distribution of hatchery and wild fish was not equal (Table 5.24). A larger percentage of hatchery fish were found in the lower reaches (C1 and C2; Mouth to Rock Creek) than were wild fish (88\% hatchery and 12\% naturally produced). This general trend was also apparent in the pooled data (Figure 5.9).

Table 5.24. Numbers of wild and hatchery spring Chinook carcasses sampled within different reaches in the Chiwawa Basin, 1993-2007. See Table 2.8 for description of survey reaches.

Survey year	Origin	Survey Reach								Total
		C-1	C-2	C-3	C-4	C-5	C-6	Chikamin	Rock	
1993	Wild	0	0	0	0	0	0	0	0	0
	Hatchery	1	0	0	0	0	0	0	0	1
1994	Wild	0	6	0	2	0	1	0	0	9
	Hatchery	1	1	0	2	0	0	0	0	4
1995	Wild	0	0	0	0	0	0	0	0	0
	Hatchery	2	3	0	1	0	0	0	0	6
1996	Wild	11	1	1	1	0	0	0	0	14
	Hatchery	6	0	0	0	0	0	0	0	6
1997	Wild	5	2	0	1	0	0	0	0	8
	Hatchery	3	1	0	0	0	1	1	3	9
1998	Wild	0	3	5	1	2	4	0	0	15
	Hatchery	1	3	2	0	1	1	0	0	8
1999	Wild	1	8	0	5	0	0	0	0	14
	Hatchery	0	0	0	0	1	0	0	0	1
2000	Wild	25	27	1	1	1	1	0	0	56
	Hatchery	42	12	0	0	0	2	0	0	56
2001	Wild	24	57	15	40	16	20	1	3	176
	Hatchery	164	284	19	58	14	21	8	0	568
2002	Wild	15	11	9	6	7	5	2	0	55
	Hatchery	46	40	12	5	1	15	14	4	137
2003	Wild	7	13	0	11	3	2	0	0	36
	Hatchery	14	14	0	3	1	0	0	0	32
2004	Wild	23	48	2	11	7	3	0	1	95
	Hatchery	46	21	1	1	1	3	0	2	75
2005	Wild	16	36	3	4	3	2	0	0	64
	Hatchery	170	132	7	7	4	3	0	1	324

Survey year	Origin	Survey Reach								Total
		C-1	C-2	C-3	C-4	C-5	C-6	Chikamin	Rock	
2006	Wild	10	17	2	8	4	3	1	0	45
	Hatchery	84	75	5	7	6	13	3	3	196
2007	Wild	3	20	3	4	4	2	0	0	36
	Hatchery	42	113	15	14	16	12	2	0	214
Average	Wild	9	17	3	6	3	3	0	0	42
	Hatchery	41	47	4	7	3	5	2	1	109

Spring Chinook Carcass Distribution

Figure 5.9. Distribution of wild and hatchery produced carcasses in different reaches in the Chiwawa Basin, 1993-2007; Chik = Chikamin Creek. Reach codes are described in Table 2.8.

Sampling Rate

Overall, 26% of the estimated total spawning escapement of spring Chinook in the Wenatchee Basin was sampled in 2007 (Table 5.25). Sampling rates among streams/watershed varied from 14 to 47%.
Table 5.25. Number of redds and carcasses, total spawning escapement, and sampling rates for spring Chinook salmon in the Wenatchee Basin, 2007.

Sampling area	Total number of redds	Total number of carcasses	Total spawning escapement	Sampling rate
Chiwawa	283	250	1,296	0.19
Nason	101	201	463	0.43
Upper Wenatchee	12	25	55	0.46
Icicle	17	15	32	0.47
Little Wenatchee	22	16	101	0.16
White	20	13	92	0.14

Peshastin	11	6	20	0.30
Total	466	526	2,059	0.26

Length Data

Mean lengths ($\mathrm{POH}, \mathrm{cm}$) of male and female spring Chinook carcasses sampled during surveys in the Wenatchee Basin in 2007 are provided in Table 5.26. The average size of males and females sampled in the Wenatchee Basin were 51 and 63 cm , respectively.

Table 5.26. Mean lengths (postorbital-to-hypural length; cm) and standard deviations (in parentheses) of male and female spring Chinook carcasses sampled in different streams/watersheds in the Wenatchee Basin, 2007.

Stream/watershed		Mean lengths (cm)	
		Female	
Chiwawa	$55(14)$	$63(5)$	
Nason	$48(10)$	$63(5)$	
Upper Wenatchee	$48(6)$	$62(4)$	
Icicle	$46(9)$	$37(0)$	
Little Wenatchee	$58(20)$	$67(7)$	
White	$64(15)$	$70(7)$	
Peshastin	$56(11)$	$65(0)$	
	$51(13)$	$\mathbf{6 3}(6)$	

5.7 Life History Monitoring

Life history characteristics of spring Chinook were assessed by examining carcasses on spawning grounds and fish collected at broodstock collection sites, and by reviewing tagging data and fisheries statistics.

Age at Maturity

Most of the wild and hatchery spring Chinook sampled during the period 1994-2007 in the Chiwawa Basin were age-4 fish (total age) (Table 5.27; Figure 5.10). On average, hatchery fish made up a higher percentage of age- 3 and 4 Chinook than did wild fish. In contrast, a higher proportion of age5 wild fish returned than did age- 5 hatchery fish. Thus, wild fish tended to return at an older age than hatchery fish.

Table 5.27. Proportions of wild and hatchery spring Chinook of different ages (total age) sampled on spawning grounds in the Chiwawa Basin, 1994-2007.

Sample year	Origin	Total age					Sample size
		2	3	4	5	6	
1994	Wild	0.00	0.00	0.33	0.67	0.00	9
	Hatchery	0.00	0.20	0.00	0.80	0.00	5
1995	Wild	0.00	0.00	0.00	0.00	0.00	0.00
	Hatchery	0.00	0.00	1.00	0.00	0.00	2
1996	Wild	0.00	0.36	0.64	0.00	0.00	14
	Hatchery	0.00	0.83	0.17	0.00	0.00	6
1997	Wild	0.00	0.00	0.75	0.25	0.00	8
	Hatchery	0.00	0.00	1.00	0.00	0.00	9
1998	Wild	0.00	0.00	0.00	1.00	0.00	15
	Hatchery	0.00	0.00	0.13	0.88	0.00	8
1999	Wild	0.00	0.07	0.50	0.43	0.00	14
	Hatchery	0.00	0.00	0.00	1.00	0.00	1
2000	Wild	0.00	0.02	0.95	0.03	0.00	56
	Hatchery	0.00	0.50	0.50	0.00	0.00	52
2001	Wild	0.00	0.01	0.95	0.04	0.00	176
	Hatchery	0.00	0.02	0.98	0.00	0.00	571
2002	Wild	0.00	0.00	0.56	0.44	0.00	55
	Hatchery	0.00	0.00	0.91	0.09	0.00	128
2003	Wild	0.00	0.09	0.00	0.91	0.00	36
	Hatchery	0.00	0.19	0.03	0.78	0.00	32
2004	Wild	0.00	0.02	0.97	0.01	0.00	92
	Hatchery	0.00	0.44	0.56	0.00	0.00	45
2005	Wild	0.00	0.01	0.76	0.24	0.00	131
	Hatchery	0.00	0.02	0.98	0.00	0.00	685
2006	Wild	0.00	0.02	0.80	0.17	0.00	139
	Hatchery	0.01	0.02	0.64	0.33	0.00	303
2007	Wild	0.00	0.14	0.42	0.44	0.00	78
	Hatchery	0.00	0.32	0.60	0.08	0.00	251
Average	Wild	0.00	0.04	0.74	0.22	0.00	823
	Hatchery	0.00	0.08	0.84	0.08	0.00	2,098

Spring Chinook Age Structure

Figure 5.10. Proportions of wild and hatchery spring Chinook of different total ages sampled at the Chiwawa Weir and on spawning grounds in the Chiwawa Basin for the combined years 1994-2006.

Size at Maturity

On average, hatchery and wild spring Chinook of a given age differed slightly in length (Table 5.28). For example, wild age- 5 fish were larger on average than the age-5 hatchery fish. In contrast, hatchery age- 3 and 4 Chinook were generally larger than age- 3 and 4 wild fish.
Table 5.28. Mean lengths (POH in $\mathrm{cm} ; \pm 1 \mathrm{SD}$) and sample sizes (in parentheses) of different ages (total age) of male and female spring Chinook of wild and hatchery origin sampled in the Chiwawa basin, 1994-2006.

Brood year	Total age	Mean length (cm)			
		Male		Female	
		Wild	Hatchery	Wild	Hatchery
1994	3				43 ± 0 (1)
	4			62 ± 3 (3)	
	5	76 ± 0 (1)		73 ± 2 (5)	
	6				
1995	3				
	4		61 ± 5 (5)		
	5				
	6				
1996	3	45 ± 3 (5)	49 ± 7 (54)		
	4	69 ± 4 (6)	69 ± 0 (1)	67 ± 8 (2)	
	5				
	6				
1997	3				
	4	61 ± 1 (2)	68 ± 0 (1)	67 ± 5 (3)	63 ± 3 (8)

Brood year	Total age	Mean length (cm)			
		Male		Female	
		Wild	Hatchery	Wild	Hatchery
	5	67 ± 5 (2)			
	6				
1998	3				
	4				54 ± 0 (1)
	5	77 ± 7 (8)	75 ± 4 (4)	74 ± 4 (7)	76 ± 4 (3)
	6				
1999	3	44 ± 0 (1)			
	4	61 ± 0 (1)		64 ± 3 (6)	
	5	76 ± 5 (3)		72 ± 5 (3)	66 ± 0 (1)
	6				
2000	3		46 ± 3 (17)		50 ± 7 (3)
	4	60 ± 8 (23)	62 ± 5 (5)	61 ± 5 (26)	62 ± 3 (20)
	5	77 ± 1 (2)			
	6				
2001	3	37 ± 0 (1)	42 ± 4 (11)	41 ± 0 (1)	60 ± 0 (1)
	4	63 ± 5 (57)	65 ± 5 (151)	62 ± 34 (110)	63 ± 4 (407)
	5	75 ± 5 (2)	83 ± 0 (1)	76 ± 1 (5)	
	6				
2002	3				
	4	64 ± 4 (14)	66 ± 5 (46)	60 ± 4 (15)	63 ± 4 (71)
	5	80 ± 6 (13)	75 ± 5 (4)	72 ± 3 (12)	73 ± 6 (6)
	6				
2003	3	45 ± 2 (3)	45 ± 1 (6)		
	4		63 ± 0 (1)		
	5	$78 \pm 5(12)$	74 ± 8 (11)	75 ± 3 (19)	72 ± 5 (14)
	6				
2004	3	43 ± 3 (2)	43 ± 4 (20)		
	4	62 ± 7 (44)	67 ± 5 (3)	62 ± 3 (45)	64 ± 5 (22)
	5			74 ± 0 (1)	
	6				
2005	3		43 ± 5 (11)		
	4	61 ± 5 (17)	64 ± 6 (101)	61 ± 4 (34)	61 ± 4 (206)
	5	74 ± 5 (4)		71 ± 3 (9)	
	6				
2006	3	43 ± 0 (1)	43 ± 2 (6)		
	4	64 ± 3 (6)	61 ± 5 (44)	60 ± 3 (17)	59 ± 4 (105)
	5	74 ± 6 (8)	75 ± 6 (10)	70 ± 4 (12)	70 ± 4 (23)
	6				
2007	3	39 ± 3 (5)	45 ± 7 (71)		50 ± 3 (4)
	4	60 ± 4 (4)	66 ± 5 (34)	60 ± 4 (6)	62 ± 4 (91)

Brood year	Total age	Mean length (cm)			
		Male		Female	
		Wild	Hatchery	Wild	Hatchery
	5	78 ± 6 (13)	75 ± 5 (7)	71 ± 3 (8)	72 ± 5 (6)
	6				

Contribution to Fisheries

Nearly all the harvest on Chiwawa spring Chinook occurs within the Columbia Basin. Ocean catch records (Pacific Fishery Management Council) indicate that virtually no Upper Columbia spring Chinook are taken in ocean fisheries. Most of the harvest on Chiwawa spring Chinook occurs in the Lower Columbia River fisheries, which are managed by the states and tribes pursuant to management plans developed in U.S. v Oregon. The Lower Columbia River fisheries occur during what is referred to in U.S. v Oregon as the winter, spring, and summer seasons, which begin in February and ends July 31 of each year. The treaty fishery occurs exclusively in Zone 6, the area between Bonneville and McNary dams; the non-treaty commercial fisheries occur in Zones 1-5, which are downstream from Bonneville Dam. The non-treaty recreational (sport) fishery occurs in the lower mainstem.

The total number of spring Chinook captured in different fisheries has been relatively low (Table 5.29). Larger numbers of spring Chinook were taken from the 1997 and 1998 brood years because those years produced large escapements.
Table 5.29. Estimated number and percent (in parentheses) of Chiwawa spring Chinook captured in different fisheries; NA = not available.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational $^{\mathbf{a}}$ (sport)	
1989	$3(13)$	$5(21)$	$0(0)$	$16(67)$	24
1990	$0(0)$	$0(0)$	$0(0)$	$18(100)$	18
1991	$0(0)$	$3(100)$	$0(0)$	$0(0)$	3
1992	$0(0)$	$1(100)$	$0(0)$	$0(0)$	1
1993	$3(75)$	$1(25)$	$0(0)$	$0(0)$	$0(0)$
1994	$0(0)$	$0(0)$	$0(0)$	NA	4
1995	NA	NA	NA	$0(0)$	NA
1996	$0(0)$	$2(100)$	$0(0)$	$115(28)$	2
1997	$1(0)$	$1(0)$	$287(71)$	$108(61)$	404
1998	$9(5)$	$7(4)$	$52(30)$	NA	176
1999	NA	$0(0)$	NA	NA	NA
2000	$17(61)$	$0(0)$	$17(63)$	$10(37)$	27
2001		$3(11)$	$8(29)$	28	

${ }^{\text {a }}$ Includes the Wanapum fishery.

Straying

Stray rates were determined by examining CWTs recovered on spawning grounds within and outside the Wenatchee Basin. Targets for strays based on return year (recovery year) within the Wenatchee Basin should be less than 10% and targets for strays outside the Wenatchee Basin should be less than 5%. The target for brood year stray rates should be less than 5%.

Rates of Chiwawa spring Chinook straying into non-target spawning areas within the Wenatchee Basin have been high in some years and exceeded the target of 10\% (Table 5.30). They have strayed into spawning areas on Nason Creek, the White River, the Little Wenatchee River, and the Upper Wenatchee River. On average, stray rates are typically highest in Nason Creek and the Upper Wenatchee River. Stray rates of Chiwawa spring Chinook should decrease with the change in source water that was implemented in 2006-2007 for the Chiwawa rearing ponds.

Table 5.30. Number and percent of spawning escapement in other non-target spawning streams within the Wenatchee Basin that consisted of Chiwawa spring Chinook, return years 1992-2005. For example, for return year 2001, 24.9% of the spring Chinook spawning escapement in Nason Creek consisted of Chiwawa spring Chinook. Percent strays should be less than 10%.

Return year	Nason Creek		Icicle Creek		Upper Wenatchee		White River		Little Wenatchee	
	Number	\%								
1992	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1993	61	12.4	0	0.0	34	18.0	7	4.8	0	0.0
1994	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1995	0	0.0	0	0.0	2	66.7	0	0.0	0	0.0
1996	25	30.1	0	0.0	0	0.0	0	0.0	0	0.0
1997	55	45.1	8	11.0	0	0.0	0	0.0	0	0.0
1998	3	4.7	0	0.0	0	0.0	0	0.0	0	0.0
1999	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2000	45	18.4	0	0.0	31	34.4	0	0.0	6	27.3
2001	211	24.4	0	0.0	271	53.8	46	19.2	53	31.0
2002	188	31.2	10	2.0	60	45.8	14	16.3	21	24.4
2003	14	6.9	0	0.0	30	51.7	0	0.0	0	0.0
2004	139	27.4	0	0.0	54	39.1	1	1.5	0	0.0
2005	252	72.6	7	13.0	256	99.6	106	68.4	65	56.5
Total	993	26.1	25	1.8	738	48.9	174	19.0	145	19.5

Rates of Chiwawa spring Chinook straying into basins outside the Wenatchee have been low (Table 5.31). Chiwawa spring Chinook have strayed into the Methow and Entiat basins. During return year 2002, their stray rate exceeded the target of 0.05 in the Entiat Basin. Stray rates of Chiwawa spring Chinook should decrease with the change in source water that was implemented in 2006-2007 for the Chiwawa rearing ponds.

Table 5.31. Number and percent of spawning escapements within other non-target basins that consisted of Chiwawa spring Chinook, return years 1992-2005. For example, for return year 2002, 12.6\% of the spring Chinook spawning escapement in the Entiat Basin consisted of Chiwawa spring Chinook. Percent strays should be less than 5\%. NS = not sampled; NA = not available.

Return year	Methow Basin		Entiat Basin	
	Number	\%	Number	\%
1992	0	0.0	0	0.0
1993	0	0.0	0	0.0
1994	0	0.0	0	0.0
1995	0	0.0	0	0.0
1996	NS	NS	0	0.0
1997	0	0.0	0	0.0
1998	0	NS	0.0	0
1999	0	0.0	1	0.0
2000	0	0.0	34	0.0
2001	0	0.0	0	0.6
2002	0	0.0	0	12.6
2003	0	0.0	4	0.0
2004	10	0.7	36	0.0
2005	$\mathbf{1 0}$	$\mathbf{0 . 0}$	0	NA
Total			0.9	

On average, about 36% of the returns have strayed into non-target spawning areas, exceeding the target of 5\% (Table 5.32). Depending on brood year, percent strays into non-target spawning areas have ranged from $0-81 \%$. Few ($<1 \%$) have strayed into non-target hatchery programs. Stray rates of Chiwawa spring Chinook should decrease with the change in source water that was implemented in 2006-2007 for the Chiwawa rearing ponds.
Table 5.32. Number and percent of Chiwawa spring Chinook that homed to target spawning areas and the target hatchery program, and number and percent that strayed to non-target spawning areas and non-target hatchery programs, by brood years 1989-2001. Percent stays should be less than 5\%.

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1989	58	35.4	1	0.6	102	62.2	3	1.8
1990	0	0.0	1	100.0	0	0.0	0	0.0
1991	29	87.9	0	0.0	2	6.1	2	6.1
1992	2	6.5	4	12.9	25	80.6	0	0.0
1993	134	47.5	82	29.1	63	22.3	3	1.1
1994	4	19.0	14	66.7	3	14.3	0	0.0
1995	No program							

1996	58	75.3	7	9.1	12	15.6	0	0.0
1997	1,242	55.6	298	13.4	687	30.8	5	0.2
1998	553	55.8	109	11.0	329	33.2	0	0.0
1999	No program							
2000	144	42.6	115	34.0	79	23.4	0	0.0
2001	573	35.2	237	14.5	817	50.1	3	0.2
Total	2,797	48.2	868	15.0	2,119	36.5	16	0.3

Genetics

Genetic studies were conducted to determine the potential impacts of the Chiwawa Supplementation Program on natural origin spring Chinook in the upper Wenatchee Basin (Blankenship et al. 2007; the entire report is appended as Appendix I). Microsatellite DNA allele frequencies collected from temporally replicated natural and hatchery origin spring Chinook were used to statistically assign individual fish to specific demes (locations) within the Wenatchee population. In addition, genetic effects of the hatchery program were assessed by examining relationships between census and effective population sizes $\left(\mathrm{N}_{\mathrm{e}}\right)$ from samples collected before and after supplementation.

Overall, this work showed that although allele frequencies within and between natural and hatchery origin spring Chinook were significantly different, there was no evidence (i.e., robust signal) that the difference was the result of the hatchery program. Rather, the differences were more likely the result of life history characteristics. However, there was an increasing trend toward homogenization of the allele frequencies of the natural and hatchery origin fish that comprised the broodstock, even though there was consistent year-to-year variation in allele frequencies among hatchery and natural origin fish. In addition, there were no robust signals indicating that hatchery-origin hatchery broodstock, hatchery-origin natural spawners, natural-origin hatchery broodstock, and natural-origin natural spawners were substantially different from each other. Finally, the N_{e} estimate of 387 was only slightly larger than the pre-hatchery N_{e} (based on demographic data from 1989-1992), which means that the Chiwawa hatchery program has not reduced the N_{e} of the Wenatchee spring Chinook population.

Significant differences in allele frequencies were observed within and among major spawning areas in the Upper Wenatchee Basin. However, these differences made up only a very small portion of the overall variation, indicating genetic similarity among the major spawning areas. There was no evidence that the Chiwawa program has changed the genetic structure (allele frequency) of spring Chinook in Nason Creek and the White River, despite the presence of hatchery origin spawners in both systems.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the
greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 1989-1996, the PNI was greater than 0.50, indicating that the natural environment had a greater influence on adaptation of Chiwawa spring Chinook than did the hatchery environment (Table 5.33). For brood years 1997-2006, however, the PNI was generally less than 0.50, indicating that the hatchery environment had a greater influence on adaptation than did the natural environment.

Table 5.33. Proportionate natural influence (PNI) of the Chiwawa spring Chinook supplementation program for brood years 1989-2006. PNI was calculated as the proportion of naturally produced Chinook in the hatchery broodstock (pNOB) divided by the proportion of hatchery Chinook on the spawning grounds (pHOS) plus pNOB. NOS = number of natural origin Chinook on the spawning grounds; HOS = number of hatchery origin Chinook on the spawning grounds; $\mathrm{NOB}=$ number of natural origin Chinook collected for broodstock; and HOB = number of hatchery origin Chinook included in hatchery broodstock.

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1989	713	0	0.00	28	0	1.00	1.00
1990	571	0	0.00	18	0	1.00	1.00
1991	242	0	0.00	27	0	1.00	1.00
1992	676	0	0.00	78	0	1.00	1.00
1993	76	157	0.67	94	0	1.00	0.60
1994	132	52	0.28	8	4	0.67	0.70
1995	6	26	0.81	No Program			
1996	53	5	0.08	8	10	0.44	0.84
1997	74	108	0.59	32	79	0.29	0.33
1998	52	39	0.43	13	34	0.28	0.39
1999	71	23	0.25	No Program			
2000	203	109	0.35	9	21	0.30	0.46
2001	680	1,810	0.73	113	259	0.30	0.29
2002	220	487	0.69	20	51	0.28	0.29
2003	165	105	0.39	41	53	0.44	0.53
2004	596	305	0.34	83	132	0.39	0.53
2005	134	518	0.79	91	181	0.33	0.30
2006	116	412	0.78	91	224	0.29	0.27

Natural Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population. For brood years 1989-2000, NRR in the Chiwawa averaged 0.68 (range, 0.03-4.48) if harvested fish were not include in the estimate and 0.89 (range, 0.03-6.71) if harvested fish were included in the estimate (Table 5.34). NRRs for more recent brood years will be calculated as soon as all tag recoveries and sampling rates have been loaded into the database.

Table 5.34. Spawning escapements, natural origin recruits (NOR), and natural replacement rates (NRR) for spring Chinook in the Chiwawa Basin, 1989-2000. (The numbers in this table may change as the HETT and HC refine the methods for estimating Chiwawa spring Chinook NORs, and NRRs.)

Brood year	Spawning escapement	Harvest not included		Harvest included	
		NOR	NRR	NOR	NRR
1989	713	175	0.24	220	0.31
1990	571	45	0.08	61	0.11
1991	242	6	0.03	8	0.03
1992	676	51	0.08	54	0.08
1993	233	173	0.74	188	0.81
1994	184	55	0.30	60	0.32
1995	33	46	1.41	51	1.58
1996	58	167	2.88	213	3.66
1997	182	816	4.48	1,222	6.71
1998	91	276	3.05	372	4.10
1999	94	5	0.05	6	0.06
2000	312	505	1.62	573	1.83
Average	282	$\mathbf{1 9 3}$	$\mathbf{0 . 6 8}$	252	$\boldsymbol{0 . 8 9}$

Hatchery Replacement Rates

Hatchery replacement rates were estimated as hatchery adult-to-adult returns. These rates should be greater than the NRRs and greater than or equal to 5.30 (the value in BAMP; Murdoch and Peven 2005). In most years, HRRs were greater than NRRs, regardless if harvest was or was not included (Table 5.35). In contrast, HRRs exceeded the BAMP target of 5.3 in only four years (brood years 1989, 1997, 1998, and 2000).

Table 5.35. Hatchery replacement rates (HRR), NRR, and BAMP target (5.30) for spring Chinook in the Chiwawa Basin, 1989-2000; NA = not available. (The numbers in this table may change as the HETT and HC refine the methods for estimating Chiwawa spring Chinook HRRs and NRRs.)

Brood year	Harvest not included			Harvest included		
	HRR	NRR	BAMP	HRR	NRR	BAMP
1989	5.86	0.24	5.30	6.71	0.31	5.30
1990	0.05	0.13	5.30	1.00	0.18	5.30
1991	1.03	0.03	5.30	1.13	0.03	5.30
1992	0.40	0.08	5.30	0.41	0.08	5.30
1993	2.50	0.74	5.30	2.53	0.81	5.30
1994	1.75	0.30	5.30	1.75	0.32	5.30
1995	NP	1.41	5.30	NP	1.58	5.30
1996	4.28	2.86	5.30	4.39	3.65	5.30
1997	18.60	4.39	5.30	21.97	6.61	5.30
1998	20.65	3.05	5.30	24.31	4.10	5.30

Brood year	Harvest not included			Harvest included		
	HRR	NRR	BAMP	HRR	NRR	BAMP
1999	NP	0.05	5.30	NP	0.06	5.30
2000	7.04	1.62	5.30	7.60	1.83	5.30
2001	4.27		5.30	4.34		5.30
Average	$\mathbf{6 . 5}$	$\mathbf{0 . 7 3}$	5.30	7.2	$\mathbf{0 . 9 5}$	$\mathbf{5 . 3 0}$

Smolt-to-Adult Survivals

Smolt-to-adult survival ratios (SARs) were calculated as the number of hatchery adults divided by the number of hatchery smolts released. SARs were based on CWT returns. For the available brood years, SARs have ranged from 0.00036 to 0.01538 for hatchery spring Chinook (Table 5.36).
Table 5.36. Smolt-to-adult ratios (SARs) for Chiwawa hatchery spring Chinook.

Brood year	Number of smolts released	Estimated adult captures	SAR
1989	42,707	188	0.00440
1990	52,798	19	0.00036
1991	61,088	36	0.00059
1992	82,976	31	0.00037
1993	221,316	284	0.00128
1994	27,135	21	0.00077
1995		No hatchery program	
1996	12,767	67	0.00525
1997	259,585	2,576	0.00992
1998	71,571	1,101	0.01538
1999		No hatchery program	
2000	46,726	363	0.00777
2001	$\mathbf{1 1 3 , 8 9 1}$	1,644	0.00439
Average		575	0.00505

5.8 ESA/HCP Compliance

Broodstock Collection

The collection of 2005 Brood Chiwawa River spring Chinook broodstock was consistent with the 2005 Upper Columbia River Salmon and Steelhead Broodstock Objectives and site-based broodstock collection protocols. Specifically, broodstock collection targeted hatchery origin fish at Tumwater Dam and the Chiwawa Weir, while only natural origin spring Chinook were collected at the Chiwawa Weir. In-season adjustments were made to the number of hatchery and natural origin spring Chinook collected for bloodstock and were based on in-season escapement monitoring at Tumwater Dam and estimated Chiwawa run-escapement.
Broodstock collection at Tumwater Dam began 17 May 2005 and concluded on 26 May 2005, and totaled 40 hatchery-origin, coded-wire tagged spring Chinook. Collection was implemented concurrent with trapping, sampling, and tagging associated with the spring Chinook reproductive success study (BPA project No. 2003-039-00). Trapping at the Chiwawa Weir began on 7 June 2005 and concluded on 30 August 2005. Broodstock were collected between 7 June 2005 and 30 August 2005 and totaled 241 spring Chinook, including 96 and 145 natural and hatchery origin Chinook, respectively. Trapping at the Chiwawa Weir generally followed a 4 -up and 3-down schedule, and operated only as needed to meet weekly collection objectives, consistent with the 2005 collection protocol or as adjusted based on in-season run escapement monitoring and ESA Section 10 Permit 1196 requirements.

Both passive (low abundance periods) and active (high abundance periods) trapping were used to collect spring Chinook at Tumwater Dam. During passive trapping, the trap was checked and fish processed several times per day. At the Chiwawa Weir, the trap was operated passively, checked several times per day, and fish processed once daily. All spring Chinook, steelhead, and bull trout that were captured were anesthetized with tricaine methanesulfonate (MS-222) and subject to water-to-water transfers during handling. All fish were allowed to fully recover before release.

The estimated escapement of 2005 spring Chinook past Tumwater Dam totaled 3,827 adult and jack spring Chinook (Murdoch et al. 2006). In 2005, the Wenatchee Basin experienced severe drought conditions that adversely affected pre-spawn survival. Murdoch et al. (2006) estimated pre-spawn survival of natural and hatchery origin spring Chinook migrating past Tumwater Dam at 50.4% and 41.7\% respectively. Based on 2005 spawning ground data (redd and carcass surveys) an estimated 135 natural-origin spring Chinook spawned in the Chiwawa River Basin (Murdoch et al. 2006). Assuming the pre-spawn survival of Chiwawa River natural-origin spring Chinook was similar to the at-large population upstream from Tumwater Dam (50.4\%), combined with the 96 natural-origin Chinook extracted for broodstock, the natural-origin run-escapement to the Chiwawa Basin totaled 364 spring Chinook (i.e., (135/0.504) + $96=364$). The 2005 broodstock collection of 281 spring Chinook (96 natural origin and 185 hatchery origin) represents 26.4% of the estimated 2005 naturalorigin Chiwawa spring Chinook escapement past Tumwater Dam and 7.3% of the run escapement of spring Chinook above Tumwater Dam. The estimated broodstock extraction rate of natural-origin Chiwawa spring Chinook and overall extraction of spring Chinook above Tumwater Dam comply with provisions of ESA Permit 1196.

In addition to spring Chinook collected at the Chiwawa Weir for broodstock, an additional 630 spring Chinook were handled and released as a function of targeting weekly quota collections for
natural and hatchery origin spring Chinook, and as a function of maintaining, at minimum, 33\% natural-origin spring Chinook in the broodstock. Additionally, 283 bull trout were captured and released. To minimize fallback or impingement on the weir, all spring Chinook and bull trout were released unharmed about 10 kilometers upstream from the weir.

Hatchery Rearing and Release

The rearing and release of 2005 Chiwawa spring Chinook was completed without incident. No mortality events occurred that exceeded 10% of the population. Fish were acclimated on Wenatchee River water and to the extent possible on Chiwawa River water (see Section 5.2).

The release of 2005 brood Chiwawa spring Chinook smolts totaled 494,012 spring Chinook, representing 73.5% of program objective and complied with ESA Section 10 Permit 1196 production level of 672,000 smolts.

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery facilities during the period 1 January 2007 through 31 December 2007. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2007 are provided in Appendix E.

Smolt and Emigrant Trapping

Per ESA Section 10 Permit No. 1196, the permit holders are authorized a direct take of 20% of the emigrating spring Chinook population during juvenile emigration monitoring and a lethal take not to exceed 2% of the fish captured (NMFS 2003). Based on the estimated wild spring Chinook population (smolt trap expansion) and hatchery juvenile spring Chinook population estimate (hatchery release data) for the Wenatchee Basin, the reported spring Chinook encounters during 2007 emigration monitoring complied with take provisions in the Section 10 permit, not withstanding sub-yearling spring Chinook encounters at the Chiwawa Weir. Sub-yearling spring Chinook encounters at the Chiwawa Weir reported an encounter rate of 0.2583 , representing 129% of Permit 1196 encounter rate of 0.2000 . Although the Chiwawa trap encountered greater than 20% of the estimated sub-yearling spring Chinook emigrating past the weir, it is likely that only a portion of the sub-yearling spring Chinook from the 2006 brood emigrated past the weir and out of the Chiwawa River; therefore, the reported encounter rate should be considered a maximum and the true encounter rate of the sub-yearling population was likely less than the 0.2583 reported for 2007. At the conclusion of the 2008 juvenile emigration monitoring, an overall encounter rate for 2006 brood spring Chinook will be assessed and reported in the 2008 annual report. Spring Chinook encounter and mortality rates for each trap site (including PIT tag mortalities) are detailed in Table 5.37. Additionally, juvenile fish captured at the trap locations were handled consistent with provisions in ESA Section 10 Permit 1196, Section B.

Table 5.37. Estimated take of Upper Columbia River spring Chinook resulting from juvenile emigration monitoring in the Wenatchee Basin, 2007.

Trap location	Population estimate			Number trapped			Total	Take allowed under Permit
	Wild ${ }^{\text {a }}$	Hatchery	Subyearling	Wild ${ }^{\text {a }}$	Hatchery ${ }^{\text {b }}$	Subyearling		
Chiwawa Trap								
Population	69,064	494,012	62,922	4,433	17,634	16,250	38,317	
Encounter rate	NA	NA	NA	0.0642	0.0357	0.2583	0.0612	0.20
Mortality ${ }^{\text {e }}$	NA	NA	NA	39	0	147	139	
Mortality rate	NA	NA	NA	0.0088	0.0000	0.0090	0.0036	0.02
Upper Wenatchee Trap								
Population	NA	69,102	NA	1,597	750	213	2,560	
Encounter rate	NA	NA	NA	NA	0.0109	NA	NA	0.20
Mortality ${ }^{\text {e }}$	NA	NA	NA	35	0	5	40	
Mortality rate	NA	NA	NA	0.0219	0.0000	0.0235	0.0156	0.02
Lower Wenatchee Trap								
Population	311,699	563,114	NA	1,906	10,730 ${ }^{\text {c }}$	$N A^{\text {d }}$	12,636	
Encounter rate	NA	NA	NA	0.0061	0.0191	NA	0.0144	0.20
Mortality ${ }^{\text {e }}$	NA	NA	NA	10	0	0	10	
Mortality rate	NA	NA	NA	0.0052	0.0000	0.0000	0.0008	0.02
Wenatchee Basin Total								
Population	311,699	563,114	NA	7,936	29,114	16,463	53,513	
Encounter rate	NA	NA	NA	0.0255	0.0517	NA	NA	0.20
Mortality ${ }^{\text {e }}$	NA	NA	NA	84	0	152	236	
Mortality rate	NA	NA	NA	. 00106	0.0000	0.0092	0.0044	0.02

${ }^{\text {a }}$ Smolt population estimate derived from juvenile emigration trap data.
${ }^{\text {b }} 2007$ smolt release data for the Wenatchee basin.
${ }^{\text {c }}$ Derived estimate based on the proportion of ESA-listed hatchery spring Chinook within the total hatchery yearling Chinook released in the Wenatchee basin during 2007.
${ }^{d}$ Based on size, date of capture, and location of capture, subyearling Chinook encountered at the Lower Wenatchee Trap are categorized as summer Chinook.
${ }^{e}$ Combined trapping and PIT tagging mortality.

Spawning Surveys

Spring Chinook spawning ground surveys were conducted in the Wenatchee basin during 2007, as authorized by ESA Section 10 Permit 1196. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

Spring Chinook Reproductive Success Study

ESA Section 10 Permit 1196 specifically provides authorization to capture, anesthetize, biologically sample, PIT tag, and release adult spring Chinook at Tumwater Dam for reproductive success studies and general program monitoring. During 2005, 2006, and 2007, all spring Chinook passing Tumwater Dam were enumerated, anesthetize, biologically sampled, PIT tagged, and released (not including hatchery-origin Chinook retained for broodstock) as a component of the reproductive success study (BPA Project No. 2003-039-00). Please refer the Murdoch et al. (2006) and Murdoch et al. (2007) for complete details of the methods and results of the spring Chinook reproductive success study for 2005 and 2006. Results of the 2007 study year will be available pending completion of the 2007 annual report for this project.

SECTION 6: WENATCHEE SUMMER CHINOOK

6.1 Broodstock Sampling

This section focuses on results from sampling 2005-2006 Wenatchee summer Chinook broodstock, which were collected at Dryden and Tumwater dams. Complete information is not currently available for the 2007 brood (this information will be provided in the 2008 annual report).

Origin of Broodstock

Both the 2005 and 2006 broodstock consisted almost entirely of natural origin (adipose fin present) summer Chinook (Table 6.1). Less than 1% of the fish spawned were hatchery origin fish (hatchery origin was determined by examination of scales and/or CWTs). About 5% of the fish spawned were of unknown origin.

Table 6.1. Numbers of wild and hatchery summer Chinook collected for broodstock, numbers that died before spawning, and numbers of Chinook spawned in the Wenatchee Basin, 1989-2006. Unknown origin fish (i.e., undetermined by scale analysis, no CWT or fin clips, and no additional hatchery marks) were considered naturally produced. Mortality includes fish that died of natural causes typically near the end of spawning and were not needed for the program and surplus fish killed at spawning.

Brood year	Wild summer Chinook					Hatchery summer Chinook					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
1989	346	29	27	290	0	0	0	0	0	0	290
1990	87	6	24	57	0	0	0	0	0	0	57
1991	128	9	14	105	0	0	0	0	0	0	105
1992	341	48	19	274	0	0	0	0	0	0	274
1993	480	28	46	406	0	44	0	0	44	0	450
1994	363	29	1	333	0	55	1	0	54	0	387
1995	382	15	4	363	0	16	0	0	16	0	378
1996	331	34	34	263	0	3	0	0	3	0	266
1997	225	14	6	205	0	15	1	1	13	0	218
1998	378	40	39	299	0	94	4	12	78	0	377
1999	250	7	1	242	0	238	1	1	236	0	478
2000	298	18	5	275	0	194	7	7	180	0	455
2001	311	41	60	210	0	182	8	38	136	0	346
2002	469	28	32	409	0	13	1	2	10	0	419
2003	488	90	61	337	0	8	1	0	7	0	344
2004	494	24	46	424	0	2	0	0	2	0	426
2005	491	29	19	397	46	3	0	0	3	0	400
2006	483	29	21	433	0	5	1	0	4	0	437
Average	353	29	26	296	3	48	1	3	44	0	339

Age/Length Data

Ages of summer Chinook broodstock were determined from analysis of scales and/or CWTs. Broodstock collected from the 2005 return consisted primarily of age-4 natural origin Chinook (54\%). Age-5 natural origin fish made up 35% of the broodstock, while age-3 and 6 fish collectively made up 11% (Table 6.2). Note that according to broodstock protocol, age-3 males are limited to no more than 10% of the total broodstock collection. The three hatchery Chinook included in the broodstock were age-5 fish.

Broodstock collected from the 2006 return consisted primarily of age-5 natural origin Chinook (81%). Age-4 natural origin fish made up 15% of the broodstock, while age-2, 3, and 6 fish collectively made up 3\% (Table 6.2). Of the five hatchery Chinook included in the broodstock, 80% were age-5 and 20\% were age-6 fish.
Table 6.2. Percent of hatchery and wild Wenatchee summer Chinook of different ages (total age) collected from broodstock in the Wenatchee Basin, 1991-2006.

Return Year	Origin	Total age				
		2	3	4	5	6
1991	Wild	0.0	4.6	36.8	57.5	1.1
	Hatchery	0.0	0.0	0.0	0.0	0.0
1992	Wild	0.0	2.6	40.4	50.9	6.1
	Hatchery	0.0	0.0	0.0	0.0	0.0
1993	Wild	0.0	1.5	36.0	60.3	2.2
	Hatchery	0.0	0.0	93.0	7.0	0.0
1994	Wild	0.0	1.0	33.7	64.3	1.0
	Hatchery	0.0	0.0	1.9	98.1	0.0
1995	Wild	0.0	3.3	18.9	76.6	1.2
	Hatchery	0.0	0.0	0.0	0.0	100.0
1996	Wild	0.0	4.6	40.1	53.3	2.0
	Hatchery	0.0	0.0	33.3	66.7	0.0
1997	Wild	0.0	2.3	42.6	53.2	1.9
	Hatchery	0.0	26.7	66.7	6.6	0.0
1998	Wild	0.0	5.5	34.8	58.6	1.1
	Hatchery	0.0	5.4	68.5	19.6	6.5
1999	Wild	0.5	1.9	39.0	56.3	2.4
	Hatchery	0.0	1.3	23.2	72.1	2.4
2000	Wild	2.6	6.3	24.6	66.5	0.0
	Hatchery	0.0	23.6	15.2	42.9	18.3
2001	Wild	0.3	16.4	53.9	27.7	1.7
	Hatchery	0.0	6.3	80.6	10.0	3.1
2002	Wild	1.6	8.4	61.1	28.3	0.6
	Hatchery	0.0	0.0	41.7	58.3	0.0
2003	Wild	0.9	2.8	31.4	64.9	0.0

Return Year	Origin	Total age				
		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
	Hatchery	0.0	12.5	25.0	62.5	0.0
2004	Wild	0.2	3.6	10.1	84.0	2.1
	Hatchery	0.0	0.0	50.0	50.0	0.0
2005	Wild	0.0	4.3	53.5	35.1	7.1
	Hatchery	0.0	0.0	0.0	100.0	0.0
2006	Wild	1.4	0.9	14.9	81.8	1.0
	Hatchery	0.0	0.0	0.0	80.0	20.0
Average	Wild	$\mathbf{0 . 5}$	$\mathbf{4 . 8}$	36.8	56.1	$\mathbf{1 . 9}$
	Hatchery	$\mathbf{0 . 0}$	$\mathbf{8 . 2}$	$\mathbf{4 0 . 2}$	$\mathbf{4 3 . 2}$	$\mathbf{8 . 4}$

Mean lengths of natural origin summer Chinook of a given age differed little between return years 2005 and 2006 (Table 6.3). Mean lengths of age-3 to 6 Chinook differed between years by about 5 $\mathrm{cm}, 2 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm , respectively. What few hatchery fish that were included in broodstock were similar in size to natural origin fish (Table 6.3).
Table 6.3. Mean fork length (cm) at age (total age) of hatchery and wild Wenatchee summer Chinook collected from broodstock in the Wenatchee Basin, 1991-2006; N = sample size and SD = 1 standard deviation.

Return year	Origin	Summer Chinook fork length (cm)														
		Age-2			Age-3			Age-4			Age-5			Age-6		
		Mean	N	SD												
1991	Wild	-	0	-	-	4	-	-	32	-	-	50	-	-	1	-
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-
1992	Wild	-	NA	-												
	Hatchery	-	NA	-												
1993	Wild	-	0	-	68	6	10	84	142	9	98	23 8	6	100	9	6
	Hatchery	-	0	-	-	0	-	79	41	8	101	3	8	-	0	-
1994	Wild	-	0	-	74	3	5	86	101	8	96	19 3	7	106	3	7
	Hatchery	-	0	-	-	0	-	75	1	-	90	53	8	-	0	-
1995	Wild	-	0	-	66	11	8	85	64	7	97	25 5	6	106	4	7
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-	91	16	8
1996	Wild	-	0	-	69	14	5	86	121	6	97	$\begin{gathered} 16 \\ 1 \end{gathered}$	6	104	6	5
	Hatchery	-	0	-	-	0	-	63	1	-	96	2	4	-	0	-
1997	Wild	-	0	-	54	5	10	85	92	7	98	$\begin{gathered} 11 \\ 5 \end{gathered}$	7	97	4	9
	Hatchery	-	0	-	46	4	2	74	10	4	98	1	-	-	0	-
1998	Wild	-	0	-	66	19	9	85	120	7	99	20 1	7	106	4	7

Return year	Origin	Summer Chinook fork length (cm)														
		Age-2			Age-3			Age-4			Age-5			Age-6		
		Mean	N	SD												
	Hatchery	-	0	-	53	5	2	77	63	8	95	19	8	98	6	8
1999	Wild	42	1	-	65	4	6	86	83	6	97	12 0	7	103	5	8
	Hatchery	-	0	-	52	3	6	79	55	7	90	17 1	6	100	8	6
2000	Wild	43	7	4	60	17	7	84	67	5	98	$\begin{gathered} 18 \\ 1 \end{gathered}$	6	-	0	-
	Hatchery	-	0	-	53	47	7	76	29	8	94	83	7	102	35	9
2001	Wild	48	1	-	66	48	7	88	155	7	97	80	6	102	5	3
	Hatchery	-	0	-	51	10	3	75	132	8	91	17	8	100	5	8
2002	Wild	48	7	4	64	37	8	89	270	7	100	12 5	7	99	3	13
	Hatchery	-	0	-	-	0	-	78	5	8	95	7	5	-	0	-
2003	Wild	41	4	2	58	13	4	87	144	8	100	29 7	7	-	0	-
	Hatchery	-	0	-	40	1	-	78	2	4	101	5	8	-	0	-
2004	Wild	51	1	-	69	17	5	84	47	8	99	39 2	6	109	10	7
	Hatchery	-	0	-	-	0	-	84	1	-	108	1	-			
2005	Wild	-	0	-	68	20	7	86	247	8	95	$\begin{gathered} 16 \\ 2 \end{gathered}$	6	101	33	6
	Hatchery	-	0	-	-	0	-	-	0	-	90	3	9	-	0	-
2006	Wild	44	6	6	63	4	11	88	66	7	99	36 3	6	96	5	7
	Hatchery	-	0	-	-	0	-	-	0	-	99	4	7	100	1	-

Sex Ratios

Male summer Chinook in the 2005 broodstock made up about 59% of the adults collected, resulting in an overall male to female ratio of 1.45:1.00 (Table 6.4.). In 2006, males made up about 49% of the adults collected, resulting in an overall male to female ratio of 0.95:1.00 (Table 6.4). The ratio in 2006 was similar to the $1: 1$ ratio goal in the broodstock protocol.
Table 6.4. Numbers of male and female wild and hatchery summer Chinook collected for broodstock in the Wenatchee Basin, 1989-2006. Ratios of males to females are also provided.

Return year	Number of wild summer Chinook			Number of hatchery summer Chinook			Total M/F ratio
	Males (M)	Females (F)	\mathbf{M} / \mathbf{F}	Males (M)	Females (F)	M/F	
1989	166	180	$0.92: 1.00$	0	0	$0.92: 1.00$	
1990	45	39	$1.15: 1.00$	0	0	-	$1.15: 1.00$
1991	60	68	$0.88: 1.00$	0	0	-	$0.88: 1.00$
1992	154	187	$0.82: 1.00$	0	0	-	$0.82: 1.00$
1993	208	228	$0.91: 1.00$	35	9	$3.89: 1.00$	$1.03: 1.00$

Return year	Number of wild summer Chinook			Number of hatchery summer Chinook		Total M/F ratio	
	Males (M)	Females (F)	\mathbf{M} / \mathbf{F}	Males (M)	Females (F)		$0.77: 1.00$
1994	158	179	$0.88: 1.00$	24	31	$0.87: 1.00$	
1995	169	213	$0.79: 1.00$	1	15	$0.07: 1.00$	$0.75: 1.00$
1996	150	181	$0.83: 1.00$	2	1	$2.00: 1.00$	$0.84: 1.00$
1997	104	121	$0.86: 1.00$	15	0	-	$0.98: 1.00$
1998	211	167	$1.26: 1.00$	64	30	$2.13: 1.00$	$1.40: 1.00$
1999	130	120	$1.08: 1.00$	108	130	$0.83: 1.00$	$0.95: 1.00$
2000	153	145	$1.06: 1.00$	112	82	$1.37: 1.00$	$1.17: 1.00$
2001	187	124	$1.51: 1.00$	132	50	$2.64: 1.00$	$1.83: 1.00$
2002	266	203	$1.31: 1.00$	5	8	$0.63: 1.00$	$1.28: 1.00$
2003	270	218	$1.24: 1.00$	5	3	$1.67: 1.00$	$1.24: 1.00$
2004	230	264	$0.87: 1.00$	1	1	$1.00: 1.00$	$0.87: 1.00$
2005	291	200	$1.46: 1.00$	2	1	$2.00: 1.00$	$1.45: 1.00$
2006	237	246	$0.96: 1.00$	1	4	$0.25: 1.00$	$0.95: 1.00$
Total	3,189	3,083	$\mathbf{1 . 0 3 : 1 . 0 0}$	507	365	$\mathbf{1 . 3 9 : 1 . 0 0}$	$\mathbf{1} .07: 1.00$

Fecundity

Fecundities for the 2005 and 2006 returns of summer Chinook averaged 5,050 and 5,133 eggs per female, respectively (Table 6.5). These values are close to the 18-year average of 5,189 eggs per female. Mean observed fecundities for the 2005 and 2006 returns were above the expected fecundity of 5,000 eggs per female assumed in the broodstock protocol.
Table 6.5. Mean fecundity of wild, hatchery, and all female summer Chinook collected for broodstock in the Wenatchee Basin, 1989-2006; NA = not available.

Return year	Mean fecundity		
	Wild	Hatchery	Total
1989^{*}	NA	NA	5,280
1990^{*}	NA	NA	5,436
1991^{*}	NA	NA	4,333
1992^{*}	NA	NA	5,307
193^{*}	NA	NA	5,177
1994^{*}	NA	NA	5,899
1995^{*}	NA	NA	4,402
1996^{*}	NA	NA	4,941
1997	5,385	5,272	5,390
1998	5,393	4,825	5,297
1999	5,036	4,942	4,987
2000	5,464	5,403	5,441
2001	5,280	4,647	5,097

2002	5,502	5,027	5,484
2003	5,357	5,696	5,361
2004	5,372	6,681	5,377
2005	5,045	6,391	5,053
2006	5,126	5,633	5,133
Average	5,296	5,452	5,189

* Individual fecundities were not tracked with females until 1997.

6.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of $1,066,667$ eggs are required to meet the program release goal of 864,000 smolts. Between 1989 and 2006, the egg take goal was reached in five of those years (Table 6.6).
Table 6.6. Numbers of eggs taken from Wenatchee summer Chinook broodstock, 1989-2006.

Return year	Number of eggs taken
1989	829,012
1990	163,109
1991	247,000
1992	827,911
1993	$1,133,852$
1994	999,364
1995	949,531
1996	756,000
1997	554,617
1998	854,997
1999	$1,182,130$
2000	$1,113,159$
2001	733,882
2002	$1,049,255$
2003	901,095
2004	$1,311,051$
2005	883,669
2006	$1,190,757$
Average	$\mathbf{8 7 1 , 1 3 3}$

Number of acclimation days

The 2006 brood Wenatchee summer Chinook were transferred to Dryden Pond on 15 March 2007. These fish received 46 days of acclimation on Wenatchee River water before being released on 30 April 2007 (Table 6.7). In recent years, a small proportion of the brood has been reared separately (high ELISA) and has received no acclimated period (i.e., these fish were released directly into the Wenatchee River). These data are not shown in Table 6.7. No such releases occurred in 2007.

Table 6.7. Number of days Wenatchee summer Chinook were acclimated at Dryden Pond, brood years 19892005. Numbers in parenthesis represents the number of days fish reared at Chiwawa Ponds.

Brood year	Release year	Transfer date	Release date	Number of days
1989	1991	2-Mar	7-May	66
1990	1992	19-Feb	2-May	73
1991	1993	10-Mar	8-May	59
1992	1994	1-Mar	6-May	66
1993	1995	3-Mar	1-May	59
		2-Oct	6-May	217 (154)
		5-Mar	6-May	62
1995	1997	16-Oct	8-May	205 (139)
19		27-Feb	8-May	70
		6-Oct	28-Apr	204 (142)
		25-Feb	28-Apr	62
1997	1999	23-Feb	27-Apr	63
1998	2000	5-Mar	1-May	57
1999	2001	8-Mar	23-Apr	46
2000	2002	1-Mar	6-May	66
2001	2003	19-Feb	23-Apr	63
2002	2004	5-Mar	23-Apr	49
2003	2005	15-Mar	25-Apr	41
2004	2006	25-Mar	27-Apr	33
2005	2007	15-Mar	30-Apr	46
Average				80

Release Information

Numbers released

The 2005 Wenatchee summer Chinook program achieved 74.6% of the 864,000 target goal with about 644,182 fish being released (Table 6.8). The underage was related to lower than expected fertilization rates.

Table 6.8. Numbers of Wenatchee summer Chinook smolts released from the hatchery, 1989-2005. The release target for Wenatchee summer Chinook is 864,000 smolts.

Brood year	Release year	Number of smolts
1989	1991	720,000
1990	1992	124,440
1991	1993	191,179
1992	1994	627,331
1993	1995	900,429
1994	1996	797,350
1995	1997	687,439
1996	1998	600,127
1997	1999	438,223
1998	2000	649,612
1999	2001	$1,005,554$
2000	2002	929,496
2001	2003	604,668
2002	2004	835,645
2003	2005	653,764
2004	2006	892,926
2005	2007	644,182
		664,845

Numbers tagged

The 2005 brood Wenatchee summer Chinook were 96.0% CWT and adipose fin-clipped, but were not PIT tagged.

Fish size and condition at release

Summer Chinook from the 2005 brood were released as yearling smolts on 30 April 2007. Size at release of the acclimated population was 86.9% and 89.4% of the target fork length and weight goals, respectively. This brood year exceeded the target CV for length by 81.1\% (Table 6.9). Since the program began, Wenatchee summer Chinook have not met the target length and CV values. The target weight (fish/pound or FPP) of juvenile fish has been met occasionally.
Table 6.9. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Wenatchee summer Chinook smolts released from the hatchery, brood years 1989-2005; NA = not available. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (cm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1989	1991	158	13.7	45.4	10
1990	1992	155	14.2	45.4	10
1991	1993	156	15.5	42.3	11

Brood year	Release year	Fork length (cm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1992	1994	152	13.1	40.1	10
1993	1995	149	NA	34.9	13
1994	1996	138	NA	21.7	21
1995	1997	149	12.2	42.5	11
1996	1998	151	16.6	43.2	10
1997	1999	154	10.1	42.8	11
1998	2000	166	9.7	53.1	9
1999	2001	137	16.1	29.0	16
2000	2002	148	14.6	37.1	12
2001	2003	148	NA	37.3	12
2002	2004	146	15.1	36.5	14
2003	2005	147	13.2	35.4	12
2004	2006	147	10.7	40.6	13
2005	2007	153	16.3	$\mathbf{4 5 . 4}$	11
	$\mathbf{1 7 6}$	9.0		10	

Survival Estimates

Overall survival of the 2005 brood Wenatchee summer Chinook from green (unfertilized) egg to release was considerably below the standard set for the program primarily because of poor green egg-to-eye survival (Table 6.10).
Table 6.10. Hatchery life-stage survival rates (\%) for Wenatchee summer Chinook, brood years 1989-2005. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0} \mathbf{d}$ after ponding	$\mathbf{1 0 0} \mathbf{d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	90.0	93.4	90.9	97.0	99.7	99.3	98.5	99.4	86.9
1990	89.7	95.6	80.9	96.6	99.6	99.2	97.7	98.8	76.3
1991	88.2	98.3	86.9	96.1	99.3	98.5	94.9	98.1	79.2
1992	84.3	92.2	79.8	97.8	99.9	99.9	97.1	98.1	75.7
1993	92.4	95.9	84.2	97.5	99.6	99.3	96.7	98.8	79.4
1994	90.7	95.3	83.7	100	99.2	97.0	95.3	98.4	79.8
1995	94.7	98.2	86.0	100	96.7	96.4	74.9	90.8	64.4
1996	84.6	96.1	84.1	100	97.9	97.7	94.4	97.7	79.4
1997	89.3	98.3	82.6	97.3	97.1	96.9	98.3	98.2	79.0
1998	85.3	94.6	80.9	98.3	99.4	98.6	95.6	99.8	76.0
1999	98.4	98.3	90.4	97.9	98.1	97.9	96.2	99.4	85.1
2000	93.0	96.6	88.3	98.0	99.6	99.3	96.5	98.9	83.5

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0 ~ d}$ after ponding	$\mathbf{1 0 0 ~ d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	87.4	91.5		97.7	99.8	99.6	93.1	93.3	82.4
2002	93.8	94.1	85.1	99.8	98.1	97.6	93.7	96.5	79.6
2003	77.4	85.1	80.5	98.1	99.6	99.1	91.9	93.5	72.6
2004	92.8	97.8	85.7	87.8	99.9	99.6	86.6	92.1	65.1
2005	97.3	89.6	83.5	98.0	99.7	99.4	89.1	99.5	72.9
Standard	$\mathbf{9 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{9 2 . 0}$	$\mathbf{9 8 . 0}$	$\mathbf{9 7 . 0}$	$\mathbf{9 3 . 0}$	$\mathbf{9 0 . 0}$	$\mathbf{9 5 . 0}$	$\mathbf{8 1 . 0}$

6.3 Disease Monitoring

Rearing of the 2005 brood Wenatchee summer Chinook was similar to previous years with fish being held on well water before being transferred to Dryden Pond for final acclimation in March 2007. Fish began being transferred to Dryden pond 15 March and ended 23 March. No significant disease issues were encountered during rearing or acclimation.

6.4 Natural Juvenile Productivity

During 2007, juvenile summer Chinook were sampled at the Lower Wenatchee Trap located at the West Monitor Bridge.

Emigrant Estimates

The Lower Wenatchee Trap operated nightly between 1 February and 5 August 2007. During that time period, trap 1 and trap 2 were inoperable for 14 and 68 days, respectively, because of high river flows, debris, snow/ice, or mechanical failure. During the seven-month sampling period, a total of 86,142 wild subyearling Chinook were captured at the Lower Wenatchee Trap. Based on capture efficiencies estimated from the flow model, the total number of wild subyearling Chinook that emigrated past the Lower Wenatchee Trap was 9,590,969 ($\pm 1,859,544$). Most of these fish emigrated during May and June (Figure 6.1). Monthly captures and mortalities of all fish collected at the Lower Wenatchee Trap are reported in Appendix B.

Figure 6.1. Numbers of wild subyearling Chinook captured at the Lower Wenatchee Trap during February through August, 2007.

6.5 Spawning Surveys

Surveys for Wenatchee summer Chinook redds were conducted from late September to midNovember, 2007, in the Wenatchee River and Icicle Creek. Both peak counts and total counts (based on a peak count expansion factor; Murdoch and Peven 2005) were conducted in the river (see Appendix G for more details).

Redd Counts

A peak count of 1,870 summer Chinook redds was estimated in 2007 based on ground surveys conducted in the Wenatchee River and Icicle Creek (Table 6.11). A total redd count of 1,970 redds was estimated in 2007 based on expanded peak counts in the Wenatchee River and Icicle Creek (Table 6.11). The peak count in 2007 was the lowest count since the late 1990s.
Table 6.11. Peak and total numbers of redds counted in the Wenatchee River, 1989-2006; NA = not available.

Survey year	Peak redd count	Total redd count
1989	3,331	NA
1990	2,479	NA
1991	2,180	NA
1992	2,328	NA
1993	2,334	NA
1994	2,426	NA
1995	1,872	NA
1996	1,435	NA
1997	1,388	NA

Survey year	Peak redd count	Total redd count
1998	1,660	NA
1999	2,188	NA
2000	2,022	NA
2001	2,857	NA
2002	5,419	NA
2003	4,328	NA
2004	3,764	5,804
2005	3,327	NA
2006^{*}	7,233	8,896
$2007 *$	1,870	1,970
Average	2,865	5,557

* Peak and total counts include 68 and 13 redds counted in Icicle Creek in 2006 and 2007, respectively.

Redd Distribution

Summer Chinook redds were not evenly distributed among reaches within the Wenatchee Basin in 2007 (Table 6.12; Figure 6.2). Most of the spawning occurred upstream from the Leavenworth Bridge in Reaches 6, 9, and 10. The highest density of redds occurred in Reach 6 near the confluence of the Icicle River.

Table 6.12. Peak and total numbers of summer Chinook redds counted in different reaches in the Wenatchee Basin during September through mid-November, 2007. Reach codes are described in Table 2.10.

Survey reach	Peak redd count	Total redd count
Wenatchee 1	7	6
Wenatchee 2	61	49
Wenatchee 3	172	138
Wenatchee 4	34	39
Wenatchee 5	45	52
Wenatchee 6	873	933
Wenatchee 7	107	144
Wenatchee 8	61	82
Wenatchee 9	280	306
Wenatchee 10	217	208
Icicle Creek	13	13
Totals	$\mathbf{1 , 8 7 0}$	$\mathbf{1 , 9 7 0}$

Figure 6.2. Percent of the total number of summer Chinook redds counted in different reaches in the Wenatchee Basin during September through mid-November, 2007. Reach codes are described in Table 2.10.

Spawn Timing

In 2007, spawning in the Wenatchee River began the last week of September, peaked in the middle of October, and ended in early November (Figure 6.3).

Figure 6.3. Number of summer Chinook redds counted during different weeks in the Wenatchee River, September through mid-November 2007.

Spawning Escapement

Spawning escapement for Wenatchee summer Chinook was calculated as the total (or peak) number of redds times the fish per redd ratio estimated from broodstock and fish sampled at adult trapping sites. The estimated fish per redd ratio for summer Chinook in 2007 was 2.33 . Multiplying this ratio by the number of redds counted in the Wenatchee Basin resulted in a total spawning escapement of 4,590 summer Chinook (Table 6.13). This was the fourth lowest escapement since 1989.
Table 6.13. Spawning escapements for summer Chinook in the Wenatchee Basin, return years 19892007.

Return year	Fish/Redd	Redds	Total spawning escapement
1989	3.40	3,331	11,325
1990	3.50	2,479	8,677
1991	3.70	2,180	8,066
1992	4.00	2,328	9,312
1993	3.20	2,334	7,469
1994	3.30	2,426	8,006
1995	3.30	1,872	6,178
1996	3.40	1,435	4,879
1997	3.40	1,388	4,719
1998	2.40	1,660	3,984
1999	2.00	2,188	4,376
2000	2.17	2,022	4,388
2001	3.20	2,857	9,142
2002	2.30	5,419	12,464
2003	2.24	4,328	9,695
2004	2.15	3,764	8,093
2005	2.46	3,327	8,184
2006	2.00	8,896	17,792
2007	2.33	1,970	4,590
Average	2.87	2,958	7,965

6.6 Carcass Surveys

Surveys for Wenatchee summer Chinook carcasses were conducted during late September to midNovember, 2007, in the Wenatchee River and Icicle Creek.

Number sampled

A total of 844 summer Chinook carcasses were sampled during September through mid-November in the Wenatchee Basin in 2007 (Table 6.14).

Table 6.14. Numbers of summer Chinook carcasses sampled within each survey reach in the Wenatchee Basin, 1993-2007. Reach codes are described in Table 2.10.

Survey year	Number of summer Chinook carcasses											
	W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	W-10	Icicle	Total
1993	61	138	627	12	77	141	202	38	0	0	0	1,296
1994	0	6	22	1	17	48	18	47	125	1	0	285
1995	0	10	14	0	0	111	49	36	19	0	0	239
1996	0	5	67	39	9	190	26	30	41	0	0	407
1997	1	44	118	4	28	288	7	71	67	13	0	641
1998	6	74	141	3	0	248	28	346	324	59	0	1,229
1999	0	160	97	15	31	857	61	133	171	72	0	1,597
2000	7	109	165	7	79	651	75	111	159	193	0	1,556
2001	0	45	127	26	0	323	33	110	87	81	0	832
2002	0	238	170	0	196	809	0	306	520	155	6	2,400
2003	6	323	164	61	132	673	56	237	482	47	36	2,217
2004	8	141	181	157	158	975	87	312	428	366	5	2,818
2005	8	85	106	39	46	707	70	140	353	257	7	1,818
2006	22	140	160	64	112	953	435	343	703	658	18	3,608
2007	3	15	49	9	26	475	38	39	96	91	3	844
Mean	8	102	147	29	61	497	79	153	238	133	5	1,452

Carcass Distribution and Origin

Summer Chinook carcasses were not evenly distributed among reaches within survey streams in the Wenatchee Basin in 2007 (Table 6.14; Figure 6.4). Most of the carcasses in the Wenatchee Basin were found upstream from the Leavenworth Bridge. The highest percentage of carcasses (56\%) was sampled in Reach 6 near the confluence of the Icicle River.

Figure 6.4. Percent of summer Chinook carcasses sampled within different reaches in the Wenatchee Basin during September through mid-November, 2007. Reach codes are described in Table 2.10.

Numbers of wild and hatchery origin summer Chinook carcasses sampled in 2007 will be available after analysis of CWTs and scales. Based on the available data (1993-2006), most fish, regardless of origin, were found in Reach 6 (Leavenworth Bridge to Icicle Road Bridge) (Table 6.15). However, a larger percentage of hatchery fish were found in that reach than were wild fish (Figure 6.5). In contrast, a larger percentage of wild fish were found in reaches upstream from the Icicle Road Bridge.

Table 6.15. Numbers of wild and hatchery summer Chinook carcasses sampled within different reaches in the Wenatchee Basin, 1993-2006.

Survey year	Origin	Survey reach											Total
		W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	W-10	Icicle	
1993	Wild	52	133	591	11	77	124	200	37	0	0	0	1,225
	Hatchery	9	5	36	1	0	17	2	1	0	0	0	71
1994	Wild	0	2	15	1	15	34	18	47	124	1	0	257
	Hatchery	0	4	7	0	2	14	0	0	1	0	0	28
1995	Wild	0	4	11	0	0	99	49	34	19	0	0	216
	Hatchery	0	6	3	0	0	12	0	2	0	0	0	23
1996	Wild	0	5	65	37	8	181	26	30	41	0	0	393
	Hatchery	0	0	2	2	1	9	0	0	0	0	0	14
1997	Wild	1	35	104	4	21	242	7	71	66	13	0	564
	Hatchery	0	9	14	0	7	46	0	0	1	0	0	77
1998	Wild	6	55	106	2	0	169	25	325	297	56	0	1,041
	Hatchery	0	19	35	1	0	79	3	21	27	3	0	188
1999	Wild	0	79	55	7	14	525	51	124	155	68	0	1,078

Survey year	Origin	Survey reach											Total
		W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	W-10	Icicle	
	Hatchery	0	81	42	8	17	332	10	9	16	4	0	519
2000	Wild	4	68	102	6	51	443	68	100	154	186	0	1,182
	Hatchery	3	41	63	1	28	208	7	11	5	7	0	374
2001	Wild	0	33	88	4	0	230	29	108	83	78	0	653
	Hatchery	0	12	39	22	0	93	4	2	4	3	0	179
2002	Wild	0	140	110	0	94	440	0	295	514	150	4	1,747
	Hatchery	0	98	60	0	102	369	0	11	6	5	2	653
2003	Wild	5	218	118	21	94	425	52	223	445	46	11	1,658
	Hatchery	1	105	46	40	38	248	4	14	37	1	25	559
2004	Wild	7	108	151	102	97	640	74	282	416	357	0	2,234
	Hatchery	1	33	30	55	61	335	13	30	12	9	5	584
2005	Wild	4	49	78	24	26	397	66	125	336	243	0	1,348
	Hatchery	4	36	28	15	20	310	4	15	17	14	7	470
2006	Wild	16	108	133	46	80	753	426	336	700	654	5	3,257
	Hatchery	6	32	27	18	32	200	9	7	3	4	13	351
Average	Wild	7	74	123	19	41	336	78	153	239	132	1	1,204
	Hatchery	2	34	31	12	22	162	4	9	9	4	4	292

Wenatchee Summer Chinook

Figure 6.5. Distribution of wild and hatchery produced carcasses in different reaches in the Wenatchee Basin, 1993-2006. Reach codes are described in Table 2.10.

Sampling Rate

If escapement is based on total numbers of redds, then about 18% of the total spawning escapement of summer Chinook in the Wenatchee Basin was sampled in 2007 (Table 6.16). Sampling rates among survey reaches varied from 9 to 27%.
Table 6.16. Number of redds and carcasses, total spawning escapement, and sampling rates for summer Chinook in the Wenatchee Basin, 2007.

Sampling reach	Total number of redds	Total number of carcasses	Total spawning escapement	Sampling rate
Wenatchee 1	6	3	14	0.21
Wenatchee 2	49	15	114	0.13
Wenatchee 3	138	49	322	0.15
Wenatchee 4	39	9	91	0.10
Wenatchee 5	52	26	121	0.21
Wenatchee 6	933	475	2,174	0.22
Wenatchee 7	144	38	191	0.11
Wenatchee 8	82	39	713	0.20
Wenatchee 9	306	91	485	0.13
Wenatchee 10	208	3	30	0.19
Icicle Creek	13	$\mathbf{8 4 4}$	$\mathbf{4 , 5 9 0}$	0.10
Total	$\mathbf{1 , 9 7 0}$			$\boldsymbol{0 . 1 8}$

Length Data

Mean lengths ($\mathrm{POH}, \mathrm{cm}$) of male and female summer Chinook carcasses sampled during surveys in the Wenatchee Basin in 2007 are provided in Table 6.17. The average size of males and females sampled in the Wenatchee basin were 69 cm and 73 cm , respectively.
Table 6.17. Mean lengths (postorbital-to-hypural length; cm) and standard deviations (in parentheses) of male and female summer Chinook carcasses sampled in different streams/watersheds in the Wenatchee Basin, 2007.

Stream/watershed	Mean length (cm)	
	Male	Female
Wenatchee 1	$74(4)$	-
Wenatchee 2	$74(7)$	$76(5)$
Wenatchee 3	$75(10)$	$75(6)$
Wenatchee 4	$64(15)$	$73(5)$
Wenatchee 5	$72(11)$	$71(6)$
Wenatchee 6	$68(11)$	$72(6)$
Wenatchee 7	$72(11)$	$75(5)$
Wenatchee 8	$65(15)$	$77(5)$
Wenatchee 9	$73(11)$	$75(4)$

Stream/watershed	Mean length (cm)	
	Male	Female
Wenatchee 10	$69(11)$	$75(4)$
Icicle Creek	-	-
Total	$69(11)$	73 (5)

6.7 Life History Monitoring

Life history characteristics of Wenatchee summer Chinook were assessed by examining carcasses on spawning grounds and fish collected or examined at broodstock collection sites, and by reviewing tagging data and fisheries statistics.

Age at Maturity

Most of the wild and hatchery summer Chinook sampled during the period 1993-2006 in the Wenatchee Basin were age-5 fish (total age) (Table 6.18; Figure 6.6). A higher percentage of age-4 wild Chinook returned to the basin than did age-4 hatchery Chinook. In contrast, a higher proportion of age-6 hatchery fish returned than did age-6 wild fish. Thus, a higher percentage of hatchery fish returned at an older age than did wild fish.
Table 6.18. Proportions of wild and hatchery summer Chinook of different ages (total age) sampled on spawning grounds in the Wenatchee Basin, 1993-2006.

Sample year	Origin	Total age						
		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Sample size
1993	Wild	0.00	0.03	0.42	0.55	0.00	0.00	1,224
	Hatchery	0.00	0.03	0.91	0.06	0.00	0.00	69
1994	Wild	0.01	0.03	0.44	0.52	0.00	0.00	257
	Hatchery	0.00	0.00	0.12	0.88	0.00	0.00	25
1995	Wild	0.00	0.03	0.19	0.74	0.05	0.00	216
	Hatchery	0.00	0.00	0.00	0.05	0.95	0.00	22
1996	Wild	0.00	0.02	0.36	0.60	0.02	0.00	513
	Hatchery	0.00	0.00	0.45	0.18	0.27	0.09	22
1997	Wild	0.00	0.01	0.38	0.57	0.03	0.00	562
	Hatchery	0.00	0.05	0.20	0.66	0.08	0.00	74
1998	Wild	0.00	0.03	0.34	0.62	0.01	0.00	1,041
	Hatchery	0.00	0.03	0.51	0.40	0.06	0.00	187
1999	Wild	0.00	0.01	0.43	0.55	0.01	0.00	1,087
	Hatchery	0.00	0.01	0.16	0.81	0.03	0.00	512
2000	Wild	0.01	0.04	0.27	0.68	0.00	0.00	1,182
	Hatchery	0.00	0.07	0.12	0.65	0.15	0.00	342
2001	Wild	0.00	0.08	0.59	0.32	0.01	0.00	653
	Hatchery	0.00	0.05	0.76	0.15	0.04	0.00	182

Sample year	Origin	Total age						
		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Sample size
2002	Wild	0.00	0.03	0.66	0.31	0.00	0.00	1,747
	Hatchery	0.00	0.01	0.19	0.78	0.02	0.00	643
2003	Wild	0.00	0.02	0.34	0.64	0.00	0.00	1,649
	Hatchery	0.00	0.06	0.11	0.75	0.09	0.00	522
2004	Wild	0.00	0.06	0.13	0.80	0.01	0.00	2,234
	Hatchery	0.00	0.09	0.57	0.25	0.09	0.00	561
2005	Wild	0.00	0.04	0.60	0.32	0.04	0.00	1,186
	Hatchery	0.00	0.02	0.10	0.86	0.02	0.00	451
2006	Wild	0.00	0.01	0.15	0.84	0.01	0.00	2,972
	Hatchery	0.00	0.02	0.17	0.26	0.55	0.00	299
Average	Wild	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 3 8}$	$\mathbf{0 . 5 8}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0}$	$\mathbf{1 , 1 8 0}$
	Hatchery	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 3 1}$	$\mathbf{0 . 4 8}$	$\mathbf{0 . 1 7}$	$\mathbf{0 . 0 0}$	$\mathbf{2 7 9}$

Wenatchee Summer Chinook

Figure 6.6. Proportions of wild and hatchery summer Chinook of different total ages sampled at broodstock collection sites and on spawning grounds in the Wenatchee Basin for the combined years 1993-2006.

Size at Maturity

On average, hatchery summer Chinook were about 5 cm smaller than wild summer Chinook sampled in the Wenatchee Basin (Table 6.19). This is interesting given that a slightly higher percentage of hatchery fish returned as age-5 and 6 fish than did wild fish. Future analyses will compare sizes of hatchery and wild fish of the same age groups and gender.

Table 6.19. Mean lengths ($\mathrm{POH} ; \mathrm{cm}$) and variability statistics for wild and hatchery summer Chinook sampled in the Wenatchee Basin, 1993-2006; SD = 1 standard deviation.

Sample year	Origin	Sample size	Summer Chinook length (POH; cm)			
			Mean	SD	Minimum	Maximum
1993	Wild	1,344	73	8	33	94
	Hatchery	68	61	9	37	83
1994	Wild	276	73	8	31	89
	Hatchery	25	70	8	54	85
1995	Wild	225	75	7	48	87
	Hatchery	23	74	7	57	85
1996	Wild	210	74	7	43	92
	Hatchery	9	66	12	52	84
1997	Wild	615	74	8	29	99
	Hatchery	78	69	10	29	83
1998	Wild	1,179	73	8	28	97
	Hatchery	188	67	10	37	87
1999	Wild	1,218	72	8	29	95
	Hatchery	518	71	8	26	94
2000	Wild	1,302	71	10	24	94
	Hatchery	369	69	11	33	91
2001	Wild	730	70	9	30	93
	Hatchery	179	63	10	28	86
2002	Wild	1,914	72	8	39	94
	Hatchery	653	71	8	34	95
2003	Wild	1,950	74	9	24	105
	Hatchery	546	69	10	26	97
2004	Wild	2,571	72	9	32	98
	Hatchery	580	59	11	25	91
2005	Wild	1,352	69	7	41	92
	Hatchery	469	69	8	39	91
2006	Wild	3,249	74	6	29	99
	Hatchery	350	71	9	35	90
Pooled	Wild	18,135	73	8	24	105
	Hatchery	4,055	68	10	25	97

Contribution to Fisheries

Most of the harvest on Wenatchee summer Chinook occurred in the ocean (Table 6.20). Ocean harvest has made up 50% to 100% of all Wenatchee summer Chinook harvested. Total harvest on early brood years (1990-1993) was much lower than for later brood years (1997-2000).

Table 6.20. Estimated number and percent (in parentheses) of Wenatchee summer Chinook captured in different fisheries.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational (sport)	
1989	1,461 (50)	1,292 (44)	140 (5)	20 (1)	2,913
1990	30 (100)	0 (0)	0 (0)	0 (0)	30
1991	30 (63)	0 (0)	0 (0)	18 (38)	48
1992	144 (79)	39 (21)	0 (0)	0 (0)	183
1993	44 (64)	25 (36)	0 (0)	0 (0)	69
1994	626 (91)	57 (8)	7 (1)	0 (0)	690
1995	507 (97)	3 (1)	11 (2)	0 (0)	521
1996	179 (95)	0 (0)	3 (2)	6 (3)	188
1997	2,913 (94)	37 (1)	31 (1)	106 (3)	3,087
1998	4,947 (93)	5 (0)	96 (2)	280 (5)	5,340
1999	1,606 (86)	5 (0)	158 (8)	100 (5)	1,869
2000	7,869 (79)	10 (0)	976 (10)	1,117 (11)	9,972
2001	993 (71)	1 (0)	160 (11)	251 (18)	1,405

Straying

Stray rates were determined by examining CWTs recovered on spawning grounds within and outside the Wenatchee Basin. Targets for strays based on return year (recovery year) and brood year should be less than 5%.

On average, rates of Wenatchee summer Chinook straying into basins outside the Wenatchee have been low (Table 6.21). Although Wenatchee summer Chinook have strayed into other spawning areas, straying has generally been less than 5\%. In three different years, Wenatchee strays have made up more than 5% of the spawning escapement in the Methow Basin and the Chelan tailrace. They made up more than 5% of the spawning escapement in the Entiat Basin in one year.
Table 6.21. Number and percent of spawning escapements within other non-target basins that consisted of Wenatchee summer Chinook, return years 1994-2004. For example, for return year 2000, 3\% of the summer Chinook escapement in the Methow Basin consisted of Wenatchee summer Chinook. Percent strays should be less than 5\%.

Return year	Methow		Okanogan		Chelan		Entiat		Hanford Reach	
	Number	\%								
1994	0	0.0	75	1.9	-	-	-	-	-	-
1995	0	0.0	0	0.0	-	-	-	-	-	-
1996	0	0.0	0	0.0	-	-	-	-	-	-
1997	0	0.0	0	0.0	-	-	-	-	-	-
1998	35	5.2	0	0.0	0	0.0	0	0.0	0	0.0
1999	23	2.3	3	0.1	0	0.0	0	0.0	23	0.1

Return year	Methow		Okanogan		Chelan		Entiat		Hanford Reach	
	Number	\%								
2000	36	3.0	13	0.4	0	0.0	0	0.0	0	0.0
2001	163	5.9	57	0.5	30	3.0	0	0.0	0	0.0
2002	153	3.3	53	0.4	40	6.9	74	14.8	0	0.0
2003	80	2.0	24	0.7	44	10.5	0	0.0	26	0.0
2004	113	5.1	42	0.6	30	7.1	0	0.0	0	0.0
Total	603	3.0	267	0.5	144	4.4	74	3.2	49	0.0

On average, about 9.8% of the returns have strayed into non-target spawning areas, exceeding the target of 5\% (Table 6.22). Depending on brood year, percent strays into non-target spawning areas have ranged from 0-23.7\%. In addition, on average, about 7\% have strayed into non-target hatchery programs.
Table 6.22. Number and percent of Wenatchee summer Chinook that homed to target spawning areas and the target hatchery program, and number and percent that strayed to non-target spawning areas and non-target hatchery programs, by brood years 1989-2001. Percent stays should be less than 5\%.

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1989	1,352	62.9	60	2.8	75	3.5	662	30.8
1990	74	84.1	1	1.1	0	0.0	13	14.8
1991	14	60.9	1	4.3	0	0.0	8	34.8
1992	375	84.8	7	1.6	0	0.0	60	13.6
1993	67	72.8	9	9.8	4	4.3	12	13.0
1994	890	71.8	205	16.5	56	4.5	88	7.1
1995	748	74.8	139	13.9	42	4.2	71	7.1
1996	261	70.4	42	11.3	53	14.3	15	4.0
1997	3,609	85.8	171	4.1	389	9.2	38	0.9
1998	1,790	82.0	11	0.5	317	14.5	64	2.9
1999	502	81.0	0	0.0	110	17.7	8	1.3
2000	1,898	82.9	0	0.0	357	15.6	35	1.5
2001	184	75.1	0	0.0	58	23.7	3	1.2
Total	11,764	78.7	646	4.3	1,461	9.8	1,077	7.2

Genetics

Tissue (operculum) samples were collected from 144 wild and 144 hatchery summer Chinook in the Wenatchee basin in 2006. Results from these samples should be available in 2008.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 1989-2005, the PNI was equal to or greater than 0.6 (Table 6.23). This indicates that the natural environment has a greater influence on adaptation of Wenatchee summer Chinook than does the hatchery environment.

Table 6.23. Proportionate natural influence (PNI) of the Wenatchee summer Chinook supplementation program for brood years 1989-2005. PNI was calculated as the proportion of naturally produced Chinook in the hatchery broodstock (pNOB) divided by the proportion of hatchery Chinook on the spawning grounds (pHOS) plus pNOB . NOS = number of natural origin Chinook on the spawning grounds; HOS = number of hatchery origin Chinook on the spawning grounds; $\mathrm{NOB}=$ number of natural origin Chinook collected for broodstock; and $\mathrm{HOB}=$ number of hatchery origin Chinook included in hatchery broodstock.

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1989	11,325	0	0.00	290	0	1.00	1.00
1990	8,677	0	0.00	61	0	1.00	1.00
1991	8,066	0	0.00	104	0	1.00	1.00
1992	9,312	0	0.00	274	0	1.00	1.00
1993	7,076	393	0.05	406	44	0.90	0.95
1994	7,296	709	0.09	333	54	0.86	0.91
1995	5,607	571	0.09	363	16	0.96	0.91
1996	4,687	192	0.04	263	3	0.99	0.96
1997	4,216	503	0.11	205	13	0.94	0.90
1998	3,451	533	0.13	299	78	0.79	0.86
1999	3,019	1,357	0.31	242	236	0.51	0.62
2000	3,450	998	0.22	275	180	0.60	0.73
2001	7,303	1,839	0.20	210	136	0.61	0.75
2002	9,136	3,328	0.27	409	10	0.98	0.78
2003	7,601	2,094	0.22	337	7	0.98	0.82
2004	6,442	1,651	0.20	424	2	1.00	0.83
2005	6,060	2,125	0.26	397	3	0.99	0.79

Natural Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population. For brood years 1989-2000, NRR for summer Chinook in the

Wenatchee averaged 0.89 (range, 0.39-3.01) if harvested fish were not include in the estimate and 2.15 (range, $0.63-10.65$) if harvested fish were included in the estimate (Table 6.24). NRRs for more recent brood years will be calculated as soon as all tag recoveries and sampling rates have been loaded into the database.

Table 6.24. Spawning escapements, natural origin recruits (NOR), and natural replacement rates (NRR; with and without harvest) for wild summer Chinook in the Wenatchee basin, 1989-2000. (The numbers in this table may change as the HETT and HC refine the methods for estimating summer Chinook NORs and NRRs.)

Brood year	Spawning escapement	Harvest not included		Harvest included	
		NRR	NOR	NRR	
1989	11,325	8,995	0.79	15,645	1.38
1990	8,677	8,063	0.93	11,688	1.35
1991	8,066	4,487	0.56	7,112	0.88
1992	9,312	4,601	0.49	6,726	0.72
1993	7,469	4,102	0.55	5,346	0.72
1994	8,006	3,151	0.39	5,051	0.63
1995	6,178	4,025	0.65	8,010	1.30
1996	4,879	3,406	0.70	9,194	1.88
1997	4,719	7,526	1.59	23,626	5.01
1998	3,984	12,009	3.01	42,431	10.65
1999	4,376	8,732	2.00	30,580	6.99
2000	4,388	3,118	0.71	9,593	2.19
Average	$\mathbf{6 , 7 8 2}$	$\mathbf{6 , 0 1 8}$	$\mathbf{0 . 8 9}$	$\mathbf{1 4 , 5 8 4}$	$\mathbf{2 . 1 5}$

Hatchery Replacement Rates

Hatchery replacement rates were estimated as hatchery adult-to-adult returns. These rates should be greater than the NRRs and greater than or equal to 5.30 (the value in BAMP; Murdoch and Peven 2005). HRRs exceeded NRRs in 8 or 9 of the 12 years of data, depending on if harvest was or was not included in the estimate (Table 6.25). Hatchery replacement rates (harvest included in the estimate) for Wenatchee summer Chinook have exceeded the BAMP target of 5.30 in 2 or 5 of the 12 years of data depending on if harvest was or was not included in the estimate (Table 6.25).

Table 6.25. Hatchery replacement rates (HRR), NRR, and BAMP target (5.30) for summer Chinook in the Wenatchee basin, 1989-2000. (The numbers in this table may change as the HETT and HC refine the methods for estimating summer Chinook HRRs and NRRs.)

Brood year	Harvest not included			Harvest included		
	HRR	NRR	BAMP	HRR	NRR	BAMP
1989	6.21	0.79	5.30	14.62	1.38	5.30
1990	1.01	0.93	5.30	1.36	1.35	5.30
1991	0.18	0.56	5.30	0.55	0.88	5.30
1992	1.32	0.49	5.30	1.87	0.72	5.30
1993	0.19	0.55	5.30	0.33	0.72	5.30
1994	3.48	0.39	5.30	5.52	0.63	5.30
1995	2.49	0.65	5.30	3.78	1.30	5.30
1996	1.11	0.70	5.30	1.67	1.88	5.30
1997	17.53	1.59	5.30	30.39	5.01	5.30
1998	4.60	3.01	5.30	15.87	10.65	5.30
1999	1.22	2.00	5.30	4.88	6.99	5.30
2000	4.65	0.71	5.30	24.87	2.19	5.30
Average	3.51	0.89	5.30	9.41	2.15	5.30

Smolt-to-Adult Survivals

Smolt-to-adult survival ratios (SARs) were calculated as the number of hatchery adults divided by the number of hatchery smolts released. SARs were based on CWT returns. For the available brood years, SARs have ranged from 0.00037 to 0.01669 for hatchery summer Chinook in the Wenatchee basin (Table 6.26).
Table 6.26. Smolt-to-adult ratios (SARs) for Wenatchee hatchery summer Chinook.

Brood year	Number of smolts released	Estimated adult captures	SAR
1989	144,905	1,017	0.00702
1990	119,214	115	0.00096
1991	190,371	71	0.00037
1992	605,055	610	0.00101
1993	210,626	161	0.00076
1994	452,340	1,904	0.00421
1995	668,409	1,488	0.00223
1996	585,590	551	0.00094
1997	434,645	7,256	0.01669
1998	641,109	7,449	0.01162
1999	988,328	2,466	0.00250
2000	903,368	11,960	0.01324

Brood year	Number of smolts released	Estimated adult captures	SAR
2001	596,618	1,643	0.00275
Average	503,121	2,822	0.00561

6.8 ESA/HCP Compliance

Broodstock Collection

Per the 2005 broodstock collection protocol, 492 natural origin (adipose fin present) adults were targeted for collection at Dryden and Tumwater dams. Because of inventory errors during collection, the actual 2005 collection totaled 494 summer Chinook. Collection at Dryden Dam began 5 June 2005 and concluded 15 August 2005 and accounted for the entire 2005 BY broodstock collection.

Summer Chinook and steelhead broodstock collections occurred concurrently at Dryden Dam; therefore, steelhead and spring Chinook encounters at Dryden Dam during Wenatchee summer Chinook broodstock collection were attributable to steelhead broodstock collections authorized under ESA Permit 1395 take authorizations. No steelhead or spring Chinook takes were associated with the Wenatchee summer Chinook collection.

Consistent with impact minimization measures in ESA Permit 1347, all ESA-listed species handled during summer Chinook broodstock collection were subject to water-to-water transfers or anesthetized if removed from water during handling.

Hatchery Rearing and Release

The 2005 Wenatchee summer Chinook program released an estimated 664,182 smolts, representing 74.6% of the 864,000 programmed production and was compliant with the maximum production levels identified in ESA Section 10 Permit 1347.

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery facilities during the period 1 January 2007 through 31 December 2007. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2007 are provided in Appendix E.

Smolt and Emigrant Trapping

ESA-listed spring Chinook and steelhead were encountered during operation of the Lower Wenatchee Trap. ESA takes are reported in the steelhead (Section 3.8) and spring Chinook (Section 5.8) sections and are not repeated here.

Spawning Surveys

Summer Chinook spawning ground surveys conducted in the Wenatchee Basin during 2007 were consistent with ESA Section 10 Permit No. 1347. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

SECTION 7: METHOW SUMMER CHINOOK

7.1 Broodstock Sampling

This section focuses on results from sampling 2005-2006 Methow summer Chinook broodstock, which were collected in the East Ladder of Wells Dam. Summer Chinook adults collected at Wells Dam are also used in the Okanogan/Similkameen supplementation program. Complete information is not currently available for the 2007 return (this information will be provided in the 2008 annual report).

Origin of Broodstock

Both 2005 and 2006 broodstock consisted almost entirely of natural origin (adipose fin present) summer Chinook (Table 7.1). These fish were used for both the Methow and Okanogan supplementation programs. Less than 2% of the fish spawned were hatchery origin fish (hatchery origin was determined by examination of scales and CWTs).

Table 7.1. Numbers of wild and hatchery summer Chinook collected for broodstock, numbers that died before spawning, and numbers of Chinook spawned for the Methow/Okanogan programs, 1989-2006. Unknown origin fish (i.e., undetermined by scale analysis, no CWT or fin clips, and no additional hatchery marks) were considered naturally produced. Mortality includes fish that died of natural causes typically near the end of spawning and were not needed for the program and surplus fish killed at spawning.

Brood year	Wild summer Chinook					Hatchery summer Chinook					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
$1989{ }^{\text {a }}$	1,419	72	-	1,297	-	341	17	-	312	-	1,609
$1990{ }^{\text {a }}$	864	34	-	828	-	214	8	-	206	-	1,034
$1991{ }^{\text {a }}$	1,003	59	-	924	-	341	20	-	314	-	1,238
$1992{ }^{\text {a }}$	312	6	-	297	-	428	9	-	406	-	703
$1993{ }^{\text {a }}$	813	48	-	681	-	464	28	-	388	-	1,069
1994	385	33	11	341	12	266	15	7	244	1	585
1995	254	13	10	173	58	351	28	9	240	74	413
1996	316	15	11	290	0	234	2	9	223	0	513
1997	214	11	5	198	0	308	24	20	264	0	462
1998	239	28	58	153	0	348	18	119	211	0	364
1999	248	5	19	224	0	307	2	16	289	0	513
2000	184	15	5	164	0	373	17	17	339	0	503
2001	135	8	36	91	0	423	29	128	266	0	357
2002	270	2	21	247	0	285	11	33	241	0	488
2003	449	14	53	381	0	112	2	9	101	0	482
2004	541	23	12	506	0	17	0	1	16	0	522
2005	551	29	76	391	55	12	2	0	9	1	400
2006	579	50	10	500	19	12	2	0	10	0	510
Average ${ }^{b}$	336	19	25	281	11	234	12	28	189	6	470

${ }^{\text {a }}$ Number of fish spawned and collected during these years included fish retained from the right- and left-bank ladder traps at Wells Dam and fish collected from the volunteer channel. There was no distinction made between fish collected at trap locations and program (i.e., aggregated population used for Wells, Methow, and Okanogan summer Chinook programs).
${ }^{\mathrm{b}}$ Because of bias from aggregating the spawning population from 1989-1993, averages are based on adult numbers collected from $1994-2006$.

Age/Length Data

Ages of summer Chinook broodstock were determined from analysis of scales and/or CWTs. Broodstock collected from the 2005 return consisted primarily of age-4 natural origin Chinook (70\%). Age-4 natural origin fish made up 17% of the broodstock, while age- 5 and 6 fish collectively made up 13\% (Table 7.2). The three hatchery Chinook included in the broodstock were age- 5 fish. Note that according to broodstock protocol, age-3 males are limited to no more than 10\% of the total broodstock collection.

Broodstock collected from the 2006 return consisted primarily of age-4 and age-5 natural origin Chinook (92\%). Age-2, 3, and 6 natural origin fish collectively made up 6% of the broodstock (Table 7.2). The six hatchery Chinook included in the broodstock were age- 5 fish.

Table 7.2. Percent of hatchery and wild summer Chinook of different ages (total age) collected from broodstock for the Methow/Okanogan programs, 1991-2006.

Return Year	Origin	Total age				
		2	3	4	5	6
1991	Wild	0.5	6.8	35.1	55.4	2.2
	Hatchery	0.5	5.1	36.2	49.0	9.2
1992	Wild	0.0	13.1	36.2	50.7	0.0
	Hatchery	0.0	0.0	0.0	0.0	0.0
1993	Wild	0.0	3.9	75.3	20.8	0.0
	Hatchery	0.0	1.0	85.9	13.1	0.0
1994	Wild	3.1	9.7	26.3	60.3	0.6
	Hatchery	0.0	14.7	11.3	74.0	0.0
1995	Wild	0.0	4.6	15.2	75.6	4.6
	Hatchery	0.0	0.4	13.0	25.6	61.0
1996	Wild	0.0	8.4	56.6	30.4	4.6
	Hatchery	0.0	3.0	31.0	47.0	19.0
1997	Wild	1.0	9.3	52.9	34.8	2.0
	Hatchery	0.0	20.7	10.8	62.0	6.5
1998	Wild	2.0	14.1	54.8	29.1	0.0
	Hatchery	2.3	18.5	56.6	15.9	6.7
1999	Wild	4.7	5.1	53.7	36.0	0.5
	Hatchery	0.3	3.6	28.0	66.1	2.0
2000	Wild	0.6	14.0	28.7	56.1	0.6
	Hatchery	0.0	27.0	14.3	54.3	4.3
2001	Wild	7.1	26.0	52.0	11.8	3.1
	Hatchery	0.3	19.8	68.1	9.5	2.3
2002	Wild	0.4	17.4	66.0	16.2	0.0
	Hatchery	0.0	2.4	39.4	58.2	0.0

Return Year	Origin	Total age				
		2	3	4	5	6
2003	Wild	0.7	3.9	65.9	29.5	0.0
	Hatchery	0.9	5.6	18.5	69.4	5.6
2004	Wild	0.8	15.3	11.6	72.1	0.2
	Hatchery	0.0	6.7	53.3	33.3	6.7
2005	Wild	0.0	17.2	69.9	11.0	1.9
	Hatchery	0.0	1.0	40.0	50.0	0.0
2006	Wild	1.6	3.0	41.0	52.9	1.5
	Hatchery	0.0	16.7	25.0	50.0	8.3
Average	Wild	1.4	10.7	46.3	40.2	1.4
	Hatchery	0.3	9.7	35.4	45.2	8.8

Mean lengths of natural origin summer Chinook of a given age differed little between 2005 and 2006 (Table 7.3). For all age groups, mean lengths of natural origin adults were larger than hatchery origin fish of the same age (Table 7.3). These differences may be related to the small sample size of hatchery origin fish (i.e., few hatchery fish were included in the broodstock).

Table 7.3. Mean fork length (cm) at age (total age) of hatchery and wild Methow/Okanogan summer Chinook collected from broodstock for the Methow/Okanogan programs, 1991-2006; $\mathrm{N}=$ sample size and $\mathrm{SD}=1$ standard deviation.

Return year	Origin	Summer Chinook fork length (cm)														
		Age-2			Age-3			Age-4			Age-5			Age-6		
		Mean	N	SD												
1991	Wild	47	1	-	68	15	6	82	78	10	94	12 3	8	97	5	5
	Hatchery	47	1	-	49	10	6	78	71	5	91	96	8	96	18	6
1992	Wild	-	0	-	55	9	5	69	25	6	78	35	6	-	0	-
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-
1993	Wild	-	0	-	72	3	4	86	58	7	98	16	5	-	0	-
	Hatchery	-	0	-	42	1	-	76	85	8	88	13	6	-	0	-
1994	Wild	42	10	6	51	31	7	80	84	9	93	19 3	8	104	2	13
	Hatchery	-	0	-	49	38	5	76	29	7	88	19 1	7	-	0	-
1995	Wild	-	0	-	67	6	8	79	20	9	96	99	5	94	6	5
	Hatchery	-	0	-	52	1	-	73	32	9	89	63	9	95	15 0	8
1996	Wild	-	0	-	68	22	9	83	149	8	95	80	7	101	12	5
	Hatchery	-	0	-	52	7	10	77	72	7	90	$\begin{gathered} 10 \\ 9 \end{gathered}$	8	100	44	7
1997	Wild	36	2	6	60	19	7	85	108	8	96	71	7	98	4	11
	Hatchery	-	0	-	45	63	5	71	33	9	92	18 9	7	97	20	7

Return year	Origin	Summer Chinook fork length (cm)														
		Age-2			Age-3			Age-4			Age-5			Age-6		
		Mean	N	SD												
1998	Wild	43	4	6	59	23	6	83	107	7	96	58	7	-	0	-
	Hatchery	42	8	7	50	64	6	74	190	8	92	54	8	98	23	5
1999	Wild	38	10	3	64	11	8	82	115	8	96	77	6	104	1	-
	Hatchery	37	1	-	53	11	9	75	92	7	91	$\begin{gathered} 20 \\ 4 \end{gathered}$	6	98	6	5
2000	Wild	39	1	-	66	23	7	83	47	6	96	92	5	95	1	-
	Hatchery	-	0	-	54	100	7	78	53	8	93	$\begin{gathered} 20 \\ 1 \end{gathered}$	6	99	16	6
2001	Wild	40	9	3	65	33	8	87	66	8	93	15	5	97	4	16
	Hatchery	44	1	-	51	79	7	78	271	8	93	38	7	102	9	5
2002	Wild	56	1	-	65	44	7	88	167	6	100	41	7	-	0	-
	Hatchery	-	0	-	45	6	5	76	100	7	95	$\begin{gathered} 14 \\ 8 \end{gathered}$	5	-	0	-
2003	Wild	43	3	6	61	16	6	87	268	7	99	$\begin{gathered} 12 \\ 0 \end{gathered}$	6	-	0	-
	Hatchery	49	1	-	55	6	9	73	20	8	91	75	7	102	6	9
2004	Wild	51	4	4	67	78	6	81	59	6	97	$\begin{gathered} 36 \\ 8 \end{gathered}$	7	99	1	-
	Hatchery	-	0	-	52	1	-	70	8	5	97	5	8	109	1	-
2005	Wild	-	0	-	68	89	6	83	363	8	94	57	6	101	10	7
	Hatchery	-	0	-	55	1	-	70	4	4	89	5	4	-	0	-
2006	Wild	48	9	3	69	16	4	88	222	7	97	$\begin{gathered} 28 \\ 6 \end{gathered}$	6	97	8	6
	Hatchery	-	0	-	52	2	0	80	3	3	88	6	7	94	1	-

Sex Ratios

Male summer Chinook in the 2005 broodstock made up about 66% of the adults collected, resulting in an overall male to female ratio of 1.93:1.00 (Table 7.4.). In 2006, males made up about 50% of the adults collected, resulting in an overall male to female ratio of 1.00:1.00 (Table 7.4). The ratio for the 2005 broodstock was larger than the assumed 1:1 ratio goal in the broodstock protocol; the ratio for the 2006 broodstock equaled the assumed $1: 1$ ratio.
Table 7.4. Numbers of male and female wild and hatchery summer Chinook collected for broodstock at Wells Dam for the Methow/Okanogan programs, 1991-2006. Ratios of males to females are also provided.

Return year	Number of wild summer Chinook			Number of hatchery summer Chinook		Total M/F ratio	
	Males (M)	Females (F)	M/F	Males (M)	Females (F)		$1.13: 1.00$
1989^{a}	752	667	$1.13: 1.00$	181	160	$1.13: 1.00$	
1990^{a}	381	482	$0.79: 1.00$	95	120	$0.79: 1.00$	$0.79: 1.00$
1991^{a}	443	559	$0.79: 1.00$	151	191	$0.79: 1.00$	$0.79: 1.00$
1992^{a}	349	318	$1.10: 1.00$	38	35	$1.09: 1.00$	$1.10: 1.00$
1993^{a}	513	300	$1.71: 1.00$	293	171	$1.71: 1.00$	$1.71: 1.00$

Return year	Number of wild summer Chinook			Number of hatchery summer Chinook		Total M/F ratio	
	Males (M)	Females (F)	\mathbf{M} / \mathbf{F}	Males (M)	Females (F)		$1.63: 1.00$
1994	205	180	$1.14: 1.00$	165	101	$1.32: 1.00$	
1995	103	149	$0.69: 1.00$	158	197	$0.80: 1.00$	$0.75: 1.00$
1996	178	138	$1.29: 1.00$	132	102	$1.29: 1.00$	$1.29: 1.00$
1997	102	112	$0.91: 1.00$	174	134	$1.30: 1.00$	$1.12: 1.00$
1998	130	109	$1.19: 1.00$	263	85	$3.09: 1.00$	$2.03: 1.00$
1999	138	110	$1.25: 1.00$	161	146	$1.10: 1.00$	$1.17: 1.00$
2000	82	102	$0.80: 1.00$	243	130	$1.87: 1.00$	$1.40: 1.00$
2001	89	46	$1.93: 1.00$	311	112	$2.78: 1.00$	$2.53: 1.00$
2002	166	104	$1.60: 1.00$	149	136	$1.10: 1.00$	$1.31: 1.00$
2003	255	194	$1.31: 1.00$	61	51	$1.20: 1.00$	$1.29: 1.00$
2004	263	278	$0.95: 1.00$	12	5	$2.40: 1.00$	$0.97: 1.00$
2005	365	186	$1.96: 1.00$	6	6	$1.00: 1.00$	$1.93: 1.00$
2006	287	292	$0.98: 1.00$	9	3	$3.00: 1.00$	$1.00: 1.00$
Total $^{\boldsymbol{b}}$	2,363	2,000	$\mathbf{1 . 1 8 : 1 . 0 0}$	$\mathbf{1 , 8 4 4}$	$\mathbf{1 , 2 0 8}$	$\mathbf{1 . 5 2 : 1 . 0 0}$	$\mathbf{1} .31: 1.00$

${ }^{a}$ Numbers and male to female ratios were derived from the aggregate population collected at Wells Fish Hatchery volunteer channel and left- and right-ladder traps at Wells Dam.
${ }^{\text {b }}$ Total values were derived from 1994-2006 data to exclude aggregate population bias from 1989-1993 returns.

Fecundity

Fecundities for the 2005 and 2006 summer Chinook broodstock averaged 4,553 and 4,854 eggs per female, respectively (Table 7.5). These values are close to the overall average of 4,976 eggs per female. Mean observed fecundity for the 2005 and 2006 returns fell short of the expected fecundity of 5,000 eggs per female assumed in the broodstock protocol.

Table 7.5. Mean fecundity of wild, hatchery, and all female summer Chinook collected for broodstock at Wells Dam for the Methow/Okanogan programs, 1989-2006; NA = not available.

Return year	Mean fecundity		
	Wild	Hatchery	Total
1989^{*}	NA	NA	4,750
1990^{*}	NA	NA	4,838
1991^{*}	NA	NA	4,819
1992^{*}	NA	NA	4,804
1993^{*}	NA	NA	4,849
1994^{*}	NA	NA	5,907
1995^{*}	NA	NA	4,930
1996^{*}	NA	NA	4,870
1997	5,166	5,296	5,237
1998	5,043	4,595	4,833
1999	4,897	4,923	4,912

Return year	Mean fecundity		
	Wild	Hatchery	Total
2000	5,122	5,206	5,170
2001	5,040	4,608	4,735
2002	5,306	5,258	5,279
2003	5,090	4,941	5,059
2004	5,130	5,118	5,130
2005	4,545	4,889	4,553
2006	4,854	4,824	4,854
Average	5,019	4,966	4,976

* Individual fecundities were not assigned to females until 1997 brood.

7.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81\%, a total of 493,827 eggs are needed to meet the program release goal of 400,000 smolts. Between 1989 and 2006, the egg take goal was reached in five of those years (Table 7.6).
Table 7.6. Numbers of eggs taken from summer Chinook broodstock collected at Wells Dam for the Methow/Okanogan programs, 1989-2006.

Return year	Number of eggs taken
1989	482,800
1990	464,097
1991	586,594
1992	486,260
1993	531,490
1994	595,390
1995	491,000
1996	448,000
1997	401,162
1998	389,346
1999	483,726
2000	403,268
2001	279,272
2002	466,530
2003	473,681
2004	537,210
2005	305,826

Return year	Number of eggs taken
2006	509,334
Average	463,378

Number of acclimation days

Rearing of the 2005 brood Methow summer Chinook was similar to previous years with fish being held on well water before being transferred to Carlton Pond for final acclimation on Methow River water in March 2007 (Table 7.7). Groups of the 1994 and 1995 broods were reared for longer durations at Methow FH on Methow River water.

Table 7.7. Number of days Methow summer Chinook were acclimated at Carlton Pond, brood years 19892005.

Brood year	Release year	Transfer date	Release date	Number of days
1989	1991	15-Mar	6-May	52
1990	1992	26-Feb	28-Apr	61
1991	1993	10-Mar	23-Apr	44
1992	1994	4-Mar	21-Apr	48
1993	1995	18-Mar	2-May	45
		25-Sep	28-Apr	215
1994	1996	19-Mar	28-Apr	40
1995	1997	22-Oct	8-Apr	168
190		19-Mar	22-Apr	34
1996	1998	9-Mar	14-Apr	36
1997	1999	10-Mar	20-Apr	41
1998	2000	19-Mar	2-May	44
1999	2001	18-Mar	18-Apr	31
2000	2002	28-Mar	1-May	34
2001	2003	27-Mar	24-Apr	28
2002	2004	16-Mar	24-Apr	39
2003	2005	18-Mar	21-Apr	34
2004	2006	12-Mar	22-Apr	41
2005	2007	12-Mar	15-Apr - 8-May	34-57
Average				57

Release Information

Numbers released

The 2005 Methow summer Chinook program achieved 65.8% of the 400,000 target goal with about 263,273 fish being volitionally released between 15 April and 8 May 2007 (Table 7.8). The volitional release was terminated seven days short of the scheduled volitional release period and remaining fish were forced out of the acclimation site because of inundation of the acclimation site with flood waters, which backed-up into the facility through the out-fall channel.

Table 7.8. Numbers of Methow summer Chinook smolts released from the hatchery, brood years 1989-2005. The release target for Methow summer Chinook is 400,000 smolts.

Brood year	Release year	Number of smolts
1989	1991	420,000
1990	1992	391,650
1991	1993	540,900
1992	1994	402,641
1993	1995	433,375
1994	1996	406,560
1995	1997	353,182
1996	1998	298,844
1997	1999	384,909
1998	2000	205,269
1999	2001	424,363
2000	2002	336,762
2001	2003	248,595
2002	2004	399,975
2003	2005	354,699
2004	2006	400,579
2005	2007	263,723
		368,590

Numbers tagged

The 2005 brood Methow summer Chinook were 98.9% CWT and adipose fin-clipped, but were not PIT tagged.

Fish size and condition at release

Fish were volitionally released as yearling smolts in April 2007. Size at release of the acclimated population was 89.8% and 93.0% of the target fork length and weight goals, respectively (Table 7.9). This brood year exceeded the CV of length goal by 67%.

Table 7.9. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Methow summer Chinook smolts released from the hatchery, brood years 1991-2005. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1991	1993	152	13.6	40.3	11
1992	1994	145	16.0	37.2	12
1993	1995	154	8.6	37.1	12
1994	1996	163	8.2	48.2	9
1995	1997	141	9.6	37.0	12

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1996	1998	199	13.1	105.1	4
1997	1999	153	7.6	39.5	12
1998	2000	164	8.7	51.7	9
1999	2001	153	9.3	41.5	11
2000	2002	170	10.2	54.2	8
2001	2003	167	7.4	52.7	9
2002	2004	148	13.1	35.7	13
2003	2005	148	10.1	35.5	13
2004	2006	142	9.8	31.1	15
2005	2007	158	15	42.2	11
\quad Targets	$\mathbf{1 7 6}$	$\mathbf{9 . 0}$	$\mathbf{4 5 . 4}$	$\mathbf{1 0}$	

Survival Estimates

Overall survival of the Methow summer Chinook from green (unfertilized) egg to release was above the standard set for the program (Table 7.10). Lower than anticipated survival at the fertilized to eyed-egg and eyed-egg to ponding stage prevented the program from exceeding those respective target survival rates. Currently it is unknown if gamete viability is gender biased or is uniform between sexes and more influenced by between-year environmental variations.

It is important to note that the Methow summer Chinook program typically receives progeny from the highest ELISA females, while the lowest titer progeny are reserved for the Okanogan program. The inability to effectively manage BKD at Similkameen Pond during the winter months precludes an even mix of progeny for a given brood year between the two programs.
Table 7.10. Hatchery life-stage survival rates (\%) for Methow summer Chinook, brood years 1989-2005. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	$\begin{gathered} \text { Eyed } \\ \text { egg- } \\ \text { ponding } \end{gathered}$		$100 \mathrm{~d}$afterponding	$\begin{aligned} & \text { Ponding } \\ & \text { to } \\ & \text { release } \end{aligned}$	Transport to release	Unfertilized egg-release
	Female	Male							
$1989{ }^{\text {a }}$	89.8	99.5	89.9	96.7	99.7	99.4	73.3	98.5	63.7
$1990{ }^{\text {a }}$	93.9	99.0	84.9	97.1	81.2	80.6	97.7	99.5	80.5
$1991{ }^{\text {a }}$	93.1	95.5	88.2	98.0	99.4	99.1	97.5	99.6	84.2
$1992{ }^{\text {a }}$	96.9	99.0	87.8	98.0	99.9	99.9	90.9	98.3	78.2
$1993{ }^{\text {a }}$	82.2	99.4	85.4	97.6	99.8	99.5	92.0	99.4	76.7
1994	96.1	90.0	86.6	100.0	98.1	97.4	73.1	99.1	63.3
1995	91.9	96.2	98.2	84.1	96.5	96.2	92.7	89.6	76.6
1996	95.4	98.1	83.2	100.0	97.7	96.9	86.5	89.0	72.0
1997	91.9	94.6	86.1	98.4	98.7	98.3	98.8	99.7	83.7
1998	84.0	96.2	54.1	98.0	99.4	98.9	96.6	99.9	51.2
1999	98.8	98.7	92.9	96.9	98.0	97.6	96.9	99.9	87.2

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0 ~ d}$ after ponding	$\mathbf{1 0 0 ~ d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	90.5	96.9		98.1	98.5	98.3	94.6	94.4	82.6
2001	96.2	92.3	89.1	97.6	97.2	97.1	97.5	99.8	84.8
2002	97.1	98.1	88.3	99.9	97.7	97.5	96.7	99.9	85.3
2003	96.7	97.5	82.8	98.2	99.7	99.2	93.7	99.9	76.2
2004	93.6	98.2	84.0	97.8	99.6	99.2	98.3	98.5	80.8
2005	97.0	89.6	88.0	95.5	99.6	98.9	96.6	99.9	84.6
Standard	$\mathbf{9 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{9 2 . 0}$	$\mathbf{9 8 . 0}$	$\mathbf{9 7 . 0}$	$\mathbf{9 3 . 0}$	$\mathbf{9 0 . 0}$	$\mathbf{9 5 . 0}$	$\mathbf{8 1 . 0}$

${ }^{\mathrm{a}}$ Survival rates were calculated from aggregate population collected at Wells Fish Hatchery volunteer channel and leftand right-ladder traps at Wells Dam.

7.3 Disease Monitoring

No disease concerns were detected or observed in the 2004 brood. Progeny did receive a 4.5\% Aqua-100 prophylactic treatment for BKD in July 2006. No Erythromycin toxicity was detected.

7.4 Spawning Surveys

Surveys for Methow summer Chinook redds were conducted from late September to mid-November, 2007, in the Methow River. Total redd counts (not peak counts) were conducted in the river (see Appendix J for more details).

Redd Counts

A total of 620 summer Chinook redds were counted in the Methow River in 2007 (Table 7.11). This was higher than the 19-year average of 586 redds.
Table 7.11. Total number of redds counted in the Methow River, 1989-2007.

Survey year	Total redd count
1989	167^{*}
1990	409^{*}
1991	153
1992	107
1993	154
1994	310
1995	357
1996	181
1997	205
1998	225
1999	448
2000	500
2001	675

Survey year	Total redd count
2002	2,013
2003	1,624
2004	973
2005	874
2006	1,353
2007	620
Average	597

* Total counts based on expanded aerial counts.

Redd Distribution

Summer Chinook redds were not evenly distributed among the seven reaches in the Methow River. Most redds (73\%) were located in reaches downstream from the town of Twisp and in Reach 5 between Methow Valley Irrigation Diversion (MVID) and the Winthrop Bridge (Table 7.12; Figure 7.1). Few summer Chinook spawned upstream from the Winthrop Bridge in Reaches 6 and 7.

Table 7.12. Total number of summer Chinook redds counted in different reaches on the Methow River during September through early November, 2006. Reach codes are described in Table 2.11.

Survey reach	Total redd count	Percent
Methow 1	170	27
Methow 2	132	21
Methow 3	155	25
Methow 4	52	8
Methow 5	108	17
Methow 6	3	1
Methow 7	0	0
Totals	$\mathbf{6 2 0}$	$\mathbf{1 0 0}$

Figure 7.1. Percent of the total number of summer Chinook redds counted in different reaches on the Methow River during September through mid-November, 2007. Reach codes are described in Table 2.11.

Spawn Timing

Spawning in 2007 began the first week of October, peaked the second week of October, and ended after the first week of November (Figure 7.2). Stream temperatures in the Methow River, when spawning began, varied from $7-10^{\circ} \mathrm{C}$. Peak spawning occurred in the upper reaches of the Methow River during the second week of October and in the lower reaches the following week. The temporal distribution of spawning activity in 2007 comported well with the 16-year average (Figure 7.2).

Methow Summer Chinook

Figure 7.2. Comparison of the number of new summer Chinook redds counted during different weeks in the Methow River, September through mid-November 2007, to the 16-year average.

Spawning Escapement

Spawning escapement for Methow summer Chinook was calculated as the total number of redds times the fish per redd ratio estimated from fish sampled at Wells Dam. The estimated fish per redd ratio for Methow summer Chinook in 2007 was 2.20 . Multiplying this ratio by the number of redds counted in the Methow River resulted in a total spawning escapement of 1,364 summer Chinook (Table 7.13).

Table 7.13. Spawning escapements for summer Chinook in the Methow River for return years 19892007.

Return year	Fish/Redd	Redds	Total spawning escapement
1989*	3.30	167	552
1990^{*}	3.40	409	1,391
1991^{*}	3.70	153	566
1992^{*}	4.30	107	460
1993^{*}	3.30	154	508
1994^{*}	3.50	310	1,085
1995^{*}	3.40	357	1,214
1996^{*}	3.40	181	615
1997^{*}	3.40	205	697
1998	3.00	225	675
1999	2.20	448	986
2000	2.40	500	1,200
2001	4.10	675	2,768

Return year	Fish/Redd	Redds	Total spawning escapement
2002	2.30	2,013	4,630
2003	2.42	1,624	3,930
2004	2.25	973	2,189
2005	2.93	874	2,561
2006	2.02	1,353	2,733
2007	2.20	620	1,364
Average	$\mathbf{3 . 0 3}$	$\mathbf{5 9 7}$	$\mathbf{1 , 5 8 5}$

* Spawning escapement was calculated using the "Modified Meekin Method" (i.e., $3.1 \times$ jack multiplier).

7.5 Carcass Surveys

Surveys for Methow summer Chinook carcasses were conducted during late September to midNovember, 2007, in the Methow River (see Appendix J for more details).

Number sampled

A total of 456 summer Chinook carcasses were sampled during September through mid-November in the Methow River (Table 7.14).

Table 7.14. Numbers of summer Chinook carcasses sampled within each survey reach on the Methow River, 1991-2007. Reach codes are described in Table 2.11.

Survey year	Number of summer Chinook carcasses							
	M-1	M-2	M-3	M-4	M-5	M-6	M-7	Total
1991	0	12	8	4	2	0	0	26
1992	8	8	19	0	17	1	0	53
1993	19	25	14	2	5	0	0	65
$1994{ }^{\text {a }}$	43	33	20	5	13	0	0	114
1995	14	33	58	7	7	0	0	119
1996	6	30	46	5	2	0	0	89
1997	6	12	38	2	19	1	0	78
1998	90	84	99	17	30	0	0	320
1999	47	144	232	32	37	12	2	506
2000	62	118	105	9	99	5	0	398
2001	392	275	88	14	76	11	1	857
2002	551	318	518	164	219	34	10	1,814
2003	115	383	317	115	128	5	0	1,063
2004	40	173	187	82	92	2	1	577
2005	154	173	182	42	112	3	0	666
2006	121	149	111	56	146	3	1	587
2007	135	131	108	27	55	0	0	456
Average	106	124	126	34	62	5	1	346

${ }^{\text {a }}$ An additional 113 carcasses were sampled, but reach was not identified.

Carcass Distribution and Origin

Summer Chinook carcasses were not evenly distributed among reaches within the Methow River in 2007 (Table 7.14; Figure 7.3). Most of the carcasses in the Methow River were found downstream from Twisp. The highest percentage of carcasses (30\%) was sampled in Reach 1 downstream from the town of Methow.

Methow Summer Chinook Carcasses

Figure 7.3. Percent of summer Chinook carcasses sampled within different reaches on the Methow River during September through mid-November, 2007. Reach codes are described in Table 2.11.

Numbers of wild and hatchery origin summer Chinook carcasses sampled in 2007 will be available after analysis of CWTs and scales. Based on the available data (1991-2006), hatchery and wild summer Chinook carcasses were not distributed equally among the reaches in the Methow River (Table 7.15). A larger percentage of hatchery carcasses occurred in the lower reaches, while a larger percentage of wild summer Chinook carcasses occurred in upstream reaches (Figure 7.4).
Table 7.15. Numbers of wild and hatchery summer Chinook carcasses sampled within different reaches on the Methow River, 1991-2006.

Survey year	Origin	Survey reach							Total
		M-1	M-2	M-3	M-4	M-5	M-6	M-7	
1991	Wild	0	12	8	4	2	0	0	26
	Hatchery	0	0	0	0	0	0	0	0
1992	Wild	8	8	19	0	17	1	0	53
	Hatchery	0	0	0	0	0	0	0	0
1993	Wild	11	15	9	0	3	0	0	38

Survey year	Origin	Survey reach							Total
		M-1	M-2	M-3	M-4	M-5	M-6	M-7	
	Hatchery	8	7	5	2	2	0	0	24
1994	Wild	21	17	8	4	9	0	0	59
	Hatchery	20	15	11	0	3	0	0	49
1995	Wild	6	9	27	7	5	0	0	54
	Hatchery	7	24	25	0	1	0	0	57
1996	Wild	1	20	29	4	2	0	0	56
	Hatchery	5	7	11	1	0	0	0	24
1997	Wild	5	5	28	1	17	0	0	56
	Hatchery	1	4	7	1	2	1	0	16
1998	Wild	41	46	70	9	23	0	0	189
	Hatchery	48	36	28	6	5	0	0	123
1999	Wild	27	79	110	14	17	4	2	253
	Hatchery	15	57	102	17	13	7	0	211
2000	Wild	23	78	74	7	72	3	0	257
	Hatchery	37	33	20	1	16	2	0	109
2001	Wild	49	102	54	9	66	11	1	292
	Hatchery	330	157	32	4	6	0	0	529
2002	Wild	124	163	362	129	183	34	9	1,004
	Hatchery	412	141	138	24	22	0	1	738
2003	Wild	33	123	176	63	85	3	0	483
	Hatchery	80	122	127	38	36	2	0	405
2004	Wild	14	108	144	61	73	1	0	401
	Hatchery	24	52	28	17	12	1	1	135
2005	Wild	62	99	133	33	107	3	0	437
	Hatchery	92	74	49	9	5	0	0	229
2006	Wild	68	103	83	49	131	3	1	438
	Hatchery	53	46	28	7	15	0	0	149
Average	Wild	31	62	83	25	51	4	1	256
	Hatchery	71	48	38	8	9	1	0	175

Methow Summer Chinook

Figure 7.4. Distribution of wild and hatchery produced carcasses in different reaches on the Methow River, 1993-2006. Reach codes are described in Table 2.11.

Sampling Rate

Overall, 33% of the total spawning escapement of summer Chinook in the Methow Basin was sampled in 2007 (Table 7.16). Sampling rates among survey reaches varied from 0 to 45%.

Table 7.16. Number of redds and carcasses, total spawning escapement, and sampling rates for summer Chinook in the Methow Basin, 2007. Reach codes are described in Table 2.11.

Survey reach	Total number of redds	Total number of carcasses	Total spawning escapement	Sampling rate
Methow 1	170	135	374	0.36
Methow 2	132	131	290	0.45
Methow 3	155	108	341	0.32
Methow 4	52	27	114	0.24
Methow 5	108	55	238	0.23
Methow 6	3	0	7	0.00
Methow 7	0	0	0	-
Total	$\mathbf{6 2 0}$	$\mathbf{1 5 6}$	$\mathbf{0 . 3 6 4}$	

Length Data

Mean lengths ($\mathrm{POH}, \mathrm{cm}$) of male and female summer Chinook carcasses sampled during surveys on the Methow River in 2007 are provided in Table 7.17. The average size of males and females sampled in the Methow River were 67 cm and 72 cm , respectively.

Table 7.17. Mean lengths (postorbital-to-hypural length; cm) and standard deviations (in parentheses) of male and female summer Chinook carcasses sampled in different reaches on the Methow River, 2007. Reach codes are described in Table 2.11.

Stream/watershed	Mean length (cm)	
	Male	Female
Methow 1	$66.7(11.2)$	$70.1(7.9)$
Methow 2	$66.7(12.7)$	$72.4(6.0)$
Methow 3	$68.0(14.2)$	$73.2(6.8)$
Methow 4	$66.5(10.4)$	$73.1(8.5)$
Methow 5	$71.9(12.1)$	$74.0(6.0)$
Methow 6	-	-
Methow 7	-	-
Total	$\mathbf{6 7 . 4}(\mathbf{1 2 . 5})$	72.1 (7.1)

7.6 Life History Monitoring

Life history characteristics of Methow summer Chinook were assessed by examining carcasses on spawning grounds and fish collected or examined at broodstock collection sites, and by reviewing tagging data and fisheries statistics.

Age at Maturity

Most of the wild and hatchery summer Chinook sampled during the period 1993-2006 in the Methow River were age-4 and 5 fish (total age) (Table 7.18; Figure 7.5). A higher percentage of age-4 wild Chinook returned to the basin than did age-4 hatchery Chinook. In contrast, a higher proportion of age-5 and 6 hatchery fish returned than did age- 5 and 6 wild fish. Thus, a higher percentage of hatchery fish returned at an older age than did wild fish.
Table 7.18. Proportions of wild and hatchery summer Chinook of different ages (total age) sampled on spawning grounds in the Methow River, 1993-2006.

Survey year	Origin	Total age						Sample size
		2	3	4	5	6	7	
1993	Wild	0.00	0.05	0.34	0.58	0.03	0.00	38
	Hatchery	0.00	0.00	1.00	0.00	0.00	0.00	20
1994	Wild	0.01	0.02	0.53	0.44	0.00	0.00	101
	Hatchery	0.00	0.00	0.07	0.93	0.00	0.00	111
1995	Wild	0.00	0.02	0.07	0.89	0.02	0.00	54
	Hatchery	0.00	0.02	0.04	0.43	0.52	0.00	56
1996	Wild	0.00	0.04	0.46	0.41	0.09	0.00	56
	Hatchery	0.00	0.00	0.04	0.48	0.43	0.04	23
1997	Wild	0.00	0.00	0.36	0.63	0.02	0.00	56
	Hatchery	0.00	0.13	0.06	0.56	0.25	0.00	16

Survey year	Origin	Total age						Sample size
		2	3	4	5	6	7	
1998	Wild	0.00	0.13	0.52	0.34	0.00	0.00	188
	Hatchery	0.00	0.02	0.52	0.42	0.03	0.00	123
1999	Wild	0.00	0.02	0.59	0.39	0.01	0.00	253
	Hatchery	0.00	0.00	0.07	0.90	0.03	0.00	209
2000	Wild	0.00	0.05	0.15	0.80	0.00	0.00	257
	Hatchery	0.00	0.10	0.22	0.57	0.11	0.00	97
2001	Wild	0.01	0.15	0.59	0.24	0.02	0.00	292
	Hatchery	0.00	0.11	0.60	0.26	0.04	0.00	528
2002	Wild	0.00	0.04	0.66	0.29	0.00	0.00	1,004
	Hatchery	0.00	0.01	0.41	0.57	0.01	0.00	733
2003	Wild	0.00	0.01	0.43	0.55	0.00	0.00	483
	Hatchery	0.00	0.02	0.07	0.88	0.03	0.00	394
2004	Wild	0.00	0.04	0.08	0.86	0.01	0.00	401
	Hatchery	0.00	0.08	0.29	0.30	0.33	0.00	134
2005	Wild	0.00	0.03	0.58	0.34	0.05	0.00	410
	Hatchery	0.00	0.08	0.30	0.61	0.01	0.00	220
2006	Wild	0.00	0.02	0.18	0.78	0.02	0.00	379
	Hatchery	0.00	0.00	0.22	0.48	0.29	0.00	129
Average	Wild	0.00	0.04	0.45	0.49	0.01	0.00	3,972
	Hatchery	0.00	0.04	0.33	0.57	0.07	0.00	2,793

Methow Summer Chinook

Figure 7.5. Proportions of wild and hatchery summer Chinook of different total ages sampled at broodstock collection sites and on spawning grounds in the Methow River for the combined years 1993-2006.

Size at Maturity

On average, hatchery summer Chinook were about 4 cm smaller than wild summer Chinook sampled in the Methow Basin (Table 7.19). This is interesting given that a slightly higher percentage of hatchery fish returned as age-5 and 6 fish than did wild fish. Future analyses will compare sizes of hatchery and wild fish of the same age groups and gender.
Table 7.19. Mean lengths ($\mathrm{POH} ; \mathrm{cm}$) and variability statistics for wild and hatchery summer Chinook sampled in the Methow Basin, 1993-2006; SD = 1 standard deviation.

Survey year	Origin	Sample size	Summer Chinook length (POH; cm)			
			Mean	SD	Minimum	Maximum
1993	Wild	41	74	9	51	89
	Hatchery	24	62	8	36	80
1994	Wild	112	69	8	35	87
	Hatchery	114	67	5	43	77
1995	Wild	62	74	6	52	88
	Hatchery	57	73	7	46	85
1996	Wild	64	70	11	34	91
	Hatchery	23	72	7	58	85
1997	Wild	62	76	9	35	90
	Hatchery	16	68	15	33	87
1998	Wild	196	67	10	38	97
	Hatchery	123	63	10	37	87
1999	Wild	293	66	8	43	99
	Hatchery	211	66	7	26	89
2000	Wild	288	74	8	37	89
	Hatchery	109	68	12	24	87
2001	Wild	328	67	10	29	86
	Hatchery	529	63	10	31	87
2002	Wild	1,076	70	8	37	94
	Hatchery	738	67	9	33	87
2003	Wild	543	71	8	35	88
	Hatchery	405	69	8	35	89
2004	Wild	442	73	7	38	89
	Hatchery	135	65	12	34	85
2005	Wild	437	69	8	45	86
	Hatchery	229	64	9	36	79
2006	Wild	438	73	7	35	92
	Hatchery	149	69	8	38	91
Pooled	Wild	4,382	71	8	29	99
	Hatchery	2,862	67	9	24	91

Contribution to Fisheries

Most of the harvest on Methow summer Chinook occurred in the Ocean (Table 7.20). Ocean harvest has made up 13% to 98% of all Methow summer Chinook harvested. Brood years 1998 and 1998 provided the largest harvests, while brood year 1996 provided the lowest.
Table 7.20. Estimated number and percent (in parentheses) of Methow summer Chinook captured in different fisheries.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational (sport)	
1989	$1,056(53)$	$805(40)$	$79(4)$	$66(3)$	2,006
1990	$60(59)$	$37(37)$	$4(4)$	$0(0)$	101
1991	$12(20)$	$49(80)$	$0(0)$	$0(0)$	61
1992	$17(55)$	$14(45)$	$0(0)$	$0(0)$	31
1993	$14(58)$	$8(33)$	$2(8)$	$0(0)$	24
1994	$139(79)$	$32(18)$	$3(2)$	$1(1)$	175
1995	$58(98)$	$0(0)$	$1(2)$	$0(0)$	59
1996	$11(92)$	$1(8)$	$0(0)$	$0(0)$	12
1997	$213(88)$	$4(2)$	$3(1)$	$21(9)$	241
1998	$1,773(84)$	$0(0)$	$102(5)$	$234(11)$	2,118
1999	$2(13)$	$0(0)$	$13(87)$	$0(0)$	15
2000	$375(80)$	$0(0)$	$65(14)$	$27(6)$	467
2001	$328(62)$	$0(0)$	$68(13)$	$129(25)$	525

Straying

Stray rates were determined by examining CWTs recovered on spawning grounds within and outside the Methow Basin. Targets for strays based on return year (recovery year) and brood year should be less than 5\%.

Rates of Methow summer Chinook straying into basins outside the Methow have been very low (Table 7.21). Although a few Methow summer Chinook have strayed into the Okanogan Basin, Chelan tailrace, and Hanford Reach, staying has consistently been less than 5\%.
Table 7.21. Number and percent of spawning escapements within other non-target basins that consisted of Methow summer Chinook, return years 1994-2004. For example, for return year 2002, 0.4% of the summer Chinook escapement in the Okanogan Basin consisted of Methow summer Chinook. Percent strays should be less than 5%.

Return year	Wenatchee		Okanogan		Chelan		Entiat		Hanford Reach	
	Number	\%								
1994	0	0.0	72	1.8	-	-	-	-	-	-
1995	0	0.0	9	0.3	-	-	-	-	-	-
1996	0	0.0	0	0.0	-	-	-	-	-	-
1997	0	0.0	0	0.0	-	-	-	-	-	-

Return year	Wenatchee		Okanogan		Chelan		Entiat		Hanford Reach	
	Number	\%								
1998	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1999	0	0.0	6	0.2	0	0.0	0	0.0	7	0.0
2000	0	0.0	3	0.1	0	0.0	0	0.0	0	0.0
2001	0	0.0	0	0.0	0	0.0	0	0.0	7	0.0
2002	0	0.0	54	0.4	0	0.0	0	0.0	0	0.0
2003	0	0.0	1	0.0	6	1.4	0	0.0	0	0.0
2004	0	0.0	7	0.1	3	0.7	0	0.0	0	0.0
Total	0	0.0	152	0.3	9	0.3	0	0.0	14	0.0

On average, about 3.9\% of the returns have strayed into non-target spawning areas, falling below the target of 5\% (Table 7.22). Depending on brood year, percent strays into non-target spawning areas have ranged from $0-10.8 \%$. Few ($<2 \%$ on average) have strayed into non-target hatchery programs.
Table 7.22. Number and percent of Methow summer Chinook that homed to target spawning areas and the target hatchery program, and number and percent that strayed to non-target spawning areas and non-target hatchery programs, by brood years 1989-2001. Percent stays should be less than 5%.

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1989	773	55.7	459	33.0	81	5.8	76	5.5
1990	199	70.6	81	28.7	0	0.0	2	0.7
1991	82	65.6	43	34.4	0	0.0	0	0.0
1992	68	63.0	40	37.0	0	0.0	0	0.0
1993	25	65.8	10	26.3	3	7.9	0	0.0
1994	419	79.7	94	17.9	13	2.5	0	0.0
1995	126	81.8	28	18.2	0	0.0	0	0.0
1996	57	93.4	4	6.6	0	0.0	0	0.0
1997	379	93.8	7	1.7	18	4.5	0	0.0
1998	1,653	94.7	32	1.8	60	3.4	0	0.0
1999	18	100.0	0	0.0	0	0.0	0	0.0
2000	167	90.3	4	2.2	14	7.6	0	0.0
2001	78	83.9	4	4.3	10	10.8	1	1.1
Total	4,044	78.9	806	15.7	199	3.9	79	1.5

Genetics

Tissue (operculum) samples were collected from 144 wild and 144 hatchery summer Chinook in the Methow basin in 2006. Results from these samples should be available in 2009.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 1989-2005, the PNI was equal to or greater than 0.5 in all but three years (Table 7.23). This indicates that the natural environment has a greater influence on adaptation of Methow summer Chinook than does the hatchery environment.

Table 7.23. Proportionate natural influence (PNI) of the Methow summer Chinook supplementation program for brood years 1989-2005. PNI was calculated as the proportion of naturally produced Chinook in the hatchery broodstock (pNOB) divided by the proportion of hatchery Chinook on the spawning grounds (pHOS) plus pNOB. NOS = number of natural origin Chinook on the spawning grounds; HOS = number of hatchery origin Chinook on the spawning grounds; $\mathrm{NOB}=$ number of natural origin Chinook collected for broodstock; and HOB = number of hatchery origin Chinook included in hatchery broodstock.

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1989	620	0	0.00	1,297	312	0.81	1.00
1990	1,391	0	0.00	828	206	0.80	1.00
1991	566	0	0.00	924	314	0.75	1.00
1992	460	0	0.00	297	406	0.42	1.00
1993	310	198	0.39	681	388	0.64	0.62
1994	574	511	0.47	341	244	0.58	0.55
1995	565	649	0.53	173	240	0.42	0.44
1996	424	192	0.31	290	223	0.57	0.64
1997	513	184	0.26	198	264	0.43	0.62
1998	432	243	0.36	153	211	0.42	0.54
1999	536	449	0.46	224	289	0.44	0.49
2000	838	362	0.30	164	339	0.33	0.52
2001	1,051	1,712	0.62	91	266	0.25	0.29
2002	2,512	2,118	0.46	247	241	0.51	0.53
2003	2,232	1,698	0.43	381	101	0.79	0.65
2004	1,632	577	0.26	506	16	0.97	0.79
2005	1,675	886	0.35	391	9	0.98	0.74

Natural Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population. For brood years 1989-2000, NRR for summer Chinook in the Methow
averaged 1.60 (range, 0.54-6.08) if harvested fish were not include in the estimate and 4.51 (range, $0.77-21.25$) if harvested fish were included in the estimate (Table 7.24). NRRs for more recent brood years will be calculated as soon as all tag recoveries and sampling rates have been loaded into the database.

Table 7.24. Spawning escapements, natural origin recruits (NOR), and natural replacement rates (NRR; with and without harvest) for wild summer Chinook in the Methow Basin, 1989-2000. (The numbers in this table may change as the HETT and HC refine the methods for estimating summer Chinook NORs and NRRs.)

Brood year	Spawning escapement	Harvest not included		Harvest included	
		NRR	NOR	NRR	
1989	552	754	1.36	1,286	2.33
1990	1,391	776	0.56	1,070	0.77
1991	566	342	0.60	541	0.96
1992	460	649	1.41	985	2.14
1993	508	575	1.13	763	1.50
1994	1,085	632	0.58	956	0.88
1995	1,214	1,226	1.01	2,420	1.99
1996	615	785	1.28	2,078	3.38
1997	697	2,282	3.27	7,143	10.25
1998	675	4,101	6.08	14,344	21.25
1999	986	3,180	3.23	11,295	11.46
2000	1,200	649	0.54	2,005	1.67
Average	$\mathbf{8 2 9}$	$\mathbf{1 , 3 2 9}$	$\mathbf{1 . 6 0}$	3,741	$\mathbf{4 . 5 1}$

Hatchery Replacement Rates

Hatchery replacement rates were estimated as hatchery adult-to-adult returns. These rates should be greater than the NRRs and greater than or equal to 5.30 (the value in BAMP; Murdoch and Peven 2005). HRRs exceeded NRRs in four or five of the 12 years of data depending on if harvest was or was not included in the estimate (Table 7.25). Hatchery replacement rates for Methow summer Chinook have exceeded the BAMP target of 5.30 in two of the 12 years of data, regardless if harvest is or is not included in the estimate.

Table 7.25. Hatchery replacement rates (HRR), NRR, and BAMP target (5.30) for summer Chinook in the Methow Basin, 1989-2000. (The numbers in this table may change as the HETT and HC refine the methods for estimating summer Chinook HRRs and NRRs.)

Brood year	Harvest not included			Harvest included		
	HRR	NRR	BAMP	HRR	NRR	BAMP
1989	6.88	1.36	5.30	16.81	2.33	5.30
1990	1.40	0.56	5.30	1.90	0.77	5.30
1991	0.47	0.60	5.30	0.70	0.96	5.30
1992	0.50	1.41	5.30	0.65	2.14	5.30
1993	0.16	1.13	5.30	0.26	1.50	5.30
1994	1.95	0.58	5.30	2.60	0.88	5.30
1995	0.61	1.01	5.30	0.84	1.99	5.30
1996	0.30	1.28	5.30	0.35	3.38	5.30
1997	1.98	3.27	5.30	3.14	10.25	5.30
1998	7.43	6.08	5.30	16.45	21.25	5.30
1999	0.10	3.23	5.30	0.17	11.46	5.30
2000	0.84	0.54	5.30	2.94	1.67	5.30
Average	$\mathbf{1 . 8 4}$	$\mathbf{1 . 6 0}$	5.30	3.76	4.51	5.30

Smolt-to-Adult Survivals

Smolt-to-adult survival ratios (SARs) were calculated as the number of hatchery adults divided by the number of hatchery smolts released. SARs were based on CWT returns. For the available brood years, SARs have ranged from 0.00008 to 0.01890 for hatchery summer Chinook in the Methow Basin (Table 7.26).

Table 7.26. Smolt-to-adult ratios (SARs) for Methow summer Chinook; NA = not available.

Brood year	Number of smolts released	Estimated adult captures	SAR
1989	358,237	2,881	0.00804
1990	371,483	366	0.00099
1991	377,097	130	0.00034
1992	392,636	138	0.00035
1993	200,345	62	0.00031
1994	400,488	696	0.00174
1995	344,974	211	0.00061
1996	289,880	72	0.00025
1997	380,430	641	0.00168
1998	202,559	3,829	0.01890
1999	422,473	33	0.00008
2000	334,337	651	0.00195

Brood year	Number of smolts released	Estimated adult captures	SAR
2001	246,159	616	0.00250
Average	332,392	794	0.00239

7.7 ESA/HCP Compliance

Broodstock Collection

Summer Chinook adults collected at Wells Dam are used for both the Methow and Okanogan supplementation programs. Per the 2005 broodstock collection protocol, 556 natural origin (adipose fin present) adults were targeted for collection between 5 July and 14 September at the East Ladder of Wells Dam. Actual collections occurred between 5 July and 12 September and totaled 563 summer Chinook. The overage in adult broodstock collection was attributable to errors in enumeration during collection. ESA Permit 1347 provides authorization to collect Methow and Okanogan summer Chinook at Wells Dam three days per week and up to 16 hours per day from July through November. During 2005, broodstock collection activities encompassed a total of 15 days, representing 23% of the allowable trapping days allowed under ESA Permit 1347.
Collection of Methow and Okanogan summer Chinook broodstock at Wells Dam occurred concurrently with collection of summer steelhead for the Wells steelhead program authorized under ESA Section 10 Permit 1395. Encounters with steelhead and spring Chinook during Methow and Okanogan summer Chinook broodstock collections did not result in takes that were outside those authorized in Permit 1347 and in Permit 1395 for the Wells Steelhead program. Steelhead encountered during summer Chinook collections that were not required for steelhead broodstock were passed at the trap site and were not physically handled. Any spring Chinook encountered during summer Chinook broodstock activities were also passed without handling.

Hatchery Rearing and Release

The 2005 brood Okanogan/Similkameen summer Chinook reared throughout their juvenile lifestages at Eastbank Fish Hatchery and the Carlton Acclimation pond without incident (see section 7.2). The 2005 brood smolt release totaled 263,723 summer Chinook, representing 65.8% of the production objective and complied with the maximum production levels identified in ESA Section 10 Permit 1347. The 2005 brood smolt production level was less than the program production level primarily because of a male-skewed sex ratio in the broodstock (Table 7.4).

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery facilities during the period 1 January 2007 through 31 December 2007. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2007 are provided in Appendix E.

Spawning Surveys

Summer Chinook spawning ground surveys conducted in the Methow Basin during 2007 were consistent with ESA Section 10 Permit No. 1347. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

SECTION 8: OKANOGAN/SIMILKAMEEN SUMMER CHINOOK

8.1 Broodstock Sampling

Summer Chinook broodstock for the Okanogan/Similkameen and Methow programs is collected in the East Ladder of Wells Dam. Refer to Section 7.1 for information on the origin, age and length, sex ratios, and fecundity of summer Chinook broodstock collected at Wells Dam.

8.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of 711,111 eggs are required to meet the program release goal of 576,000 smolts. Between 1989 and 2006, the egg take goal was reached in ten of those years (Table 8.1).

Table 8.1. Numbers of eggs taken from summer Chinook broodstock collected at Wells Dam for the Okanogan program, 1989-2006.

Return year	Number of eggs taken
1989	724,200
1990	696,144
1991	879,892
1992	729,389
1993	797,234
1994	893,086
1995	736,500
1996	672,000
1997	601,744
1998	584,018
1999	725,589
2000	645,403
2001	418,907
2002	718,599
2003	710,521
2004	805,814
2005	452,928
2006	757,350
Average	697,507

Number of acclimation days

Fish were volitionally released from Similkameen Pond as yearling smolts beginning in April 2007. Fish acclimated at Similkameen were held for 179 to 200 days (Table 8.2). Any fish that may have survived over the winter at Bonaparte Pond reared for about 156 days on Okanogan River water.

Table 8.2. Number of days Okanogan summer Chinook broods were acclimated at Similkameen and Bonaparte ponds, brood years 1989-2005.

Brood year	Release year	Rearing facility	Transfer date	Release date	Number of days
1989	1991	Similkameen	29-Oct	7-May	190
1990	1992	Similkameen	5-Nov	25-Apr	171
1991	1993	Similkameen	1-Nov	9-Apr	159
		Similkameen	2-Nov	1-Apr	150
			26-Feb	1-Apr	34
			24-Oct	1-Apr	159
			24-Feb	1-Apr	36
			30-Oct	6-Apr	158
			14-Mar	6-Apr	23
1995	1997	Similkameen	1-Oct	1-Apr	182
1996	1998	Similkameen	10-Oct	15-Mar	156
1997	1999	Similkameen	7-Oct	19-Apr	194
1998	2000	Similkameen	5-Oct	19-Apr	196
1999	2001	Similkameen	5-Oct	18-Apr	195
2000	2002	Similkameen	10-Oct	8-Apr	180
2001	2003	Similkameen	1-Oct	29-Apr	210
2002	2004	Similkameen	9-Nov	23-Apr	165
2003	2005	Similkameen	19-Oct	28-Apr	191
2004	2006	Similkameen	26-Oct	23-Apr	179
		Bonaparte	6-Nov	11-Apr	156
		Similkameen	25-Oct	18-Apr - 9-May	179-200
Average					157

Release Information

Numbers released

The 2005 Okanogan summer Chinook program achieved 47.9% of the 576,000 target goal with about 275,919 fish being released volitionally between 18 April and 9 May (Table 8.3) in the Similkameen River. Of the estimated 100,146 fish transferred to Bonaparte Pond, some unknown
number may have survived; although, based on observations by fish health personnel, it is assumed that no fish survived. With damage to the water screens by ice, which could have allowed some fish to escape undetected, and a significant die off resulting from bacterial gill disease (BGD; treatment was also compounded by surface ice), it is unlikely that many fish survived over the winter at Bonaparte Pond.

Table 8.3. Numbers of Okanogan summer Chinook smolts released from the Similkameen and Bonaparte ponds, brood years 1989-2005. The release target for Okanogan summer Chinook is 576,000 smolts.

Brood year	Release year	Rearing facility	Number of smolts
1989	1991	Similkameen	352,600
1990	1992	Similkameen	540,000
1991	1993	Similkameen	675,500
1992	1994	Similkameen	548,182
1993	1995	Similkameen	586,000
1994	1996	Similkameen	536,299
1995	1997	Similkameen	587,000
1996	1998	Similkameen	507,913
1997	1999	Similkameen	589,591
1998	2000	Similkameen	293,191
1999	2001	Similkameen	630,463
2000	2002	Similkameen	532,453
2001	2003	Similkameen	26,642
2002	2004	Similkameen	388,589
2003	2005	Similkameen	579,019
2004	2006	Similkameen	703,359
2005	2007	Bonaparte	0 (assumed)
	Similkameen	275,919	
			491,336

Numbers tagged

The 2005 brood Okanogan summer Chinook from the Bonaparte and Similkameen facilities were 96.0% and 98.6% CWT and adipose fin-clipped, respectively. Neither group was PIT tagged.

Fish size and condition at release
Size at release of the Similkameen population was 75.0% and 57.0% of the target fork length and weight, respectively. The target CV for fork length was exceeded by 7\% (Table 8.4). Size-at-release data were not collected for the Bonaparte fish.

Table 8.4. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Okanogan summer Chinook smolts released from the hatchery, brood years 1989-2005. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1989	1991	-	-	41.3	11
1990	1992	143	9.5	37.8	12
1991	1993	125	15.5	22.4	20
1992	1994	120	15.4	20.7	22
1993	1995	132	-	23.2	20
1994	1996	136	16.0	29.6	15
1995	1997	137	8.2	32.8	14
1996	1998	127	12.8	26.2	17
1997	1999	144	9.9	36.0	13
1998	2000	148	5.9	35.0	11
1999	2001	141	15.7	20.4	13
2000	2002	121	13.4	25.7	22
2001	2003	132	8.2	20.8	18
2002	2004	119	13.4	28.9	22
2003	2005	133	10.6	29.8	16
2004	2006	132	9.9	25.9	15
2005	2007	132	9.9	$\mathbf{4 5 . 4}$	18

Survival Estimates

Overall survival of Okanogan summer Chinook (not including the Bonaparte component) from green (unfertilized) egg to release was slightly above the standard set for the program (Table 8.5). Lower than expected green egg-to-eye survival further reduced the overall survival performance. Currently, it is unknown if gamete viability is gender biased or is uniform between sexes and more influenced by between-year environmental variations.

Post transfer survival of the Bonaparte group was considerably lower than expected (Table 8.5). Disease (BGD primarily), the inability to treat BGD because of extended presence of surface ice, and damage to water screens by ice suggests that few if any fish survived.

Table 8.5. Hatchery life-stage survival rates (\%) for Okanogan summer Chinook, brood years 1989-2005. Survival standards or targets are provided in the last row of the table.

Brood year	Rearing facility	Collection to spawning		Unfertilized egg-eyed	Eyed eggponding	$30 \mathrm{~d}$ after ponding	$100 \mathrm{~d}$ after ponding	```Ponding to release```	Transport to release	Unfertilized egg-release
		Female	Male							
$1989{ }^{\text {a }}$	Similkameen	89.8	99.5	89.9	96.7	99.7	99.4	73.3	57.4	63.7
$1990^{\text {a }}$	Similkameen	93.9	99.0	84.9	97.1	81.2	80.6	97.7	98.6	80.5
1991 ${ }^{\text {a }}$	Similkameen	93.1	95.5	88.2	97.1	99.4	99.1	98.4	97.1	84.2
$1992{ }^{\text {a }}$	Similkameen	96.9	99.0	87.0	98.0	99.9	99.9	91.7	92.6	78.2
$1993{ }^{\text {a }}$	Similkameen	82.2	99.4	85.4	97.6	99.8	99.5	92.0	90.2	76.7
1994	Similkameen	96.1	90.0	86.6	100.0	98.1	97.4	73.1	89.8	63.3
1995	Similkameen	91.9	96.2	98.2	84.1	96.5	96.2	92.7	98.2	76.6
1996	Similkameen	95.4	98.1	83.2	100.0	97.7	96.9	86.5	92.5	72.0
1997	Similkameen	91.9	94.6	86.1	98.4	98.7	98.3	98.8	99.4	83.7
1998	Similkameen	84.0	96.2	54.1	98.0	99.4	98.9	96.6	99.6	51.2
1999	Similkameen	98.8	98.7	92.9	96.9	98.0	97.6	96.9	99.0	87.2
2000	Similkameen	90.5	96.9	89.2	98.5	98.2	98.0	93.6	97.2	82.6
2001	Similkameen	96.2	92.3	89.1	97.6	99.7	99.5	7.4	11.9	6.4
2002	Similkameen	97.1	98.1	89.8	98.0	99.7	99.5	51.6	52.2	45.4
2003	Similkameen	96.7	97.5	86.8	97.6	99.3	98.5	98.0	98.8	83.0
2004	Similkameen	93.6	98.2	84.0	97.6	99.6	99.3	97.8	98.8	80.2
	Bonaparte	93.6	98.2	84.0	97.6	99.6	99.3	97.9	98.9	80.3
2005	Similkameen	97.0	89.6	88.0	99.5	99.5	99.0	93.5	94.6	81.8
	Bonaparte	97.0	89.6	88.0	99.5	99.5	99.0	0.0	0.0	0.0
Standard		90.0	85.0	92.0	98.0	97.0	93.0	90.0	95.0	81.0

${ }^{\text {a }}$ Survival rates were calculated from the aggregate population collected at Wells Fish Hatchery volunteer channel and left- and right-ladder traps at Wells Dam.

8.3 Disease Monitoring

Rearing of the 2005 brood Okanogan summer Chinook was similar to previous years with fish being held on well water before being transferred for final acclimation on Similkameen or Okanogan river water. The Similkameen population was transferred in late October 2006. Fish were prophylactically treated upon transfer with formalin to control external parasites (Ich and Dermocystidium) and fungus, which in recent years has led to significant losses in this program. In mid January 2007, the spicule-shaped bacteria responsible for bacterial gill disease (BGD) began to increase in the Similkameen. The use of Chloramine-T was recommended for control of BGD. This group continued to experience exposure to BGD; however, losses continued to remain low. This group was treated with KMnO_{4} for two days when the river water began to clear up in late March. No additional disease-related problems were noted before release.

The Bonaparte Pond population was transferred and reared on Okanogan River water from early November 2007 until release. Ice formed over the pond in early December and fish were not available for inspection until early February. Given the Similkameen population began breaking with BGD in mid January, it is likely that the Bonaparte population did as well. Upon ice breakup (late

February), BGD was confirmed in all dead fish sampled (significant mortalities were observed). Although no live fish were observed, KMnO_{4} treatments were applied for three days to ensure that any unseen live fish would not die from BGD.

8.4 Spawning Surveys

Surveys for Okanogan/Similkameen summer Chinook redds were conducted from late September to mid-November, 2007, in the Okanogan and Similkameen rivers. Total redd counts (not peak counts) were conducted in the rivers (see Appendix J for more details).

Redd Counts

A total of 2,008 summer Chinook redds were counted in the Okanogan Basin in 2007 (Table 8.6). This was greater than the 19-year average of 1,608 redds.

Table 8.6. Total number of redds counted in the Okanogan Basin, 1989-2007.

Survey year	Number of summer Chinook redds		
	Okanogan River	Similkameen River	Total count
1989	134*	370	504
1990	47	147	194
1991	64	91	155
1992	53	57	110
1993	162	288	450
1994	375	777	1,152
1995	267	616	883
1996	116	419	535
1997	158	486	644
1998	88	276	364
1999	369	1,275	1,644
2000	549	993	1,542
2001	1,108	1,540	2,648
2002	2,667	3,358	6,025
2003	1,035	378	1,413
2004	1,327	1,660	2,987
2005	1,611	1,423	3,034
2006	2,592	1,666	4,258
2007	1,301	707	2,008
Average	738	870	1,608

* Peak count based on an aerial survey.

Redd Distribution

Summer Chinook redds were not evenly distributed among the survey reaches in the Okanogan Basin. Most redds (87\%) were located in the upper Okanogan and lower Similkameen reaches
(reaches upstream of the Riverside Bridge) (Table 8.7; Figure 8.1). Relatively few summer Chinook spawned downstream of the Riverside Bridge on the Okanogan River (Reaches 1-4).

Table 8.7. Total number of summer Chinook redds counted in different reaches in the Okanogan Basin during September through mid-November, 2007. Reach codes are described in Table 2.11.

Survey reach	Total redd count	Percent
Okanogan 1	3	0.1
Okanogan 2	16	0.8
Okanogan 3	116	5.8
Okanogan 4	63	3.1
Okanogan 5	549	27.3
Okanogan 6	554	27.6
Similkameen 1	652	32.5
Similkameen 2	55	2.7
Totals	$\mathbf{2 , 0 0 8}$	$\mathbf{1 0 0 . 0}$

Okan/Similk Summer Chinook Redds

Figure 8.1. Percent of the total number of summer Chinook redds counted in different reaches in the Okanogan Basin during September through mid-November, 2007. Reach codes are described in Table 2.11.

Spawn Timing

Spawning in 2007 began the last week in September in the Similkameen and the first week of October in the Okanogan, and peaked during the second week of October in both rivers (Figure 8.2). Spawning began when stream temperature varied from $12-15^{\circ} \mathrm{C}$. The temporal distribution of spawning activity in 2007 was similar to the 16 -year average, with the exception of peak spawning in 2007 occurring a week later than the average.

Okan/Similk Summer Chinook

Week
Figure 8.2. Comparison of the number of new summer Chinook redds counted during different weeks in the Okanogan Basin, September through mid-November, 2007, to the 16 -year average.

Spawning Escapement

Spawning escapement for Okanogan/Similkameen summer Chinook was calculated as the total number of redds times the fish per redd ratio estimated from fish sampled at Wells Dam. The estimated fish per redd ratio for Okanogan/Similkameen summer Chinook in 2007 was 2.20. Multiplying this ratio by the number of redds counted in the Okanogan and Similkameen rivers resulted in a total spawning escapement of 4,417 summer Chinook (Table 8.8).

Table 8.8. Spawning escapements for summer Chinook in the Okanogan and Similkameen rivers for return years 1989-2007.

Return year	Fish/Redd	Spawning escapement		
		Okanogan	Similkameen	Total
1989^{*}	3.30	561	1,221	1,782
1990^{*}	3.40	381	500	881
1991^{*}	3.70	237	337	574
1992^{*}	4.30	228	245	473
193^{*}	3.30	535	950	1,485
194^{*}	3.50	1,313	2,720	4,033
1995^{*}	3.40	908	2,094	3,002
1996^{*}	3.40	394	1,425	1,819
1997^{*}	3.40	537	1,652	2,189
1998	3.00	264	828	1,092
1999	2.20	812	2,805	3,617

Return year	Fish/Redd	Spawning escapement		
		Okanogan	Similkameen	Total
2000	2.40	1,318	2,383	3,701
2001	4.10	4,543	6,314	10,857
2002	2.30	6,134	7,723	13,857
2003	2.42	2,505	915	3,420
2004	2.25	2,986	3,735	6,721
2005	2.93	4,720	4,169	8,889
2006	2.02	5,236	3,365	8,601
2007	2.20	2,862	1,555	4,417
Average	3.03	$\mathbf{1 , 9 2 0}$	$\mathbf{2 , 3 6 5}$	$\mathbf{4 , 2 8 5}$

* Spawning escapement was calculated using the "Modified Meekin Method" (i.e., 3.1 x jack multiplier).

8.5 Carcass Surveys

Surveys for summer Chinook carcasses were conducted during late September to mid-November, 2007, in the Okanogan and Similkameen rivers (see Appendix J for more details).

Number sampled

A total of 1,716 summer Chinook carcasses were sampled during September through mid-November in the Okanogan Basin (Table 8.9). A total of 1,030 were sampled in the Okanogan River and 686 in the Similkameen River.

Table 8.9. Numbers of summer Chinook carcasses sampled within each survey reach in the Okanogan Basin, 1993-2007. Reach codes are described in Table 2.11.

Survey year	Number of summer Chinook carcasses								
	Okanogan						Similkameen		Total
	O-1	O-2	O-3	O-4	O-5	O-6	S-1	S-2	
$1993{ }^{\text {a }}$	0	2	3	0	23	13	73	1	115
$1994{ }^{\text {b }}$	0	4	4	0	27	5	318	60	418
1995	0	0	2	0	30	0	239	15	286
1996	0	0	0	2	5	2	226	0	235
1997	0	0	2	0	9	3	225	1	240
1998	0	1	8	1	7	7	340	4	368
1999	0	0	3	2	23	53	766	48	895
2000	0	2	20	15	47	16	727	41	868
2001	0	26	75	10	127	112	1,141	105	1,596
2002	10	32	83	35	204	573	1,265	259	2,461
$2003{ }^{\text {c }}$	0	0	26	0	15	208	180	8	437
2004	0	4	31	24	146	283	1,392	298	2,178
2005	0	8	93	37	371	431	731	276	1,947

Survey year	Number of summer Chinook carcasses								
	Okanogan						Similkameen		Total
	O-1	O-2	O-3	O-4	O-5	O-6	S-1	S-2	
2006	4	3	31	16	120	291	513	100	1,078
2007	2	1	48	1	459	519	657	29	1,716
Average	1	6	29	10	108	168	586	83	989

${ }^{\text {a }} 25$ additional carcasses were sampled on the Similkameen and 46 on the Okanogan without any reach designation.
${ }^{\mathrm{b}}$ One additional carcasses was sampled on the Similkameen without any reach designation.
${ }^{\text {c }} 793$ carcasses were sampled on the Similkameen before initiation of spawning (pre-spawn mortality) and an additional 40 carcasses were sampled on the Okanogan. The cause of the high mortality (Ichthyophthirius multifilis and Flavobacterium columnarae) was exacerbated by high river temperatures.

Carcass Distribution and Origin

Summer Chinook carcasses were not evenly distributed among reaches within the Okanogan Basin in 2007 (Table 8.9; Figure 8.3). Most of the carcasses in the basin were found in the upper Okanogan River and lower Similkameen River. The highest percentage of carcasses (38\%) was sampled in Reach 1 on the Similkameen River between the Driscoll Channel and Oroville Bridge.

Okan/Similk Summer Chinook Carcasses

Figure 8.3. Percent of summer Chinook carcasses sampled within different reaches in the Okanogan Basin during September through mid-November, 2007. Reach codes are described in Table 2.11.
Numbers of wild and hatchery origin summer Chinook carcasses sampled in 2007 will be available after analysis of CWTs and scales. Based on the available data (1991-2006), most fish, regardless of origin, were found in Reach 1 on the Similkameen River (Driscoll Channel to Oroville Bridge) (Table 8.10). However, a slightly larger percentage of hatchery fish were found in reaches on the Similkameen River than were wild fish (Figure 8.4). In contrast, a larger percentage of wild fish were found in reaches on the Okanogan River.

Table 8.10. Numbers of wild and hatchery summer Chinook carcasses sampled within different reaches in the Okanogan Basin, 1993-2006.

Survey year	Origin	Survey reach								Total
		O-1	O-2	O-3	O-4	O-5	O-6	S-1	S-2	
1993	Wild	0	0	3	0	13	4	48	1	69
	Hatchery	0	2	0	0	10	9	25	0	46
1994	Wild	0	0	1	0	8	1	113	22	145
	Hatchery	0	4	3	0	19	4	205	38	273
1995	Wild	0	0	1	0	10	0	66	4	81
	Hatchery	0	0	1	0	20	0	173	11	205
1996	Wild	0	0	0	1	3	1	53	0	58
	Hatchery	0	0	0	1	2	1	173	0	177
1997	Wild	0	0	1	0	0	2	83	0	86
	Hatchery	0	0	1	0	9	0	142	1	153
1998	Wild	0	1	3	1	6	5	162	4	182
	Hatchery	0	0	5	0	1	2	178	0	186
1999	Wild	0	0	0	0	9	24	298	10	341
	Hatchery	0	0	3	2	14	29	468	38	554
2000	Wild	0	0	8	8	24	11	189	4	244
	Hatchery	0	2	12	7	23	5	538	37	624
2001	Wild	0	10	23	5	67	42	390	54	591
	Hatchery	0	16	52	5	60	70	751	51	1,005
2002	Wild	6	14	20	10	81	212	340	72	755
	Hatchery	4	18	63	25	123	360	925	187	1,705
2003	Wild	0	0	13	0	12	149	221	116	511
	Hatchery	0	0	15	0	5	91	364	257	732
2004	Wild	0	2	19	19	108	225	1,126	260	1,759
	Hatchery	0	2	12	5	38	58	266	38	419
2005	Wild	0	5	51	21	256	364	532	176	1,405
	Hatchery	0	3	42	16	115	67	199	100	542
2006	Wild	2	2	23	11	110	271	70	78	567
	Hatchery	2	1	8	5	10	20	443	22	511
Average	Wild	1	2	12	5	51	94	264	57	485
	Hatchery	0	3	16	5	32	51	346	56	509

Okan/Similk Summer Chinook

Figure 8.4. Distribution of wild and hatchery produced carcasses in different reaches in the Okanogan Basin, 1993-2006. Reach codes are described in Table 2.11.

Sampling Rate

Overall, 39\% of the total spawning escapement of summer Chinook in the Okanogan Basin was sampled in 2007 (Table 8.11). This was above the target of 20%. Sampling rates among survey reaches varied from 1 to 46%.

Table 8.11. Number of redds and carcasses, total spawning escapement, and sampling rates for summer Chinook in the Okanogan Basin, 2007.

Sampling reach	Total number of redds	Total number of carcasses	Total spawning escapement	Sampling rate
Okanogan 1	3	2	7	0.30
Okanogan 2	16	1	35	0.03
Okanogan 3	116	48	255	0.19
Okanogan 4	63	1	139	0.01
Okanogan 5	549	459	1,208	0.38
Okanogan 6	554	519	1,219	0.43
Similkameen 1	652	657	121	0.46
Similkameen 2	55	$\mathbf{1 , 7 1 6}$	$\mathbf{4 , 4 1 7}$	0.24
Total	$\mathbf{2 , 0 0 8}$		$\mathbf{0 . 3 9}$	

Length Data

Mean lengths ($\mathrm{POH}, \mathrm{cm}$) of male and female summer Chinook carcasses sampled during surveys on the Okanogan and Similkameen rives in 2007 are provided in Table 8.12. The average size of males and females sampled in the Okanogan basin were 64 cm and 76 cm , respectively.
Table 8.12. Mean lengths (postorbital-to-hypural length; cm) and standard deviations (in parentheses) of male and female summer Chinook carcasses sampled in different reaches in the Okanogan Basin, 2007.

Stream/watershed	Mean length (cm)	
	Male	Female
Okanogan 1	$41.5(0)$	$82.5(0)$
Okanogan 2	$41.0(0)$	-
Okanogan 3	$62.6(15.6)$	$74.1(3.8)$
Okanogan 4	-	$78.5(0)$
Okanogan 5	$64.8(15.6)$	$75.5(5.4)$
Okanogan 6	$62.8(14.8)$	$74.0(7.1)$
Similkameen 1	$66.4(14.0)$	$76.9(36.7)$
Similkameen 2	$78.0(4.6)$	$74.2(6.0)$
Total	$\mathbf{6 4 . 3}(14.9)$	$75.8(25.7)$

8.6 Life History Monitoring

Life history characteristics of Okanogan/Similkameen summer Chinook were assessed by examining carcasses on spawning grounds and fish collected or examined at broodstock collection sites, and by reviewing tagging data and fisheries statistics.

Age at Maturity

Most of the wild and hatchery summer Chinook sampled during the period 1993-2006 in the Okanogan Basin were age-4 and 5 fish (total age) (Table 8.13; Figure 8.5). A higher percentage of age- 3 and 4 wild Chinook returned to the basin than did age-3 and 4 hatchery Chinook. In contrast, a higher proportion of age- 5 and 6 hatchery fish returned than did age- 5 and 6 wild fish. Thus, a higher percentage of hatchery fish returned at an older age than did wild fish.

Table 8.13. Proportions of wild and hatchery summer Chinook of different ages (total age) sampled on spawning grounds in the Okanogan Basin, 1993-2006.

Sample year	Origin	Total age						Sample size
		2	3	4	5	6	7	
1993	Wild	0.00	0.00	0.76	0.24	0.00	0.00	63
	Hatchery	0.00	0.02	0.97	0.02	0.00	0.00	61
1994	Wild	0.00	0.03	0.42	0.55	0.00	0.00	135
	Hatchery	0.00	0.02	0.09	0.89	0.00	0.00	292
1995	Wild	0.00	0.01	0.26	0.72	0.00	0.00	68
	Hatchery	0.00	0.01	0.16	0.35	0.48	0.00	204
1996	Wild	0.00	0.14	0.50	0.36	0.00	0.00	36
	Hatchery	0.00	0.02	0.21	0.55	0.20	0.01	177
1997	Wild	0.00	0.00	0.05	0.66	0.29	0.00	73
	Hatchery	0.00	0.00	0.03	0.86	0.12	0.00	153
1998	Wild	0.00	0.03	0.64	0.34	0.00	0.00	151
	Hatchery	0.01	0.05	0.50	0.23	0.22	0.00	185
1999	Wild	0.00	0.00	0.33	0.66	0.00	0.00	275
	Hatchery	0.00	0.00	0.12	0.86	0.01	0.00	545
2000	Wild	0.01	0.07	0.28	0.63	0.02	0.00	216
	Hatchery	0.00	0.12	0.03	0.75	0.10	0.00	545
2001	Wild	0.02	0.15	0.75	0.07	0.00	0.00	531
	Hatchery	0.00	0.05	0.88	0.02	0.05	0.00	1,005
2002	Wild	0.01	0.11	0.65	0.23	0.00	0.00	692
	Hatchery	0.00	0.01	0.21	0.78	0.00	0.00	1,681
2003	Wild	0.01	0.02	0.76	0.21	0.00	0.00	478
	Hatchery	0.00	0.03	0.06	0.79	0.12	0.00	653
2004	Wild	0.00	0.12	0.11	0.76	0.01	0.00	1,529
	Hatchery	0.00	0.01	0.32	0.46	0.21	0.00	381
2005	Wild	0.00	0.08	0.76	0.14	0.02	0.00	1,282
	Hatchery	0.00	0.03	0.13	0.69	0.14	0.00	526
2006	Wild	0.00	0.01	0.47	0.51	0.01	0.00	839
	Hatchery	0.01	0.06	0.26	0.27	0.40	0.00	112
Average	Wild	0.00	0.08	0.49	0.42	0.01	0.00	6,368
	Hatchery	0.00	0.03	0.27	0.61	0.09	0.00	6,520

Okan/Similk Summer Chinook

Figure 8.5. Proportions of wild and hatchery summer Chinook of different total ages sampled at broodstock collection sites and on spawning grounds in the Okanogan Basin for the combined years 1993-2006.

Size at Maturity

On average, hatchery summer Chinook were about 1 cm smaller than wild summer Chinook sampled in the Okanogan Basin (Table 8.14). This is interesting given that a slightly higher percentage of hatchery fish returned as age-5 and 6 fish than did wild fish. Future analyses will compare sizes of hatchery and wild fish of the same age groups and gender.

Table 8.14. Mean lengths ($\mathrm{POH} ; \mathrm{cm}$) and variability statistics for wild and hatchery summer Chinook sampled in the Okanogan Basin, 1993-2006; SD = 1 standard deviation.

Sample year	Origin	Sample size	Summer Chinook length (POH; cm)			
			Mean	SD	Minimum	Maximum
1993	Wild	69	73	7	52	90
	Hatchery	59	62	6	47	75
1994	Wild	164	71	7	40	86
	Hatchery	300	69	8	30	84
1995	Wild	81	75	6	54	87
	Hatchery	201	73	8	39	87
1996	Wild	22	68	14	22	85
	Hatchery	26	75	8	60	88
1997	Wild	87	71	7	44	85
	Hatchery	148	74	6	48	88
1998	Wild	182	70	8	45	94
	Hatchery	186	65	12	30	87
1999	Wild	340	73	7	56	91

Sample year	Origin	Sample size	Summer Chinook length (POH; cm)			
			Mean	SD	Minimum	Maximum
	Hatchery	554	71	7	23	84
2000	Wild	241	70	10	32	86
	Hatchery	624	69	12	24	92
2001	Wild	579	67	9	26	90
	Hatchery	997	61	8	32	90
2002	Wild	755	69	9	28	91
	Hatchery	1,705	70	8	33	87
2003	Wild	533	68	9	30	93
	Hatchery	732	69	10	26	90
2004	Wild	1,757	71	10	33	94
	Hatchery	416	66	9	41	92
2005	Wild	1,407	66	7	41	99
	Hatchery	542	68	8	31	85
2006	Wild	940	72	6	31	91
	Hatchery	138	70	10	33	86
Pooled	Wild	7,157	70	8	22	99
	Hatchery	6,628	69	9	23	92

Contribution to Fisheries

Most of the harvest on Okanogan/Similkameen summer Chinook occurred in the Ocean (Table 8.15). Ocean harvest has made up 69% to 100% of all Okanogan/Similkameen summer Chinook harvested. Brood years 1989 and 1997-2000 provided the largest harvests, while brood year 1996 provided the lowest.
Table 8.15. Estimated number and percent (in parentheses) of Okanogan/Similkameen summer Chinook captured in different fisheries, 1989-2000.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational (sport)	
1989	$2,325(79)$	$351(12)$	$200(7)$	$79(3)$	2,955
1990	$334(88)$	$27(7)$	$7(2)$	$12(3)$	380
1991	$215(85)$	$37(15)$	$0(0)$	$0(0)$	252
1992	$434(92)$	$24(5)$	$6(1)$	$10(2)$	474
1993	$37(79)$	$10(21)$	$0(0)$	$0(0)$	47
1994	$884(92)$	$41(4)$	$18(2)$	$17(2)$	960
1995	$614(93)$	$3(0)$	$18(3)$	$24(4)$	659
1996	$4(100)$	$0(0)$	$0(0)$	$0(0)$	4
1997	$6,371(92)$	$89(1)$	$80(1)$	$416(6)$	2,956

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational (sport)	
1998	$4,343(89)$	$8(0)$	$299(6)$	$117(4)$	4,897
1999	$1,322(69)$	$8(0)$	$227(12)$	$371(19)$	1,928
2000	$3,261(75)$	$3(0)$	$443(10)$	$613(14)$	4,320
2001	$178(72)$	$0(0)$	$48(19)$	$21(9)$	247

Straying

Stray rates were determined by examining CWTs recovered on spawning grounds within and outside the Okanogan Basin. Targets for strays based on return year (recovery year) and brood year should be less than 5\%.

Rates of Okanogan summer Chinook straying into basins outside the Okanogan have been very low (Table 8.16). Although a few Okanogan summer Chinook have strayed into other spawning areas, straying, on average, has been less than 5\%. The Chelan tailrace has received the largest number of Okanogan strays.
Table 8.16. Number and percent of spawning escapements within other non-target basins that consisted of Okanogan summer Chinook, return years 1994-2004. For example, for return year 2002, 1% of the summer Chinook spawning escapement in the Entiat Basin consisted of Okanogan summer Chinook. Percent strays should be less than 5%.

Return year	Wenatchee		Methow		Chelan		Entiat		Hanford Reach	
	Number	\%								
1994	0	0.0	0	0.0	-	-	-	-	-	-
1995	0	0.0	0	0.0	-	-	-	-	-	-
1996	0	0.0	0	0.0	-	-	-	-	-	-
1997	0	0.0	0	0.0	-	-	-	-	-	-
1998	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1999	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2000	0	0.0	6	0.5	30	4.5	0	0.0	3	0.0
2001	12	0.1	0	0.0	10	1.0	0	0.0	0	0.0
2002	0	0.0	3	0.1	4	0.7	5	1.0	0	0.0
2003	0	0.0	8	0.2	22	5.3	0	0.0	0	0.0
2004	0	0.0	27	1.2	36	8.6	0	0.0	8	0.0
Total	12	0.0	44	0.2	102	3.1	5	0.2	11	0.0

On average, less than 1% of the returns have strayed into non-target spawning areas, falling below the target of 5\% (Table 8.17). Depending on brood year, percent strays into non-target spawning areas have ranged from $0-4.4 \%$. Few ($<2 \%$ on average) have strayed into non-target hatchery programs.

Table 8.17. Number and percent of Okanogan summer Chinook that homed to target spawning areas and the target hatchery, and number and percent that strayed to non-target spawning areas and non-target hatchery programs, by brood years 1989-2001. Percent stays should be less than 5\%.

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1989	3,132	69.7	1,328	29.6	2	0.0	31	0.7
1990	729	71.4	291	28.5	0	0.0	1	0.1
1991	1,125	71.3	453	28.7	0	0.0	0	0.0
1992	1,264	68.5	572	31.0	8	0.4	1	0.1
1993	84	61.3	51	37.2	0	0.0	2	1.5
1994	2,174	80.8	478	17.8	38	1.4	2	0.1
1995	1,883	85.4	271	12.3	50	2.3	0	0.0
1996	27	100.0	0	0.0	0	0.0	0	0.0
1997	11,629	97.2	309	2.6	27	0.2	3	0.0
1998	2,727	95.6	99	3.5	24	0.8	2	0.1
1999	828	96.7	18	2.1	10	1.2	0	0.0
2000	1,590	93.5	20	1.2	75	4.4	15	0.9
2001	28	100.0	0	0.0	0	0.0	0	0.0
Total	27,220	86.7	3,890	12.4	234	0.7	57	0.2

Genetics

Tissue (operculum) samples were collected from 144 wild and 144 hatchery summer Chinook in the Okanogan basin in 2006. Results from these samples should be available in 2008.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 1989-2005, the PNI was equal to or greater than 0.5 in 8 out of the 17 years (Table 8.18). This indicates that in those years the hatchery environment has had a relatively greater influence on adaptation of Okanogan/Similkameen summer Chinook than has the natural environment.

Table 8.18. Proportionate natural influence (PNI) of the Okanogan/Similkameen summer Chinook supplementation program for brood years 1989-2005. PNI was calculated as the proportion of naturally produced Chinook in the hatchery broodstock (pNOB) divided by the proportion of hatchery Chinook on the spawning grounds (pHOS) plus pNOB. NOS = number of natural origin Chinook on the spawning grounds; HOS = number of hatchery origin Chinook on the spawning grounds; NOB = number of natural origin Chinook collected for broodstock; and HOB = number of hatchery origin Chinook included in hatchery broodstock.

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1989	1,782	0	0.00	1,297	312	0.81	1.00
1990	881	0	0.00	828	206	0.80	1.00
1991	574	0	0.00	924	314	0.75	1.00
1992	473	0	0.00	297	406	0.42	1.00
1993	731	754	0.51	681	388	0.64	0.56
1994	1,409	2,623	0.65	341	244	0.58	0.47
1995	889	2,113	0.70	173	240	0.42	0.38
1996	579	1,240	0.68	290	223	0.57	0.46
1997	760	1,429	0.65	198	264	0.43	0.40
1998	576	516	0.47	153	211	0.42	0.47
1999	1,426	2,190	0.61	224	289	0.44	0.42
2000	1,273	2,428	0.66	164	339	0.33	0.33
2001	4,614	6,242	0.57	91	266	0.25	0.30
2002	4,149	9,709	0.70	247	241	0.51	0.42
2003	1,971	1,449	0.42	381	101	0.79	0.65
2004	5,262	1,518	0.22	506	16	0.97	0.82
2005	6,464	2,426	0.27	391	9	0.98	0.78

Natural Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population. For brood years 1989-2000, NRR for summer Chinook in the Okanogan Basin averaged 1.08 (range, 0.32-4.00) if harvested fish were not include in the estimate and 2.91 (range, $0.52-13.59$) if harvested fish were included in the estimate (Table 8.19). NRRs for more recent brood years will be calculated as soon as all tag recoveries and sampling rates have been loaded into the database.

Table 8.19. Spawning escapements, natural origin recruits (NOR), and natural replacement rates (NRR; with and without harvest) for wild summer Chinook in the Okanogan Basin, 1989-2000. (The numbers in this table may change as the HETT and HC refine the methods for estimating summer Chinook NORs and NRRs.)

Brood year	Spawning escapement	Harvest not included		Harvest included	
		NOR	NRR	NOR	NRR
1989	1,763	2,150	1.22	3,658	2.08
1990	660	1,599	2.42	2,255	3.42
1991	574	578	1.01	887	1.55
1992	473	759	1.61	1,142	2.41
1993	1,485	779	0.52	1,031	0.69
1994	4,032	1,295	0.32	2,087	0.52
1995	3,002	1,993	0.66	3,861	1.29
1996	1,819	930	0.51	2,412	1.33
1997	2,190	3,822	1.75	11,565	5.28
1998	1,092	4,368	4.00	14,841	13.59
1999	3,617	6,312	1.75	21,826	6.03
2000	3,701	1,746	0.47	5,575	1.51
Average	2,034	2,194	1.08	5,928	2.91

Hatchery Replacement Rates

Hatchery replacement rates were estimated as hatchery adult-to-adult returns. These rates should be greater than the NRRs and greater than or equal to 5.30 (the value in BAMP; Murdoch and Peven 2005). HRRs exceeded NRRs in 10 of the 12 years of data, regardless if harvest was or was not included in the estimate (Table 8.20). Hatchery replacement rates (harvest included in the estimate) for Okanogan/Similkameen summer Chinook have exceeded the BAMP target of 5.30 in 8 of the 12 years of data.
Table 8.20. Hatchery replacement rates (HRR), NRR, and BAMP target (5.30) for summer Chinook in the Okanogan Basin, 1989-2000. (The numbers in this table may change as the HETT and HC refine the methods for estimating summer Chinook HRRs and NRRs.)

Brood year	Harvest not included			Harvest included		
	HRR	NRR	BAMP	HRR	NRR	BAMP
1989	14.78	1.22	5.30	24.50	2.08	5.30
1990	3.55	2.42	5.30	4.86	3.42	5.30
1991	4.34	1.01	5.30	5.03	1.55	5.30
1992	6.07	1.61	5.30	7.63	2.41	5.30
1993	0.42	0.52	5.30	0.56	0.69	5.30
1994	8.91	0.32	5.30	12.09	0.52	5.30
1995	5.72	0.66	5.30	7.44	1.29	5.30
1996	0.08	0.51	5.30	0.09	1.33	5.30
1997	38.24	1.75	5.30	60.46	5.28	5.30

Brood year	Harvest not included			Harvest included		
	HRR	NRR	BAMP	HRR	NRR	BAMP
1998	8.10	4.00	5.30	22.01	13.59	5.30
1999	2.57	1.75	5.30	8.36	6.03	5.30
2000	5.09	0.47	5.30	18.02	1.51	5.30
Average	7.97	$\mathbf{1 . 0 8}$	5.30	$\mathbf{1 4 . 0 2}$	$\mathbf{2 . 9 1}$	5.30

Smolt-to-Adult Survivals

Smolt-to-adult survival ratios (SARs) were calculated as the number of hatchery adults divided by the number of hatchery smolts released. SARs were based on CWT returns. For the available brood years, SARs have ranged from 0.00006 to 0.03216 for hatchery summer Chinook in the Okanogan Basin (Table 8.21).
Table 8.21. Smolt-to-adult ratios (SARs) for Okanogan/Similkameen summer Chinook; NA = not available.

Brood year	Number of smolts released	Estimated adult captures	SAR
1989	202,125	4,287	0.02121
1990	367,207	958	0.00261
1991	360,380	975	0.00271
1992	537,190	2,294	0.00427
1993	379,139	117	0.00031
1994	217,818	1,528	0.00702
1995	574,197	2,813	0.00490
1996	487,776	30	0.00006
1997	572,531	18,415	0.03216
1998	287,948	7,646	0.02655
1999	610,868	2,715	0.00444
2000	528,639	5,998	0.01135
2001	26,315	275	0.01045
Average	396,318	3,696	$\boldsymbol{0 . 0 0 9 3 2 6}$

8.7 ESA/HCP Compliance

Broodstock Collection

Because summer Chinook adults collected at Wells Dam are used for both the Methow and Okanogan supplementation programs, please refer to Section 7.7 for information on ESA compliance during broodstock collection.

Hatchery Rearing and Release

The 2005 brood Okanogan/Similkameen summer Chinook reared throughout their juvenile lifestages at Eastbank Fish Hatchery and Similkameen Acclimation ponds without incident; although there was minor mortality associated with bacterial gill disease (see Sections 8.2 and 8.3). The 2005 brood Okanogan/Similkameen summer Chinook transferred and reared at the Bonaparte pond suffered near complete loss because of bacterial gill disease (see Section 8.3).

The 2005 brood smolt release from the Similkameen pond totaled 275,919 summer Chinook, representing 47.9% of the production objective for the Okanogan/Similkameen program and was within the maximum production levels authorized in ESA Section 10 Permit 1347. The shortfall in production was primarily associated with a shortfall in the number a females collected for brood because of a male-skewed sex ratio in the broodstock (Table 7.4). The 2005 brood smolt release from Bonaparte Pond was estimated to be zero and was influenced by sever mortality associated with bacterial gill disease (see Section 8.3).

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery facilities during the period 1 January 2007 through 31 December 2007. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2007 are provided in Appendix E.

Spawning Surveys

Summer Chinook spawning ground surveys conducted in the Okanogan Basin during 2007 were consistent with ESA Section 10 Permit No. 1347. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

SECTION 9: TURTLE ROCK SUMMER CHINOOK

9.1 Broodstock Sampling

Broodstock for the Turtle Rock programs (yearling and sub-yearling) are collected as part of the Wells summer Chinook volunteer program. Refer to Snow et al. (2003) for information related to adults collected for these programs.

9.2 Hatchery Rearing

Rearing History

Number of eggs taken

Broodstock for the Turtle Rock summer Chinook are collected at Wells Dam and consist of volunteers to the hatchery. In recent years some naturally produced fish have been incorporated into the brood. Eyed eggs are transferred from Wells FH to Eastbank FH for rearing. As such, the number of green (unfertilized) eggs collected for this program is reported as part of the Wells summer Chinook program.

Disease

Within the normal and accelerated subyearling program, the primary cause of mortality in the early life stages (swim-up to early ponding) continues to be coagulated yolk as a result of elevated incubation water temperature. Both subyearling groups began exhibiting signs of Columnaris shortly before release. As a result of a two week delay in availability of medicated feed, the only solution was to release as soon as possible. The yearling program had no significant health concerns during rearing and no treatments were recommended.

Number of acclimation days

Rearing of the 2005-brood normal and accelerated subyearling Turtle Rock summer Chinook was similar to previous years with fish being held on well water before being transferred to Turtle Rock for final acclimation in May 2006. Fish were released on 3 and 5 July 2006 after 35 days of acclimation on Columbia River water. One group of yearling Turtle Rock summer Chinook was released on 27 April 2007, after 179 days of acclimation on Columbia River water. The Chelan River net pen group was released on 12 May, after 73 days of acclimation on Chelan River water.

Release Information

Numbers released

The 2005 subyearling Turtle Rock summer Chinook program achieved 60.5% of the 810,000 target goal with about 490,074 fish being released (Table 9.1). The 2005 accelerated subyearling summer Chinook program achieved 56.5% of the 810,000 target goal with about 457,340 fish being released (Table 9.2). The 2005 yearling summer Chinook program achieved 102.3% of the 200,000 target goal with about 204,644 fish being released (104,984 from Turtle Rock and 99,660 from the Chelan River net pens) (Table 9.3).

Table 9.1. Numbers of Turtle Rock summer Chinook subyearlings released from the hatchery, 1995-2005. The release target for Turtle Rock summer Chinook subyearlings is 810,000 fish.

Brood year	Release year	Number of smolts			
1995	1996	$1,074,600$			
1996	1997	385,215			
1997	1998	508,060			
1998	1999	301,777			
1999	2000	369,026			
2000	2001	604,892			
2001	2002	214,059			
2002	2003	656,399			
2003	2004	491,480			
2004	2005	411,707			
2005	2006	490,074			
Average					500,663

Table 9.2. Numbers of Turtle Rock summer Chinook accelerated subyearlings released from the hatchery, 1995-2005. The release target for Turtle Rock summer Chinook accelerated subyearlings is 810,000 fish.

Brood year	Release year	Number of smolts			
1995	1996	169,000			
1996	1997	477,300			
1997	1998	521,480			
1998	1999	307,571			
1999	2000	347,946			
2000	2001	449,329			
2001	2002	480,584			
2002	2003	364,461			
2003	2004	289,696			
2004	2005	364,453			
2005	2006	457,340			
Average					384,469

Table 9.3. Numbers of Turtle Rock summer Chinook yearling smolts released from the hatchery, 1995-2005. The release target for Turtle Rock summer Chinook is 200,000 smolts.

Brood year	Release year	Number of smolts
1995	1997	150,00
1996	1998	202,727
1997	1999	202,989
1998	2000	217,797

Brood year	Release year	Number of smolts
1999	2001	285,707
2000	2002	165,935
2001	2003	203,279
2002	2004	195,851
2003	2005	215,366
2004	2006	206,734
2005	2007	204,644
Average		210,103

Numbers tagged

About 97.8% of the Turtle Rock accelerated subyearling Chinook and 43.4% of the normal subyearling Chinook were adipose fin-clipped and CWT. The remaining fish were released untagged and unmarked. The yearling Chinook were 98.1\% CWT and adipose fin-clipped. No 2005 brood Turtle Rock summer Chinook were PIT tagged.

Fish size and condition at release

Size at release of the normal subyearling Turtle Rock summer Chinook was 89.3\% and 109.6\% of the target fork length and weight, respectively. This brood year was below the target CV for length by 28\% (Table 9.4).
Table 9.4. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Turtle Rock summer Chinook subyearlings released from the hatchery, 1995-2005. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	$\mathbf{C V}$	Grams (g)	Fish/pound
1995	1996	102	6.3	12.6	36
1996	1997	87	8.0	7.4	62
1997	1998	98	6.2	10.2	45
1998	1999	96	6.3	10.7	43
1999	2000	90	9.0	9.8	46
2000	2001	100	7.1	11.3	40
2001	2002	104	7.2	13.4	34
2002	2003	97	7.3	11.8	39
2003	2004	101	8.0	12.0	43
2004	2005	100	7.8	11.4	40
2005	2006	100	6.5	12.5	36
\quad Targets	$\mathbf{1 1 2}$	$\mathbf{9 . 0}$	$\mathbf{1 1 . 4}$	40	

Size at release of the accelerated subyearling Turtle Rock Chinook was 106.3% and 194.7% of the target fork length and weight, respectively. This brood year exceeded the target CV for length by 1% (Table 9.5).
Table 9.5. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Turtle Rock summer Chinook accelerated subyearlings released from the hatchery, 1995-2005. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1995	1996	129	7.1	27.3	17
1996	1997	107	6.5	15.6	29
1997	1998	117	6.0	18.9	24
1998	1999	119	8.0	18.9	24
1999	2000	114	6.7	19.0	24
2000	2001	111	7.0	16.8	27
2001	2002	117	8.4	19.5	23
2002	2003	116	11.3	21.2	21
2003	2004	113	14.9	17.0	30
2004	2005	117	11.3	20.1	23
2005	2006	119	9.1	22.2	21
\quad Targets	$\mathbf{1 1 2}$	$\mathbf{9 . 0}$	$\mathbf{1 1 . 4}$	40	

Size at release of the yearling Turtle Rock summer Chinook was 89.8% and 95.8% of the target fork length and weight, respectively. This brood year exceeded the target CV for length by 122% (Table 9.6).

Table 9.6. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Turtle Rock summer Chinook yearlings released from the hatchery, 1995-2005. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1995	1997	-	-	-	-
1996	1998	166	14.2	60.9	7
1997	1999	198	4.6	91.3	5
1998	2000	161	11.9	53.9	89.0
1999	2001	164	18.6	59.0	8
2000	2002	170	15.3	48.6	8
2001	2003	154	22.3	44.0	9
2002	2004	157	16.7	54.7	12
2003	2005	173	13.8	45.3	8
2004	2006	176	20.6	43.5	7
2005	2007	158	11.0		10

Targets	176.0	9.0	45.4	10.0

Survival Estimates

Normal subyearling releases

Overall survival of the normal subyearling Turtle Rock summer Chinook program from green egg to release was below the standard set for the program (Table 9.7). Lower than expected survival at ponding and post-ponding (because of coagulated yolk) reduced the overall program performance.

Table 9.7. Hatchery life-stage survival rates (\%) for Turtle Rock subyearling (zero program) summer Chinook, brood years 2004-2005. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0 ~ d}$ after ponding	$\mathbf{1 0 0 ~ d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	NA	NA	93.5	74.4	93.9	91.4	90.8	99.7	63.1
2005	NA	NA	94.4	87.9	85	84.8	84.2	99.4	69.8
Standard	$\mathbf{9 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{9 2 . 0}$	$\mathbf{9 8 . 0}$	$\mathbf{9 7 . 0}$	$\mathbf{9 3 . 0}$	$\mathbf{9 0 . 0}$	$\mathbf{9 5 . 0}$	$\mathbf{8 1 . 0}$

Accelerated subyearling releases

Overall survival of the accelerated subyearling Turtle Rock summer Chinook program from green egg to release was below the standard set for the program (Table 9.8). Lower than expected survival at ponding and post-ponding (because of coagulated yolk) reduced the overall program performance.

Table 9.8. Hatchery life-stage survival rates (\%) for Turtle Rock subyearling (accelerated program) summer Chinook, brood years 2004-2005. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0 ~ d}$ after ponding	$\mathbf{1 0 0 ~ d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	NA	NA		98.3	93.4	92.4	90.0	97.8	81.8
2005	NA	NA	93.8	94.6	83.7	83.4	81.7	98.8	72.5
Standard	$\mathbf{9 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{9 2 . 0}$	$\mathbf{9 8 . 0}$	$\mathbf{9 7 . 0}$	$\mathbf{9 3 . 0}$	$\mathbf{9 0 . 0}$	$\mathbf{9 5 . 0}$	$\mathbf{8 1 . 0}$

Yearling releases

Overall survival of the yearling Turtle Rock summer Chinook program from green egg to release was above the standard set for the program (Table 9.9). However, lower than expected survival between fertilization and ponding reduced the overall program performance.

Table 9.9. Hatchery life-stage survival rates (\%) for Turtle Rock yearling summer Chinook, brood years 2004-2005. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0 ~ d}$ after ponding	$\mathbf{1 0 0 ~ d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	Female	Male	NA	92.9	97.7	96.8	96.4	95.5	99.6
2005	NA	NA	89.1	97.5	98.1	97.8	96.6	99.1	83.7
Standard	$\mathbf{9 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{9 2 . 0}$	$\mathbf{9 8 . 0}$	$\mathbf{9 7 . 0}$	$\mathbf{9 3 . 0}$	$\mathbf{9 0 . 0}$	$\mathbf{9 5 . 0}$	$\mathbf{8 1 . 0}$

9.3 Life History Monitoring

Life history characteristics of Turtle Rock summer Chinook were assessed by examining carcasses on spawning grounds and by reviewing tagging data and fisheries statistics.

Contribution to Fisheries

Normal subyearling releases

Most of the harvest on Turtle Rock summer Chinook (normal subyearling releases) occurred in the Ocean (Table 9.10). Ocean harvest has made up 59% to 100% of all Turtle Rock summer Chinook harvested. Brood year 1995 provided the largest harvest, while brood year 1997 provided the lowest.

Table 9.10. Estimated number and percent (in parentheses) of Turtle Rock summer Chinook (normal subyearling releases) captured in different fisheries.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational (sport)	
1995	$682(84)$	$5(1)$	$112(14)$	$16(2)$	815
1996	$72(80)$	$0(0)$	$5(6)$	$13(14)$	90
1997	$9(100)$	$0(0)$	$0(0)$	$0(0)$	9
1998	$24(100)$	$0(0)$	$0(0)$	$0(0)$	24
1999	$583(76)$	$7(1)$	$75(10)$	$100(13)$	765
2000	$36(59)$	$0(0)$	$11(18)$	$14(23)$	61
2001	$165(73)$	$0(0)$	$29(13)$	$31(14)$	225

Accelerated subyearling releases

Most of the harvest on Turtle Rock summer Chinook (accelerated subyearling releases) occurred in the Ocean (Table 9.11). Ocean harvest has made up 62% to 100% of all Turtle Rock summer Chinook harvested. Brood year 2001 provided the largest harvest, while brood years 1995 and 1997 provided the lowest.

Table 9.11. Estimated number and percent (in parentheses) of Turtle Rock summer Chinook (accelerated subyearling releases) captured in different fisheries.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational (sport)	
1995	$3(100)$	$0(0)$	$0(0)$	$0(0)$	3
1996	$72(88)$	$0(0)$	$10(12)$	$0(0)$	82
1997	$3(100)$	$0(0)$	$0(0)$	$0(0)$	3
1998	$93(95)$	$2(2)$	$3(3)$	$0(0)$	98
1999	$93(62)$	$2(1)$	$14(9)$	$41(27)$	150
2000	$136(100)$	$0(0)$	$0(0)$	$0(0)$	136
2001	$196(65)$	$0(0)$	$32(11)$	$73(24)$	301

Yearling releases

Most of the harvest on Turtle Rock summer Chinook (yearling releases) occurred in the Ocean (Table 9.12). Ocean harvest has made up 71% to 95% of all Turtle Rock summer Chinook harvested. Brood year 1998 provided the largest harvest, while brood year 1995 provided the lowest.

Table 9.12. Estimated number and percent (in parentheses) of Turtle Rock summer Chinook (yearling releases) captured in different fisheries.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal (Zone 6)	Commercial (Zones 1-5)	Recreational (sport)	
1995	$428(74)$	$6(1)$	$77(13)$	$70(12)$	581
1996	$725(95)$	$1(0)$	$15(2)$	$21(3)$	762
1997	$2,742(90)$	$29(1)$	$99(3)$	$176(6)$	3,046
1998	$4,251(90)$	$22(0)$	$212(4)$	$229(5)$	4,714
1999	$1,656(74)$	$12(1)$	$207(9)$	$365(16)$	2,240
2000	$1,163(75)$	$1(0)$	$136(9)$	$242(16)$	1,542
2001	$2,456(71)$	$0(0)$	$325(9)$	$694(20)$	3,475

Straying

Normal subyearling releases

Rates of Turtle Rock summer Chinook (normal subyearling releases) straying into spawning areas in the upper basin have been low (Table 9.13). Although a few Turtle Rock summer Chinook have strayed into other spawning areas, straying, on average, has been less than 5\%. The Chelan tailrace has received the largest number of Turtle Rock strays.

Table 9.13. Number (No.) and percent of spawning escapements within other non-target basins that consisted of Turtle Rock summer Chinook (normal subyearling releases), return years 1998-2004. For example, for return year 2003, 0.7% of the summer Chinook spawning escapement in the Methow Basin consisted of Turtle Rock summer Chinook. Percent strays should be less than 5\%.

Return year	Wenatchee		Methow		Okanogan		Chelan		Entiat		Hanford Reach	
	No.	\%										
1998	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1999	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2000	8	0.2	3	0.3	13	0.4	63	9.5	0	0.0	0	0.0
2001	0	0.0	5	0.2	13	0.1	0	0.0	0	0.0	0	0.0
2002	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2003	0	0.0	26	0.7	19	0.6	13	3.1	0	0.0	9	0.0
2004	5	0.1	8	0.4	0	0.0	8	1.9	0	0.0	0	0.0
Total	13	0.0	42	0.3	45	0.1	84	2.6	0	0.0	9	0.0

On average, about 37\% of the returns have strayed into spawning areas in the upper basin (Table 9.14). Depending on brood year, percent strays into spawning areas have ranged from $24-100 \%$. Few (1% on average) have strayed into non-target hatchery programs.
Table 9.14. Number and percent of Turtle Rock summer Chinook (normal subyearling releases) that homed to the target hatchery and strayed to non-target spawning areas and non-target hatchery programs, by brood years 1995-2001.

$*$ Brood year	Homing				Straying			
	Number	\%	Number	$\%$	Number	$\%$	Number	$\%$
1995	-	-	197	74.1	64	24.1	5	1.9
1996	-	-	54	54.5	44	44.4	1	1.0
1997	-	-	2	28.6	5	71.4	0	0.0
1998	-	-	0	0.0	24	100.0	0	0.0
1999	-	-	79	56.8	60	43.2	0	0.0
2000	-	-	5	50.0	5	50.0	0	0.0
2001	-	-	28	63.6	16	36.4	0	0.0
Total	-	-	365	$\mathbf{6 2 . 0}$	218	37.0	$\mathbf{6}$	$\mathbf{1 . 0}$

Accelerated subyearling releases

Rates of Turtle Rock summer Chinook (accelerated subyearling releases) straying into spawning areas in the upper basin have been very low (Table 9.15). Although a few Turtle Rock summer Chinook have strayed into other spawning areas, straying, on average, has been less than 1%. The Chelan tailrace, Okanogan Basin, and Methow Basin have received the largest number of Turtle Rock strays.

Table 9.15. Number (No.) and percent of spawning escapements within other non-target basins that consisted of Turtle Rock summer Chinook (accelerated subyearling releases), return years 1998-2004. For example, for return year 2001, 0.4% of the summer Chinook spawning escapement in the Methow Basin consisted of Turtle Rock summer Chinook. Percent strays should be less than 5\%.

Return year	Wenatchee		Methow		Okanogan		Chelan		Entiat		Hanford Reach	
	No.	\%										
1998	3	0.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1999	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2000	7	0.2	0	0.0	0	0.0	24	3.6	0	0.0	0	0.0
2001	0	0.0	12	0.4	31	0.3	0	0.0	0	0.0	0	0.0
2002	0	0.0	5	0.1	7	0.1	0	0.0	0	0.0	0	0.0
2003	4	0.0	4	0.1	0	0.0	3	0.7	0	0.0	0	0.0
2004	0	0.0	0	0.0	7	0.1	3	0.7	0	0.0	18	0.0
Total	$\mathbf{1 4}$	$\mathbf{0 . 0}$	$\mathbf{2 1}$	$\mathbf{0 . 1}$	$\mathbf{4 5}$	$\mathbf{0 . 1}$	$\mathbf{3 0}$	$\mathbf{0 . 9}$	$\mathbf{0}$	$\mathbf{0 . 0}$	$\mathbf{1 8}$	$\mathbf{0 . 0}$

On average, about 51% of the returns have strayed into spawning areas in the upper basin (Table 9.16). Depending on brood year, percent strays into spawning areas have ranged from $0-83 \%$. None of these fish have strayed into non-target hatchery programs.
Table 9.16. Number and percent of Turtle Rock summer Chinook (accelerated subyearling releases) that homed to the target hatchery and strayed to non-target spawning areas and non-target hatchery programs, by brood years 1995-2001.

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1995	-	-	7	70.0	3	30.0	0	0.0
1996	-	-	33	32.4	69	67.6	0	0.0
1997	-	-	6	100.0	0	0.0	0	0.0
1998	-	-	2	16.7	10	83.3	0	0.0
1999	-	-	21	42.9	28	57.1	0	0.0
2000	-	-	12	40.0	18	60.0	0	0.0
2001	-	-	42	100.0	0	0.0	0	0.0
Total	-	-	123	49.0	128	51.0	0	0.0

Yearling releases

Rates of Turtle Rock summer Chinook (yearling releases) straying into spawning areas in the upper basin have varied widely depending on spawning area (Table 9.17). Most of these fish strayed to spawning areas within the Chelan tailrace, Methow Basin, and Entiat Basin. Relatively few, on average, have strayed to spawning areas in the Okanogan Basin, Wenatchee Basin, and Hanford Reach.

Table 9.17. Number (No.) and percent of spawning escapements within other non-target basins that consisted of Turtle Rock summer Chinook (yearling releases), return years 1998-2004. For example, for return year 2003, 4.3% of the summer Chinook spawning escapement in the Methow Basin consisted of Turtle Rock summer Chinook. Percent strays should be less than 5\%.

Return year	Wenatchee		Methow		Okanogan		Chelan		Entiat		Hanford Reach	
	No.	\%										
1998	0	0.0	2	0.3	0	0.0	0	0.0	0	0.0	0	0.0
1999	3	0.1	2	0.2	0	0.0	0	0.0	0	0.0	0	0.0
2000	18	0.4	57	4.8	167	4.5	73	11.0	0	0.0	10	0.0
2001	109	1.2	523	18.9	334	3.1	316	32.1	0	0.0	7	0.0
2002	92	0.7	437	9.4	194	1.4	191	32.8	136	27.1	0	0.0
2003	64	0.7	170	4.3	14	0.4	165	39.4	0	0.0	9	0.0
2004	10	0.1	55	2.5	118	1.7	78	18.6	0	0.0	0	0.0
Total	296	0.6	1,246	7.6	827	1.9	823	24.9	136	5.9	26	0.0

On average, about 75\% of the returns have strayed into spawning areas in the upper basin (Table 9.18). Depending on brood year, percent strays into spawning areas have ranged from $46-86 \%$. Few ($<1 \%$ on average) have strayed into non-target hatchery programs.
Table 9.18. Number and percent of Turtle Rock summer Chinook (yearling releases) that homed to the target hatchery and strayed to non-target spawning areas and non-target hatchery programs, by brood years 19952001.

$*$ Brood year	Homing				Straying			
	Number	\%	Number	\%	Number	$\%$	Number	\%
1995	-	-	180	39.3	278	60.7	0	0.0
1996	-	-	218	27.2	583	72.8	0	0.0
1997	-	-	254	14.3	1,524	85.6	3	0.2
1998	-	-	166	19.2	698	80.7	1	0.1
1999	-	-	181	43.4	236	56.6	0	0.0
2000	-	-	96	29.4	231	70.6	0	0.0
2001	-	-	161	54.2	136	45.8	0	0.0
Total	-	-	$\mathbf{1 , 2 5 6}$	25.4	3,686	74.5	$\mathbf{4}$	$\mathbf{0 . 1}$

Hatchery Replacement Rates

Hatchery replacement rates were estimated as hatchery adult-to-adult returns. In all years, HRRs for summer Chinook released as yearlings were greater than HRRs for Chinook released as subyearlings (Table 9.19). HRRs based on subyearling releases were consistently less than 5.3, whereas those for yearling releases were consistently greater than 5.3.

Table 9.19. Hatchery replacement rates (HRR) for Turtle Rock summer Chinook released as subyearlings or yearlings, 1995-2000. (The numbers in this table may change as the HETT and HC refine the methods for estimating summer Chinook HRRs.)

Brood year	Subyearling releases		Yearling releases	
	HRR (harvest not included)	HRR (harvest included)	HRR (harvest not included)	HRR (harvest included)
1995	0.79	2.11	7.31	12.27
1996	0.66	1.03	8.14	14.98
1997	0.03	0.08	24.79	56.48
1998	0.09	0.17	17.31	71.00
1999	0.97	3.72	1.72	9.02
Average	$\mathbf{0 . 5 1}$	$\mathbf{1 . 4 2}$	$\mathbf{1 1 . 8 5}$	$\mathbf{3 2 . 7 5}$

Smolt-to-Adult Survivals

Smolt-to-adult survival ratios (SARs) were calculated as the number of hatchery adults divided by the number of hatchery subyearling or yearling Chinook released. SARs were based on CWT returns.

Normal subyearling releases

For the available brood years, SARs for normal subyearling-released Chinook have ranged from 0.000031 to 0.004340 (Table 9.20).

Table 9.20. Smolt-to-adult ratios (SARs) for Turtle Rock normal subyearling-released summer Chinook.

Brood year	Number released	Estimated adult captures	SAR
1995	$1,074,600$	203	0.000189
1996	385,215	188	0.000488
1997	508,060	16	0.000031
1998	301,777	30	0.000099
1999	201,615	275	0.004340
2000	604,892	214,059	269
Average	470,031		0.000043

Accelerated subyearling releases

For the available brood years, SARs for accelerated subyearling-released Chinook have ranged from 0.000006 to 0.000971 (Table 9.21).

Table 9.21. Smolt-to-adult ratios (SARs) for Turtle Rock accelerated subyearling-released summer Chinook.

Brood year	Number released	Estimated adult captures	SAR
1995	169,000	13	0.000077
1996	477,300	77	0.000161
1997	521,480	3	0.000006
1998	307,571	66	0.000215
1999	202,916	197	0.000971
2000	449,302	71	0.000158
2001	480,584	141	0.000293
Average	$\mathbf{3 7 2 , 5 9 3}$	$\mathbf{8 1}$	$\mathbf{0 . 0 0 0 2 1 8}$

Yearling releases

For the available brood years, SARs for yearling-released Chinook have ranged from 0.006813 to 0.025580 (Table 9.22).

Table 9.22. Smolt-to-adult ratios (SARs) for Turtle Rock yearling-released summer Chinook.

Brood year	Number released	Estimated adult captures	SAR
1995	150,000	1,022	0.006813
1996	202,727	1,514	0.007468
1997	202,989	4,757	0.023435
1998	217,319	5,559	0.025580
1999	285,707	2,626	0.009191
2000	279,969	1,868	0.006672
2001	314,584	3,730	0.011857
Average	236,185	3,011	$\mathbf{0 . 0 1 2 7 4 8}$

9.4 ESA/HCP Compliance

Broodstock Collection

The 2005 brood Turtle Rock summer Chinook program is supported through adult collections at the volunteer trap at Wells Fish Hatchery and in conjunction with the Wells summer Chinook collections. During 2005, broodstock collections at the volunteer trap were consistent with the 2005 Upper Columbia River Salmon and Steelhead Broodstock Objectives and site-based broodstock collection protocols as required in ESA permit 1347. The 2005 collection totaled ?? summer Chinook (combined Wells Fish Hatchery and Turtle Rock Fish Hatchery programs).

Hatchery Rearing and Release

Brood year 2005 releases totaled 1,152,058 fish, including yearling, regular subyearling, and accelerated subyearling releases (204,644; 490,074 and 457,340 juveniles, respectively). These releases represented ??\% and ??\% of the Rocky Reach HCP and ESA Section 10 Permit 1347 production for Turtle Rock yearling and subyearling production, respectively.
Consistent with ESA Permit 1347, a total of ?? normal and accelerated subyearling Chinook were adipose fin clipped and coded-wire tagged. The remainder of the subyearling production was released untagged and unmarked. The yearling Chinook were 100\% CWT and adipose fin-clipped. No 2005 brood Turtle Rock summer Chinook were PIT tagged. See Section 9.2 for specific rearing, tagging, and release information related to the 2005 brood Turtle Rock summer Chinook program.

SECTION 10: REFERENCES

Blankenship, S. M., J. Von Bargen, K. I Warheit, and A R. Murdoch. 2007. Assessing the genetic diversity of natural Chiwawa River spring Chinook salmon and evaluating the effectiveness of its supportive hatchery supplementation program. WDFW Molecular Genetics Lab, Olympia, WA.

Environmental Protection Agency (EPA). 1999. National pollutant discharge elimination systems (NPDES) permit program.

Hays, S., T. Hillman, T. Kahler, R. Klinge, R. Langshaw, B. Lenz, A. Murdoch, K. Murdoch, and C. Peven. 2006. Analytical framework for monitoring and evaluating PUD hatchery programs. Final report to the HCP Hatchery Committee, Wenatchee, WA.

Hillman, T., J. Mullan, and J. Griffith. 1992. Accuracy of underwater counts of juvenile Chinook salmon, coho salmon, and steelhead. North American Journal of Fisheries Management 12:589-603.

Hillman, T. and M. Miller. 2004. Abundance and total numbers of Chinook salmon and trout in the Chiwawa River Basin, Washington, 2004. BioAnalysts, Inc. Report to Chelan County PUD, Wenatchee, WA.
HSRG/WDFW/NWIFC. 2004. Integrated hatchery programs. HSRG/WDFW/NWIFC Technical discussion paper \#1, 21 June 2004, Portland, OR.

Hyatt, K., M. Stockwell, H. Wright, K. Long, J. Tamblyn, and M. Walsh. 2006. Fish and water management tool project assessments: Okanogan adult sockeye salmon (Oncorhynchus nerka) abundance and biological traits in 2005. Draft report to JSID-SRe 3-05, Salmon and Freshwater Ecosystems Division, Fisheries and Oceans Canada, Nanaimo, B.C.

Miller, T. 2008. 2007 Chiwawa and Wenatchee River smolt estimates. Technical memorandum from Todd Miller, WDFW to the HCP Hatchery Committee, 13 February 2008, Wenatchee, WA.

Miller, T. and M. Tonseth. 2008. The integrated status and effectiveness monitoring program: expansion of smolt trapping and steelhead spawning survey. Annual report to the U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife, Portland, OR.

Murdoch, A. and C. Peven. 2005. Conceptual approach to monitoring and evaluating the Chelan County Public Utility District hatchery programs. Final report. Prepared for the Chelan PUD Habitat Conservation Plan’s Hatchery Committee, Wenatchee, WA.

NMFS (National Marine Fisheries Service). 2003. Section 10(a)(1)(b) Permit for takes of endangered/threatened species. Incidental Take Permit 1347 for the artificial propagation of unlisted salmon. Portland, OR.

NMFS (National Marine Fisheries Service). 2004. Biological Opinion and Magnuson-Stevens Fishery Conservation and Management Act Consultation Interim Protection Plan for Operation of the Priest Rapids Hydroelectric Project FERC Project No. 2114 Columbia River, Grant and Kittitas Counties, Washington Action Agency: Federal Energy Regulatory

Commission Consultation Conducted by: NOAA Fisheries Northwest Region Hydropower Division NOAA Fisheries Log Number: 1999/01878. May 3, 2004.

Peven, C. 2006. Chelan County PUD Hatchery monitoring and evaluation implementation plan, 2006. Chelan County Public Utility District. Prepared for the Chelan PUD Habitat Conservation Plan's Hatchery Committee, Wenatchee, WA.

Snow, C. 2003. Wells Hatchery summer Chinook salmon production; 1997 brood year summary report. Washington Department of Fish and Wildlife. Prepared for Douglas County Public Utility District, East Wenatchee, WA.
Truscott, K. 2005. Memo to Habitat Conservation Plan (HCP) Hatchery Committee (HC). Brood year 2005-2013 Upper Columbia steelhead stocking allotments for releases in the Wenatchee River basin. February 28, 2005 memo from K. Truscott, Washington Department of Fish and Wildlife, Wenatchee, WA.
Washington Department of Fish and Wildlife (WDFW). 2006. Memo to Habitat Conservation Plan (HCP) Hatchery Committee (HC). 2006 Upper Columbia River salmon and steelhead broodstock objectives and site-based broodstock collection protocols. Memo from K. Truscott, Washington Department of Fish and Wildlife, Wenatchee, WA.

SECTION 11: APPENDICES

Appendix A: Abundance and Total Numbers of Chinook Salmon and Trout in the Chiwawa River Basin, Washington, 2007.

Appendix B: Fish Trapping at the Chiwawa, Upper Wenatchee, and Lower Wenatchee Smolt Traps during 2007.

Appendix C: Summary of ISEMP PIT Tagging Activities in the Wenatchee Basin, 2007.

Appendix D: Wenatchee Steelhead Spawning Ground Surveys, 2007.

Appendix E: NPDES Hatchery Effluent Monitoring, 2007.

Appendix F: Steelhead Stock Assessment at Priest Rapids Dam, 2007.

Appendix G: Wenatchee Sockeye and Summer Chinook Spawning Ground Surveys, 2007.

Appendix H: Genetic Diversity of Wenatchee Sockeye Salmon, 2007.

Appendix I: Genetic Diversity of Natural Chiwawa River Spring Chinook Salmon, 2007.

Appendix J: Summer Chinook Spawning Ground Surveys in the Methow and Okanogan Basin, 2007.

APPENDIX A

Abundance and Total Numbers of Chinook Salmon and Trout in the Chiwawa River Basin, Washington, 2007.

January 31, 2008

TO: HCP Hatchery Committee
FROM: Tracy Hillman
Subject: Abundance and Total Numbers of Chinook Salmon and Trout in the Chiwawa River Basin, Washington, 2007

The Chelan County Public Utility District (PUD) hatchery program is operated through a habitat conservation program (HCP) that was incorporated into the PUD's license in 2004. The HCP directed the signatories to develop a monitoring and evaluation plan within one year of the effective date. This study will help the HCP Hatchery Committee determine if it is meeting Objective 7 in the monitoring and evaluation plan (Murdoch and Peven 2005).
Objective 7: Determine if the proportion of hatchery fish on the spawning grounds affects the freshwater productivity (i.e., number of juveniles per redd) of supplemented streams when compared to non-supplemented streams.
We estimated densities and total numbers of age-0 spring Chinook salmon Oncorhynchus tshawytscha, trout Oncorhynchus sp., and char Salvelinus sp. in the Chiwawa River basin, Washington, in August 2007. This was the $15^{\text {th }}$ year of an ongoing study to assess the freshwater productivity (juveniles/redd) of Chinook salmon in the Chiwawa Basin. We used landscape classification to stratify streams in the basin that supported juvenile Chinook salmon (Hillman and Miller 2004). Classification "explained" most of the variability in fish numbers caused by geology, land type, valley bottom type, stream state condition, and habitat type. We identified ten reaches on the lower 31 miles (50 km) of the Chiwawa River and one reach in each of Phelps, Rock, Chikamin, Big Meadow, Alder, Brush, Y, and Peven ${ }^{1}$ creeks (Figure 1). Each reach consisted of several combinations of state-type and habitat-type strata. We used classification to find reference areas for reaches in the Chiwawa River. We matched Reach 3 and Reach 8 of the Chiwawa River with a moderately-confined section of Nason Creek (RM 0.621.70) and an unconfined area of the Little Wenatchee River (RM 4.39-8.55), respectively (Hillman and Miller 2004). Following methods described in Hillman and Miller (2004), we used

[^5]underwater observations to estimate numbers of fish in 189 randomly selected sites.
During sampling in August 2007, discharge in the Chiwawa River averaged 236 cubic feet per second (cfs) and ranged from 157 to 357 cfs (Figure 2). Stream temperatures for the study period ranged from 9.0 to $15.0^{\circ} \mathrm{C}$. Fish species observed in the Chiwawa Basin and reference areas during the 1992-2007 survey period ${ }^{2}$ included: spring Chinook salmon, coho salmon O. kisutch, sockeye salmon O. nerka (in the Little Wenatchee River reference area), steelhead/rainbow trout O. mykiss (hatchery rainbow were present only in 1992 and 1993), cutthroat trout O. clarki lewisi, bull trout S. confluentus, brook trout S. fontinalis, mountain whitefish Prosopium williamsoni, dace Rhinichthys sp., suckers Catostomus sp., and sculpin Cottus sp. The age-0 spring Chinook that we observed in the Chiwawa Basin during the 2007 survey were produced from 297 redds counted in the fall of 2006 (Hillman et al. 2007). Assuming a mean fecundity of 4,324 eggs per female Chinook (from females collected for broodstock), and that no female produced more than one redd, we estimated that the Chiwawa River basin was seeded with 1,284,228 eggs in 2006 (Appendix A).

In 2007, riffles made up the largest fraction of habitat types in reaches of the Chiwawa Basin (47% of the total stream surface area) (Table 1). Pools (17\%), glides (7\%), and multiple channels (29%) constituted the remaining 53% of the stream surface area. We consistently found woody debris associated with multiple-channel habitat.

Chinook Salmon Abundance

Chinook salmon were the most abundant salmonid in the Chiwawa Basin. We estimated, based on surface area, that age-0 Chinook salmon numbered $60,752(\pm 12.2 \%$ of the estimated total) in the Chiwawa River basin in August 2007 (Table 2). Extrapolating based on volume of habitat types, we estimated $62,522(\pm 11.5 \%)$ age- 0 Chinook in the Chiwawa Basin. ${ }^{3}$ About 11% of the juvenile Chinook were in tributaries to the Chiwawa River. During the 1992-2007 survey period, numbers of age-0 Chinook ranged from 5,815 to 134,874 in the Chiwawa Basin (Figure 3; Appendix B). Most of the difference in juvenile numbers among years resulted from different seeding levels (Figure 4). Numbers of Chinook redds in the Chiwawa Basin during 1992-2007 ranged from 13 to 1,046 , resulting in seeding levels of 66,248 to $4,836,704$ eggs (Appendix A).

As in most years, age-0 Chinook in 2007 were distributed contagiously among reaches in the Chiwawa River (Table 2). In the Chiwawa River, densities of age-0 Chinook were highest in the upper reaches (Reaches 7-9). The highest densities in the Chiwawa Basin were in tributaries to the Chiwawa River (Table 2), with the highest density in Chikamin Creek (7,387 fish/ha). Age-0 Chinook were most abundant in multiple channels and least abundant in glides. We found the majority of the Chinook associated with woody debris in multiple channels. These sites (multiple channels) made up 29% of the total area of the Chiwawa Basin, but they provided habitat for 40% of all the age- 0 Chinook in the basin in 2007 (Appendix C). In contrast, riffles made up

[^6]47% of the total area, but provided habitat for only 12% of all age- 0 Chinook in the Chiwawa Basin. Pools made up 17% of the total area and provided habitat for 46% of all age-0 Chinook in the basin. Virtually no Chinook used glides that lacked woody debris.

We assumed that the Chiwawa River was seeded with 1,284,228 Chinook eggs (297 redds times 4,324 eggs/female) in fall, 2006, and that at least 60,752 of those survived to August 2007. This means that the egg-to-parr survival was at least 4.7% (95% confidence bound 4.2-5.3\%). During 1992-2007, egg-to-parr survival averaged 6.0% (range 2.7-19.1\%) in the Chiwawa Basin (Appendix A). This survival rate comports with those from other streams. For example, Mullan et al. (1992) estimated an egg-to-parr survival rate of 9.8% for spring Chinook salmon in Icicle Creek, a tributary of the Wenatchee River. Using a Beverton and Holt model, Hubble (1993) estimated that egg-to-parr survival of Chinook in the Chewuck River, a tributary to the Methow River, ranged between 13% and 32%, depending on percent seeding level in the basin. Kiefer and Forster (1991) estimated a mean egg-to-parr survival rate of 5.5\% (range 5.1-6.7\%) for naturally-spawning spring Chinook salmon in the entire upper Salmon River. They also noted that egg-to-parr survival of natural spawners and adult outplants in the headwater streams of the upper Salmon River averaged 24.4\% (range 16.1-32.0\%). Petrosky (1990) reported an egg-toparr survival range of 1.2-29.0\% for Chinook in the upper Salmon River, Idaho. Konopacky et al. (1986) estimated egg-to-parr survival of Chinook in Bear Valley Creek, Idaho, as 8.1-9.4\%. Work by Richards and Cernera (1987) in Bear Valley Creek indicated an egg-to-parr survival of 2.1\%.

Mean densities of age-0 Chinook salmon in two reaches of the Chiwawa River were less than those in corresponding reference areas (Figure 5). Within both the Chiwawa River and its reference areas, pools and multiple channels consistently had the highest densities of age-0 Chinook.

We estimated a total of $41(\pm 48.8 \%$ of the estimated total) age-1+ Chinook salmon in the Chiwawa Basin in August 2007 (Table 3). In August 1992-2007, numbers of age-1+ Chinook ranged from 5 to 563 in the Chiwawa River basin (Figure 3; Appendix B). These fish most often occurred downstream from Reach 10. We found relatively few age-1+ Chinook in tributaries. Age-1+ Chinook were most abundant in multiple channels and pools.

Juvenile Chinook Salmon Productivity (Fish/Redd)

Freshwater productivity of juvenile Chinook salmon was estimated as the number of parr (age-0 Chinook) per redd in the Chiwawa Basin. Theoretically, the relationship between number of parr and redds can be explained mathematically provided the relationship between the two parameters goes through the origin, increases monotonically at low spawning levels, and shows some level of density dependence at high spawning levels. We identified four alternative hypotheses that may explain the relationship between spawning level (redds) and numbers of age-0 Chinook:

1. The first hypothesis assumed that because of low spawner escapements, the number of juvenile Chinook increases linearly with increasing numbers of redds. This hypothesis assumes that there is no density dependence because of low seeding levels. This hypothesis was modeled with a density-independent function that took the form:

$$
J=\alpha \boldsymbol{R},
$$

where \boldsymbol{J} is the number of juvenile (age- 0) Chinook, \boldsymbol{R} is the number or redds, and $\boldsymbol{\alpha}$ is the increase in numbers of juveniles with each incremental increase in redds.
2. The second hypothesis assumed that the number of juveniles increases constantly toward an asymptote as the number of redds increases. After the asymptote is reached, the number of juveniles neither increases nor decreases. The asymptote represents the maximum number of juveniles the system can support (i.e., carrying capacity for the system). This hypothesis was modeled with a Beverton-Holt curve that took the form:

$$
J=(\alpha \boldsymbol{R}) /(\beta+R)
$$

where \boldsymbol{J} and \boldsymbol{R} are as above, $\boldsymbol{\alpha}$ is the maximum number or juveniles produced, and $\boldsymbol{\beta}$ is the number or redds needed to produce (on average) juveniles equal to one-half the maximum number of juveniles.
3. The third hypothesis assumed that the number of juveniles increases to a maximum and then declines as the number or redds increases. In this case, mortality rate of juveniles (or eggs) is proportional to the initial number of redds. Higher mortality rate is associated with density-dependent growth coupled with size-dependent predation. This hypothesis was modeled with a Ricker curve that took the form:

$$
J=\alpha \operatorname{Re}^{-\beta R}
$$

where \boldsymbol{J} and \boldsymbol{R} are as above, $\boldsymbol{\alpha}$ is the number of juveniles per redd at low spawning levels, and $\boldsymbol{\beta}$ describes how quickly the juveniles per redd drop as the number of redds increases.
4. The fourth hypothesis, like the second, assumed that the number of juveniles increases constantly, but unlike the second, the number of juveniles does not reach an asymptote. Rather, the number of juveniles increases indefinitely, but at a slowing rate of increase. This hypothesis was modeled with both a Cushing curve and a Gamma function. The Cushing curve took the form:

$$
\boldsymbol{J}=\boldsymbol{\alpha} \boldsymbol{R}^{\gamma}
$$

where \boldsymbol{J} and \boldsymbol{R} are as above, $\boldsymbol{\alpha}$ is the number of juveniles per redd at low spawning levels, and γ describes the level of density dependence at high spawning levels. The Gamma function is a three-parameter model that has the form:

$$
J=\alpha \boldsymbol{R}^{\eta} \boldsymbol{e}^{-\beta \boldsymbol{R}}
$$

This is an un-normalized gamma function that is similar to the Cushing curve when $\beta=0$.
We used Akaike's Information Criterion for small sample size ($\mathrm{AIC}_{\mathrm{c}}$) to determine which model(s) best explained the productivity of juvenile Chinook in the Chiwawa Basin. AIC ${ }_{c}$ was estimated as:

$$
A I C_{c}=-2 \log (£(\theta \mid \text { data }))+2 K+[(2 K(K+1)) /(n-K-1)],
$$

where $\boldsymbol{\operatorname { l o g }}(\boldsymbol{£}(\boldsymbol{\theta} \mid$ data) $)$ is the maximum likelihood estimate, \boldsymbol{K} is the number of estimable parameters (structural parameters plus the residual variance parameter), and \boldsymbol{n} is the sample size
(Burnham and Anderson 2002). We used least-squares methods to estimate $\boldsymbol{\operatorname { l o g }}(\boldsymbol{£}(\boldsymbol{\theta} \mid \boldsymbol{d a t a})$), which was calculated as $\log \left(\sigma^{2}\right)$, where $\sigma^{2}=$ residual sum of squares divided by the sample size ($\boldsymbol{\sigma}^{2}=\boldsymbol{R S S} / \boldsymbol{n}$). AIC C_{c} assesses model fit in relation to model complexity (number of parameters). The model with the smallest $\mathrm{AIC}_{\mathrm{c}}$ value represents the "best approximating" model within the model set. Remaining models were ranked relative to the best model using $\mathrm{AIC}_{\mathrm{c}}$ difference scores $\left(\boldsymbol{\Delta} \mathbf{A I} \mathbf{C}_{\mathbf{c}}\right)$, Akaike weights $\left(\boldsymbol{w}_{\boldsymbol{i}}\right)$, and evidence ratios. Models with $\boldsymbol{\Delta A I C} \mathbf{c}$ values less than 2 indicate that there is substantial support for these models as being the best-fitting models within the set (Burnham and Anderson 2002). Models with values greater than 2 have less support. Akaike weights are probabilities estimating the strength of the evidence supporting a particular model as being the best model within the model set. Models with small \boldsymbol{w}_{i} values are less plausible as competing models (Burnham and Anderson 2002). When no single model could be specified as the best model, a "best subset" of competing models was identified using (1) AIC ${ }_{c}$ differences to indicate the level of empirical support each model had as being the best model, (2) evidence ratios based on Akaike weights to indicate the relative probability that any model is the best model, and (3) coefficients of determination $\left(R^{2}\right)$ assessing the explanatory power of each model.

The use of $\mathrm{AIC}_{\mathrm{c}}$ indicated that the Cushing model best approximated the information in the juveniles/redd data (Table 4; Figure 6). The estimated structural parameters for this model were:

$$
\text { Juveniles }=9,191(\text { Redds })^{0.38}
$$

where the estimated standard errors of the two parameters were 4,270 and 0.08 , respectively. The adjusted $R^{2}=0.66$. The second-best model was the Beverton-Holt model, which was only 1.7 $\mathrm{AIC}_{\mathrm{c}}$ units from the best model (Table 4; Figure 6). The estimated parameters for this model were:

$$
\text { Juveniles }=[(115,737 * \text { Redds }) /(105.5+\text { Redds })],
$$

where the estimated standard errors of the two parameters were 20,839 and 54.6 , respectively, and the $R^{2}=0.62$. The $\mathrm{AIC}_{\mathrm{c}}$ difference scores, Akaike weights, and evidence ratios indicated that there was substantial support for both the Cushing and Beverton-Holt models (Table 4). There was considerably less support for the remaining models (Gamma ${ }^{4}$, Ricker, and Density Independent), which were $\geq 4 \mathrm{AIC}_{\mathrm{c}}$ units from the best model. This was further supported by the fact that, relative to the best models, the remaining three models had evidence ratios greater than 6.

Although the Cushing and Beverton-Holt models have different biological assumptions, they both indicated a density-dependent relationship between spawning levels (redds) and juvenile Chinook production. This was not only evident in the best approximating models, but there was also a significant negative relationship between juveniles per redd and numbers of redds in the Chiwawa Basin (Figure 7). Although data at high seeding levels are lacking, the Beverton-Holt model would limit the production of juvenile Chinook to less than about 161,000 parr in the

[^7]basin (upper $95 \% \mathrm{CI}$ of α in the Beverton-Holt model). In contrast, the Cushing model, which has no upper limit, indicates that the information in the available data may not support the estimation of a maximum production limit at this time. Additional information is needed to determine maximum juvenile productivity in the Chiwawa Basin.

Steelhead/Rainbow Abundance

Based on stream surface area, we estimated a total of $14,073(\pm 10.5 \%$ of the estimated total) age0 steelhead/rainbow ($<4 \mathrm{in}$) in reaches of the Chiwawa Basin in 2007 (Table 5). During the 1992-2007 survey period, numbers of age-0 steelhead/rainbow ranged from 1,410 to 45,727 in the Chiwawa River basin (Figure 8; Appendix B). In 1992-2007, numbers of age-0 steelhead/rainbow varied among reaches, but were typically highest in the lower reaches of the Chiwawa River. In all years they most often used riffle and multiple channel habitats in the Chiwawa River, although we also found them associated with woody debris in pool and glide habitat. In tributaries they were generally most abundant in small pools. Those that we observed in riffles selected stations in quiet water behind small and large boulders or occupied stations in quiet water along the stream margin. In pool and multiple-channel habitats, we found age-0 steelhead/rainbow using the same kinds of habitat as age-0 Chinook salmon.
We estimated that 8,448 ($\pm 9.7 \%$ of the estimated total) age- $1+$ steelhead/rainbow ($4-8 \mathrm{in}$) lived in reaches of the Chiwawa Basin in August 2007 (Table 6). During the survey period 1992-2007, numbers of age-1+ steelhead/rainbow ranged from 2,533 to 22,130 (Figure 8; Appendix B). In all years we found these fish in nearly all reaches, but they were typically most numerous in lower reaches of the Chiwawa River. We observed age- $1+$ steelhead/rainbow mostly in pool, riffle, and multiple-channel habitats. Those that we observed in pools were usually in deeper water than age-0 steelhead/rainbow and Chinook. Like age-0 steelhead/rainbow, age-1+ steelhead/rainbow selected stations in quiet water behind boulders in riffles, but we generally did not find the two age groups together. Age-1+ steelhead/rainbow appeared to use deeper and faster water than did age-0 steelhead/rainbow.

We estimated that steelhead/rainbow larger than 8 inches numbered $77(\pm 31.2 \%$ of the estimated total) in the Chiwawa River in August 2007 (Table 7). During the period 1992-2007, steelhead/rainbow numbers ranged from 8 to 1,869 (Appendix B). Steelhead/rainbow larger than 8 inches were most abundant in the lower Chiwawa River; however, in 1992 and 1993, they were most abundant near campgrounds in Reaches 8,9 , and 10 (these were mostly hatchery fish planted near the campgrounds). We found very few in tributary survey reaches. Most of the steelhead/rainbow larger than 8 inches used deep pools (>5 feet), and occupied stations near the bottom at the upstream end of pools.

Bull Trout Abundance

We estimated, based on surface area, that at least 95 ($\pm 30.5 \%$ of the estimated total) juvenile (28 in) bull trout lived in reaches of the Chiwawa River basin in 2007 (Table 8). We found most of these fish in the upper-most reaches and in tributaries of the Chiwawa River. During 1992-2007, numbers of juvenile bull trout ranged from 79 to 505 (Figure 9; Appendix B). These estimates and those for adult bull trout are incomplete because we did not sample the entire range of bull trout in all tributaries. Also, we did not extend our survey into the headwaters of the Chiwawa

River because there were no juvenile Chinook there. Areas beyond the distribution of juvenile Chinook salmon are known to support bull trout and cutthroat trout (USFS 1993). In addition, our estimates of bull trout abundance were based on daytime snorkel surveys, which may underestimate the actual abundance of bull trout. Several studies (e.g., Goetz 1994; Thurow and Schill 1996; Hillman and Chapman 1996; Bonar et al. 1997) have found bull trout population estimates based on nighttime snorkeling to be in some cases more accurate than daytime snorkeling, especially for juvenile bull trout. Our estimates of adult bull trout numbers may be more accurate than those for juveniles.
In all years we found most juvenile bull trout in the upstream reaches of the Chiwawa River. Of the reaches we surveyed, they were most numerous in Reaches $8-10$ on the Chiwawa River. We found the majority of these fish in multiple channels, pools, and riffles, and few in glides. They consistently occupied stations close to the stream bottom over rubble and small boulder substrate or near woody debris. This is similar to the observation of Pratt (1984) in the upper Flathead River Basin in Montana. She found that juvenile bull trout lay close to instream cover and that they tended to conceal themselves. As a result, she found it difficult to accurately estimate their numbers. Although this implies that we underestimated numbers of juvenile bull trout in the Chiwawa River, the relative distribution of juvenile bull trout is valid if we assume that we saw the same fraction of juveniles in all reaches (i.e., detection probability was the same across survey sites).
We estimated a total of $520(\pm 14.0 \%$ of the estimated total) adult ($>8 \mathrm{in}$) bull trout in reaches of the Chiwawa Basin in 2007 (Table 9). In previous years, numbers ranged from 76 to 900 (Figure 9; Appendix B). As with juvenile bull trout, we found most of the adult bull trout upstream from Reach 6; although they were found in all reaches on the Chiwawa River. We found relatively few adult bull trout in tributaries of the Chiwawa River. Adult bull trout primarily used pools and multiple channel habitat, although most of the smaller adults ($<10 \mathrm{in}$) used riffles. In all years we found few adult bull trout near campgrounds. There also appeared to be an inverse association between numbers of adult bull trout and numbers of age-0 Chinook salmon in pools in Reaches 7-10. That is, where we found large bull trout we generally observed few juvenile Chinook salmon.

Abundance of Other Salmonids

In 2007 we counted 137 brook trout, an exotic species closely related to the bull trout, in the Chiwawa River, Chikamin Creek, Big Meadow Creek, Minnow Creek, and in the Little Wenatchee River. Brook trout occurred throughout most of the Chiwawa River. In both the Chiwawa and Little Wenatchee rivers, brook trout usually used multiple channels. Few appeared to be bull trout/brook trout hybrids. In Chikamin, Minnow, and Big Meadow creeks, brook trout were most abundant in pools. Brook trout lengths ranged from 2-8 inches.

We counted a total of 61 westslope cutthroat trout in the Chiwawa River, Phelps Creek, and the Little Wenatchee River. These fish most often occurred in pools and multiple channel habitats. They ranged in size from 2-12 inches. Juvenile coho salmon were observed in Nason Creek, but not in the Chiwawa Basin or the Little Wenatchee River.

We observed both juvenile and adult mountain whitefish in the Chiwawa River, Nason Creek,
and the Little Wenatchee River. In sum, we counted 3,543 adult and 887 juvenile whitefish in these streams. We found few whitefish in tributaries to the Chiwawa River.

Conclusion

This was the $15^{\text {th }}$ year of a study to monitor trends in juvenile spring Chinook production in the Chiwawa River basin. As shown in Figure 3, numbers of juvenile Chinook salmon in the Chiwawa Basin have fluctuated widely over the 15-year period. Numbers of juveniles in 2001 and 2002 were some of the highest recorded, while numbers in the mid-1990s were some of the lowest. Interestingly, the highest spawning escapements (highest redd numbers) resulted in the lowest egg-parr survival rates (Appendix A). This is supported by the fact that the best approximating models clearly demonstrate a density-dependent relationship between seeding levels and juvenile production. Indeed, there is a significant negative relationship between parr per redd and numbers of redds in the Chiwawa Basin. This is an important observation because Objectives 1, 3, 4, and 7 and their associated hypotheses in the monitoring and evaluation plan (Murdoch and Peven 2005) are only valid when the supplemented population is below its carrying capacity.

The presence of density dependence in the early life stages of spring Chinook is not surprising. Rarely does density dependence appear in numbers of adult spring Chinook or on their spawning grounds. The Chiwawa Basin has plenty of spawning habitat, as indicated by the large numbers of spawners and redds widely distributed throughout the basin during 2001 and 2002. However, those large spawning escapements did not translate into large numbers of juveniles or smolts. Thus, density-dependent regulation occurs sometime during the early life stages of the fish. Our observations indicate that it is unlikely that physical habitat (space) currently limits parr production in the basin. Low nutrient levels and its effects on food (macroinvertebrates) production may be the primary limiting factor in the basin. If spawning escapements remain relatively high, marine-derived nutrients should increase in the basin, resulting in more food for juvenile Chinook salmon.

References

Bonar, S. A., M. Divens, and B. Bolding. 1997. Methods for sampling the distribution and abundance of bull trout and Dolly Varden. Washington Department of Fish and Wildlife, Research Report No. RAD97-05. Olympia, WA.
Burnham, K. P. and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Second edition. Springer, New York, N.Y.

Goetz, F. A. 1994. Distribution and juvenile ecology of bull trout (Salvelinus confluentus) in the Cascade Mountains. Master's thesis. Oregon State University, Corvallis.

Hillman, T. W. and D. W. Chapman. 1996. Comparison of underwater methods and electrofishing for estimating fish populations in the upper Blackfoot River Basin. Report to Seven-Up Pete Joint Venture, Lincoln, MT.

Hillman, T. W. and M. D. Miller. 2004. Abundance and total numbers of Chinook salmon and trout in the Chiwawa River Basin, Washington, 2004. Report to Chelan Public Utility District, Wenatchee, WA. BioAnalysts, Inc., Boise, ID.

Hillman, T, M. Miller, C. Peven, M. Tonseth, T. Miller, K. Truscott, and A. Murdoch. 2007. Monitoring and evaluation of the Chelan County PUD Hatchery programs: 2006 annual report. Report to the HCP Hatchery Committee, Wenatchee, WA.
Hubble, J. 1993. Methow valley spring Chinook supplementation project. Yakima Indian Nation. Annual report to Douglas County Public Utility District, East Wenatchee, WA.
Kiefer, R. and K. Forster. 1991. Idaho habitat and natural production monitoring. Idaho Department of Fish and Game, Annual Report 1989, Project No. 83-7, Contract No. DE-BI79-84BP13381.

Konopacky, R. C., P. J. Cernera, and E. C. Bowles. 1986. Natural propagation and habitat improvement, Idaho: Salmon River habitat enhancement. Subproject I, Bear Valley Creek: inventory, 1984 and 1985. Shoshone-Bannock Tribes, Fort Hall, ID. Report to U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife, Project No. 83-359, Contract No. DE-A179-84BP14383, Portland, OR.
Mullan, J. W., K. R. Williams, G. Rhodus, T. W. Hillman, and J. D. McIntyre. 1992. Production and habitat of salmonids in mid-Columbia River tributary streams. U.S. Fish and Wildlife Service, Monograph I. 489 p.

Murdoch, A. and C. Peven. 2005. Conceptual approach to monitoring and evaluating the Chelan County Public Utility District hatchery programs. Chelan County Public Utility District and the Washington Department of Fish and Wildlife, Wenatchee, WA.

Petrosky, C. E. 1990. Estimating spring Chinook parr and smolt abundance in wild and natural production areas. Pages 57-61 in: D. L. Park, editor. Status and future of spring Chinook salmon in the Columbia River basin--conservation and enhancement. Spring Chinook salmon workshop, U.S. Dept. Comm. NOAA Tech. Mem. NMFS F/NWD-187.

Pratt, K. L. 1984. Habitat use and species interactions of juvenile cutthroat Salmo clarki lewisi and bull trout Salvelinus confluentus in the upper Flathead River Basin. Masters thesis. University of Idaho, Moscow, ID. 95 p.

Richards, C. and P. J. Cernera. 1987. Salmon River habitat enhancement, annual report, 1986. Shoshone-Bannock Tribes, Fort Hall, ID. Report to Bonneville Power Administration, Project No. 83-359, Contract No. DE-A179-84BP14383, Portland, OR.

Thurow, R. F. and D. J. Schill. 1996. Comparison of day snorkeling, night snorkeling, and electrofishing to estimate bull trout abundance and size structure in a second-order Idaho stream. North American Journal of Fisheries Management 16:314-323.
USFS (United States Forest Service). 1993. Upper Chiwawa River stream survey report. Wenatchee National Forest, Wenatchee, WA.

Figure 1. Location of study reaches on the Chiwawa River, and Chikamin, Rock, Big Meadow, Peven, Alder, Brush and Phelps creeks, Chelan County, Washington. Reach 2 on Nason Creek and Reach 2 on the Little Wenatchee River were matched with Reaches 3 and 8 on the Chiwawa River, respectively.

Chiwawa River

 2007

Figure 2. Mean, minimum, and maximum monthly flows in the Chiwawa River for 2007.

Figure 3. Numbers of age-0 and age-1+ Chinook salmon within the Chiwawa River basin in August 1992-2007; ND = no data.

Chiwawa River Basin Chinook Salmon

Figure 4. Relationship between total numbers of age-0 Chinook salmon (based on fish/ha) and numbers of eggs in the Chiwawa River basin. Vertical bars indicate 95% confidence bounds.

Figure 5. Comparison of the 14 -year means of age-0 Chinook salmon densities (fish/ha) within state/habitat types in reaches 3 and 8 of the Chiwawa River and their matched reference areas on Nason Creek and the Little Wenatchee River.

Chiwawa Spring Chinook Cushing Model

Chiwawa Spring Chinook
 Beverton-Holt Model

Figure 6. Relationship between numbers of juvenile (age-0) Chinook and redds in the Chiwawa Basin, 1992-2007 (no sampling occurred in 2000). Top figure shows the Cushing model fit to the data; bottom figure shows the Beverton-Holt model fit to the data. Gray lines indicate the upper and lower 95\% C.B.

Chiwawa Spring Chinook

Figure 7. Relationship between natural log parr/redd and numbers of redds in the Chiwawa River basin, 1992-2007. No sampling was conducted in 2000. Estimates for 1992-2007 included the Chiwawa River and its tributaries; the 1992 estimate included only the Chiwawa River. The relationship $\mathrm{LN}(\mathrm{P} / \mathrm{R})=6.42-0.002$ (Redd) was significant with $\mathrm{P}=0.001 ; R^{2}=0.59$.

Figure 8. Numbers of age-0 ($<4 \mathrm{in}$) and age-1+ (4-8 in) steelhead/rainbow within the Chiwawa River basin in August 1992-2007; ND = no data.

Figure 9. Numbers of juvenile (2-8 inches) and adult (>8 inches) bull trout within the Chiwawa River basin in August 1992-2007; ND = no data.

Table 1. Description, location (river mile), and area (hectares) of land-class strata (reaches) used by age-0 Chinook salmon in the Chiwawa River basin, 2007. Reaches were classified according to geologic district, landtype association, valley-bottom type, stream state-type, and habitat type within the Cascade Ecoregion; MCV=moderately confined valley, $\mathrm{CC}=$ confined canyon, $\mathrm{UCV}=$ unconfined valley, $\mathrm{G}=\mathrm{glide}, \mathrm{P}=$ pool, $\mathrm{R}=\mathrm{riffle}$, and $\mathrm{MC}=$ multiple channel. See Hillman and Miller (2004) for definitions of stream state codes.

Reach	RM	Gradient	Geologic district	Landtype association	Valley bottom type	Stream state type	Habitat type	Area (ha)	
								Total	Sample
Chiwawa River									
1	0.00-3.77	0.007	Glacial Drift over Chumstick Formation	Glacial Valley	MCV Alluvial	NC/EB	G	1.23	1.23
						NC/EB	P	1.38	0.85
						NC/EB	R	14.90	2.03
2	3.77-5.51	0.010	Glacial Drift over Chumstick Formation	Glacial Canyon	CC Fluvial	NC/EB	P	0.52	0.28
						NC/EB	R	6.85	0.59
3	5.51-7.88	0.009	Glacial Drift over Chumstick Formation	Glacial Valley	MCV Alluvial	NC/S	R	2.38	0.79
						NC/EB	G	0.34	0.34
						NC/EB	R	6.25	0.80
						MC	M	0.37	0.15
4	7.88-8.90	0.007	Glacial Drift over Chumstick Formation	Glacial Canyon	CC Fluvial	NC/EB	P	0.73	0.35
						NC/EB	R	2.91	0.72
						MC	MC	0.45	0.45
5	8.90-10.83	0.011	Glacial Drift over Chumstick Formation	Glacial Valley	MCV Alluvial	NC/EB	P	0.18	0.18
						NC/EB	R	7.66	0.70
6	10.83-11.80	0.008	Glacial Drift over Chumstick Formation	Glacial Canyon	CC Fluvial	NC/EB	G	0.19	0.19
						NC/EB	P	0.14	0.14
						NC/EB	R	3.86	1.23
						MC	MC	0.53	0.53
7	11.80-20.03	0.001	Glacial Drift over Chumstick Formation	Glacial Valley	UCV Alluvial	NC	G	2.34	0.55
						NC	P	5.25	1.41
						NC	R	1.49	1.01
						NC/S	P	0.79	0.39
						NC/S	R	1.46	0.43
						NC/EB	G	2.80	1.40
						NC/EB	P	6.83	1.56
						NC/EB	R	3.23	0.52
						MC	MC	4.75	2.48
8	20.03-25.42	0.003	Glacial Drift over Swakane Gneiss	Glacial Valley	UCV Alluvial	NC	G	0.75	0.35
						NC	P	1.85	0.34
						NC	R	4.47	0.79
						NC/EB	G	0.82	0.53
						NC/EB	P	3.15	0.51
						NC/EB	R	1.27	0.51
						EB	P	0.32	0.32
						EB	R	0.18	0.18
						MC	MC	26.79	19.76
9	25.42-28.81	0.007	Glacial Drift over Swakane Gneiss	Glacial Valley	$\begin{gathered} \text { MCV } \\ \text { Alluvial } \end{gathered}$	NC	G	0.61	0.61
						NC	P	0.94	0.54
						NC	R	3.12	0.58
						MC	MC	5.75	0.80
10	28.81-31.11	0.011	Pre-upper Jurassic Gneiss	Glacial Valley	$\begin{gathered} \text { MCV } \\ \text { Alluvial } \end{gathered}$	NC	P	0.63	0.31
						NC	R	3.47	0.38
						MC	MC	2.59	0.29

Table 1. Concluded.

Reach	RM	Gradient	Geologic district	Landtype association	Valley bottom type	Stream state type	Habitat type	Area (ha)	
								Total	Sampled
Phelps Creek									
1	0.00-0.35	0.043	Pre-upper Jurassic Gneiss	Glacial Valley	MCV Alluvial	NC	P	0.04	0.04
						NC	R	0.13	0.13
						NC	MC	0.14	0.14
Chikamin Creek ${ }^{1}$									
1	0.00-0.94	0.013	Glacial Drift over Chumstick Formation	Glacial Valley	UCV Alluvial	NC	G	0.03	0.03
						NC	P	0.24	0.07
						NC	R	0.35	0.06
						MC	MC	0.08	0.04
Rock Creek									
1	0.00-0.73	0.020	Glacial Drift over Swakane Gneiss	Glacial Valley	$\begin{gathered} \text { UCV } \\ \text { Alluvial } \end{gathered}$	NC	G	0.01	0.01
						NC	P	0.21	0.06
						NC	R	0.27	0.05
						MC	MC	0.09	0.02
Peven Creek									
1	0.00-0.05		Pre-upper Jurassic Gneiss	Glacial Valley	MCV Alluvial	NC	P	0.02	0.02
						NC	R	0.02	0.02
Big Meadow Creek									
1	0.00-0.35	0.025	Glacial Drift over Chumstick Formation	Glacial Valley	MCV Alluvial	NC	G	0.01	0.01
						NC	P	0.14	0.04
						NC	R	0.13	0.04
						MC	MC	0.01	0.01
Alder Creek									
1	0.00-0.01		Glacial Drift over Chumstick Formation	Glacial Valley	$\begin{gathered} \text { MCV } \\ \text { Alluvial } \end{gathered}$	NC	P	0.00	0.00
						NC	R	0.01	0.01
Brush Creek									
1	0.00-0.01		Glacial Drift over Chumstick Formation	Glacial Valley	UCV Alluvial	NC	P	0.00	0.00
						NC	R	0.01	0.01
Y Creek									
1	0.00-0.05		Glacial Drift over Swakane Gneiss	Glacial Valley	UCV Alluvial	NC	P	0.00	0.00
						NC	R	0.00	0.00

${ }^{1}$ Includes the lower 0.2 miles of Minnow Creek.

Table 2. Estimated mean densities (fish/hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and percent error of the estimated total number of age- 0 Chinook salmon in reaches in the Chiwawa River basin, Washington, August 2007.

Reach	Mean density		Surface area (ha)			Volume (m ${ }^{3}$)		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm \% error	Total No.	95\% C.B.	\pm \% error
Chiwawa River								
1	150.9	0.043	2,643	± 476	18.0	2,665	± 561	21.1
2	183.1	0.051	1,350	± 317	23.5	1,477	± 333	22.5
3	89.2	0.027	833	± 71	8.5	988	± 81	8.2
4	684.6	0.124	2,800	$\pm 2,059$	73.5	2,560	$\pm 2,024$	79.1
5	186.6	0.047	1,463	± 72	4.9	1,465	± 118	8.1
6	327.5	0.081	1,543	± 83	5.4	1,659	± 129	7.8
7	792.1	0.132	22,919	$\pm 4,421$	19.3	23,845	$\pm 4,757$	19.9
8	362.5	0.062	14,353	$\pm 5,272$	36.7	12,420	$\pm 4,487$	36.1
9	462.4	0.077	4,817	$\pm 1,223$	25.4	3,856	$\pm 1,609$	41.7
10	171.0	0.049	1,142	± 431	37.7	1,342	± 481	35.8
Phelps Creek								
1	404.4	0.161	125	± 0	0.0	125	± 0	0.0
Chikamin Creek ${ }^{1}$								
1	7,386.6	5.245	5,235	± 976	18.6	8,198	$\pm 1,064$	12.9
Rock Creek								
1	1,500.5	0.741	870	± 401	46.1	1,141	± 424	37.2
Peven Creek								
1	1,376.4	0.442	51	± 0	0.0	51	± 0	0.0
Big Meadow Creek ${ }^{2}$								
1	1,782.2	1.313	538	± 476	88.5	660	± 494	74.8
Alder Creek								
1	2,278.7	2.187	20	± 0	0.0	20	± 0	0.0
Brush Creek								
1	3,205.2	4.052	28	± 0	0.0	28	± 0	0.0
Y Creek								
1	5,380.4	4.579	22	± 0	0.0	22	± 0	0.0
Grand Total	438.8	0.094	60,752	$\pm 7,413$	12.2	62,522	$\pm 7,190$	11.5

[^8]Table 3. Estimated mean densities (fish $/$ hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and percent error of the estimated total number of age-1+ Chinook salmon in reaches in the Chiwawa River basin, Washington, August 2007.

Reach	Mean density		Surface area (ha)			Volume (m ${ }^{3}$)		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm \% error	Total No.	95\% C.B.	\pm \% error
Chiwawa River								
1	1.2	0.001	20	± 14	70.0	20	± 15	75.0
2	0.0	0.000	0	± 0	0.0	0	± 0	0.0
3	0.0	0.000	0	± 0	0.0	0	± 0	0.0
4	3.7	0.001	15	± 13	86.7	13	± 13	100.0
5	0.0	0.000	0	± 0	0.0	0	± 0	0.0
6	1.2	0.001	6	± 0	0.0	6	± 0	0.0
7	0.0	0.000	0	± 0	0.0	0	± 0	0.0
8	0.0	0.000	0	± 0	0.0	0	± 0	0.0
9	0.0	0.000	0	± 0	0.0	0	± 0	0.0
10	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Phelps Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Chikamin Creek ${ }^{1}$								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Rock Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Peven Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Big Meadow Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Alder Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Brush Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Y Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Grand Total	0.3	0.000	41	± 20	48.8	39	± 20	51.3

[^9]Table 4. Summary of the five productivity models of juvenile (age-0) Chinook salmon in the Chiwawa Basin. Models are shown, including the number of parameters (K), $\mathrm{AIC}_{\mathrm{c}}$ values, $\mathrm{AIC}_{\mathrm{c}}$ difference scores $\left(\Delta_{\mathrm{i}}\right)$, the likelihood of the model given the data $\left(£\left(g_{i} \mid x\right)\right.$), Akaike weights $\left(w_{i}\right)$, and adjusted R^{2} values. The sample size (n) for all models was 15 .

Model	$\boldsymbol{K}^{\boldsymbol{a}}$	AIC $_{\mathbf{c}}$	$\boldsymbol{\Delta}_{\mathbf{i}}$	$\boldsymbol{f}\left(\boldsymbol{g}_{\boldsymbol{i}} \mid \boldsymbol{x}\right)$	$\boldsymbol{w}_{\boldsymbol{i}}$	$\boldsymbol{R}^{\mathbf{2}}$
Cushing	3	263.30	0.00	1.00	0.63	0.66
Beverton-Holt $^{\text {Gamma }} \mathrm{b}$	3	264.98	1.68	0.43	0.27	0.62
Ricker	4	267.08	3.77	0.15	0.09	0.66
Density Independent	2	271.88	8.57	0.01	0.01	0.40

${ }^{\mathrm{a}} \boldsymbol{K}$ is the number of structural parameters in the model plus 1 for σ^{2}.
${ }^{\mathrm{b}}$ The β parameter in the Gamma model was very close to 0 , which means that this model is nearly identical to the Cushing model. The reason it did not rank higher is because it contains an extra parameter, which means that it has less bias and greater variance than the Cushing model (less parsimonious).

Table 5. Estimated mean densities (fish/hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and percent error of the estimated total number of age-0 $(<4 \mathrm{in})$ steelhead/rainbow in reaches in the Chiwawa River basin, Washington, August 2007.

Reach	Mean density		Surface area (ha)			Volume (m ${ }^{3}$)		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm \% error	Total No.	95\% C.B.	\pm \% error
Chiwawa River								
1	71.6	0.021	1,254	± 132	10.5	1,309	± 121	9.2
2	187.5	0.053	1,383	± 193	13.9	1,555	± 245	15.8
3	173.2	0.056	1,617	± 164	10.1	2,051	± 167	8.1
4	156.9	0.031	642	± 125	19.5	636	± 127	19.9
5	120.8	0.030	947	± 31	3.3	948	± 64	6.8
6	146.3	0.037	689	± 91	13.2	760	± 62	8.2
7	62.8	0.009	1,816	± 515	28.4	1,613	± 586	36.3
8	0.0	0.000	0	± 0	0.0	0	± 0	0.0
9	2.1	0.001	22	± 45	204.5	28	± 45	160.7
10	10.8	0.003	72	± 21	29.2	73	± 12	16.4
Phelps Creek								
1	173.3	0.069	53	± 0	0.0	53	± 0	0.0
Chikamin Creek ${ }^{1}$								
1	3,014.5	1.880	2,137	± 425	19.9	2,939	± 474	16.1
Rock Creek								
1	600.9	0.298	348	± 129	37.1	459	± 134	29.2
Peven Creek								
1	305.9	0.098	11	± 0	0.0	11	± 0	0.0
Big Meadow Creek								
1	9,790.3	6.685	2,955	土1,269	42.9	3,363	$\pm 1,412$	41.9
Alder Creek								
1	7,405.7	7.109	65	± 0	0.0	65	± 0	0.0
Brush Creek								
1	3,205.2	4.052	28	± 0	0.0	28	± 0	0.0
Y Creek								
1	8,070.7	6.869	34	± 0	0.0	34	± 0	0.0
Grand Total	101.7	0.024	14,073	$\pm 1,477$	10.5	15,925	$\pm 1,646$	10.3

[^10]Table 6. Estimated mean densities (fish/hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and percent error of the estimated total number of age- $1+(4-8 \mathrm{in})$ steelhead/rainbow in reaches in the Chiwawa River basin, Washington, August 2007.

Reach	Mean density		Surface area (ha)			$\text { Volume }\left(\mathrm{m}^{3}\right)$		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	$\pm \%$ error	Total No.	95\% C.B.	$\pm \%$ error
Chiwawa River								
1	120.9	0.036	2,117	± 427	20.2	2,203	± 418	18.9
2	142.6	0.040	1,052	± 139	13.2	1,173	± 180	15.3
3	63.4	0.020	591	± 34	5.8	718	± 37	5.2
4	100.7	0.019	412	± 144	34.9	400	± 141	35.3
5	104.9	0.026	822	± 56	6.8	824	± 77	9.3
6	115.5	0.029	544	± 82	15.1	598	± 64	10.7
7	48.7	0.007	1,409	± 529	37.5	1,307	± 535	40.9
8	0.7	0.000	29	± 84	289.7	28	± 72	257.1
9	0.0	0.000	0	± 0	0.0	0	± 0	0.0
10	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Phelps Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Chikamin Creek ${ }^{1}$								
1	1,333.4	0.877	945	± 347	36.7	1,371	± 319	23.3
Rock Creek								
1	165.4	0.077	96	± 111	115.6	118	± 115	97.5
Peven Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Big Meadow Creek								
1	1,427.9	1.014	431	± 120	27.8	510	± 128	25.1
Alder Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Brush Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Y Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Grand Total	61.0	0.014	8,448	± 817	9.7	9,250	± 814	8.8

[^11]Table 7. Estimated mean densities (fish $/$ hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and percent error of the estimated total number of steelhead/rainbow larger than 8 inches in reaches in the Chiwawa River basin, Washington, August 2007.

Reach	Mean density		Surface area (ha)			Volume (m^{3})		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm \% error	Total No.	95\% C.B.	\pm \% error
Chiwawa River								
1	0.9	0.000	16	± 8	50.0	16	± 9	56.3
2	2.1	0.001	15	± 1	6.7	14	± 2	14.3
3	0.6	0.000	6	± 3	50.0	6	± 3	50.0
4	1.0	0.000	4	± 4	100.0	4	± 4	100.0
5	0.1	0.000	1	± 0	0.0	1	± 0	0.0
6	0.2	0.000	1	± 0	0.0	1	± 0	0.0
7	0.2	0.000	6	± 7	116.7	5	± 7	140.0
8	0.6	0.000	25	± 21	84.0	26	± 19	73.1
9	0.0	0.000	0	± 0	0.0	0	± 0	0.0
10	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Phelps Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Chikamin Creek ${ }^{1}$								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Rock Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Peven Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Big Meadow Creek								
1	11.5	0.009	3	± 5	166.7	4	± 5	125.0
Alder Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Brush Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Y Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Grand Total	0.6	0.000	77	± 24	31.2	77	± 23	29.9

[^12]Table 8. Estimated mean densities (fish $/$ hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and percent error of the estimated total number of juvenile bull trout ($2-8 \mathrm{in}$) in reaches in the Chiwawa River basin, Washington, August 2007.

Reach	Mean density		Surface area (ha)			Volume (m)		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm \% error	Total No.	95\% C.B.	\pm \% error
Chiwawa River								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
2	0.0	0.000	0	± 0	0.0	0	± 0	0.0
3	0.0	0.000	0	± 0	0.0	0	± 0	0.0
4	0.0	0.000	0	± 0	0.0	0	± 0	0.0
5	0.0	0.000	0	± 0	0.0	0	± 0	0.0
6	0.0	0.000	0	± 0	0.0	0	± 0	0.0
7	0.0	0.000	0	± 0	0.0	0	± 0	0.0
8	0.5	0.000	19	± 22	115.8	19	± 21	110.5
9	0.5	0.000	5	± 6	120.0	7	± 5	71.4
10	4.1	0.001	27	± 11	40.7	25	± 13	52.0
Phelps Creek								
1	58.3	0.023	18	± 0	0.0	18	± 0	0.0
Chikamin Creek ${ }^{1}$								
1	16.8	0.010	12	± 12	100.0	16	± 13	81.3
Rock Creek								
1	23.4	0.011	14	± 7	50.0	17	± 7	41.2
Peven Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Big Meadow Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Alder Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Brush Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Y Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Grand Total	0.7	0.000	95	± 29	30.5	102	± 29	28.4

[^13]Table 9. Estimated mean densities (fish/hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and percent error of the estimated total number of adult bull trout ($>8 \mathrm{in}$) in reaches in the Chiwawa River basin, Washington, August 2007.

Reach	Mean density		Surface area (ha)			Volume (m)		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm \% error	Total No.	95\% C.B.	\pm \% error
Chiwawa River								
1	0.7	0.000	11	± 5	45.5	11	± 6	54.5
2	1.0	0.000	8	± 5	62.5	7	± 4	57.1
3	0.3	0.000	3	± 1	33.3	3	± 1	33.3
4	2.0	0.000	8	± 6	75.0	8	± 6	75.0
5	0.6	0.000	5	± 0	0.0	5	± 0	0.0
6	0.4	0.000	2	± 0	0.0	2	± 0	0.0
7	4.7	0.001	136	± 39	28.7	133	± 40	30.1
8	4.2	0.001	167	± 49	29.3	161	± 47	29.2
9	7.2	0.001	75	± 35	46.7	67	± 32	47.8
10	15.8	0.004	105	± 13	12.4	120	± 14	11.7
Phelps Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Chikamin Creek ${ }^{1}$								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Rock Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Peven Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Big Meadow Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Alder Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Brush Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Y Creek								
1	0.0	0.000	0	± 0	0.0	0	± 0	0.0
Grand Total	3.8	0.001	520	± 73	14.0	517	± 72	13.9

[^14]APPENDIX A. Numbers of redds, eggs, age-0 Chinook salmon, parr per redd, and percent egg-to-parr survival in the Chiwawa River basin, brood years 1991-2006. Numbers of eggs were calculated as the number of redds times the mean fecundity of females collected for broodstock.

Brood Year	Chinook Salmon			Parr/Redd	Egg-to-parr survival (\%)
	Redds	Eggs	Age-0 (parr)		
1991	104	478,400	45,483	437	9.5
1992	302	1,570,098	79,113	262	5.0
1993	106	556,394	55,056	519	9.9
1994	82	485,686	55,240	674	11.4
1995	13	66,248	5,815	447	8.8
1996	23	106,835	16,066	699	15.0
1997	82	374,740	68,415	834	18.3
1998	41	218,325	41,629	1,015	19.1
1999	34	166,090	NS	NS	NS
2000	128	642,944	114,617	895	17.8
2001	1,078	4,984,672	134,874	125	2.7
2002	345	1,605,630	91,278	265	5.7
2003	111	648,684	45,177	407	7.0
2004	241	1,156,559	49,631	206	4.3
2005	332	1,436,564	79,902	241	5.6
2006	297	1,284,228	60,752	205	4.7
Average	207	986,381	62,870	284	6.0

APPENDIX B. Estimated numbers of salmonids (based on fish/ha) in the Chiwawa River basin, Washington, 1992-2007; NS = not sampled.

Sample year	Chinook salmon		Steelhead/Rainbow			Bull trout	
	Age-0	Age-1+	Age-0	Age-1+	$>\mathbf{8}$ in $^{\mathbf{1}}$	$\mathbf{2 - 8}$ in	$>\mathbf{8}$ in
1992^{2}	45,483	563	4,927	2,533	1,869	299	208
1993	79,113	174	4,004	2,860	768	158	156
1994	55,056	18	1,410	5,856	67	90	76
1995	55,241	13	7,357	9,517	140	97	664
1996	5,815	22	4,245	11,849	78	79	343
1997	16,066	5	8,823	6,905	48	220	472
1998	68,415	63	3,921	10,585	78	300	900
1999	41,629	41	5,838	22,130	33	130	423
2000	NS						
2001	114,617	69	45,727	10,623	420	505	542
2002	134,874	32	20,521	9,090	181	217	521
2003	91,278	134	18,020	6,179	49	196	282
2004	45,177	21	10,380	8,190	8	140	157
2005	49,631	79	11,463	6,188	48	125	346
2006	79,902	388	16,245	10,533	50	238	686
2007	60,752	41	14,073	8,448	77	95	520

${ }^{1}$ During 1992-1993, numbers included both hatchery and wild rainbow trout. Thereafter only wild trout were observed.
${ }^{2}$ Only the Chiwawa River was sampled in 1992. No tributaries were sampled.

APPENDIX C. Proportion of total habitat available, fraction of all age-0 Chinook within each habitat type, and densities (fish/ha) and numbers of age-0 Chinook within each habitat type in the Chiwawa River basin, survey years 1992-2007.

Habitat	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	Mean
Proportion of total habitat available																	
Glide	0.10	0.09	0.10	0.10	0.10	0.09	0.09	0.09	NS	0.07	0.08	0.07	0.07	0.08	0.08	0.07	0.08
Pool	0.19	0.19	0.21	0.18	0.18	0.17	0.16	0.17	NS	0.15	0.16	0.17	0.16	0.16	0.16	0.17	0.17
Riffle	0.61	0.61	0.57	0.59	0.57	0.57	0.58	0.55	NS	0.49	0.48	0.49	0.50	0.47	0.47	0.47	0.53
M. Chan	0.10	0.11	0.12	0.14	0.14	0.17	0.17	0.19	NS	0.29	0.28	0.26	0.27	0.29	0.30	0.29	0.21
Fraction of all age-0 Chinook within habitat types																	
Glide	0.07	0.03	0.02	0.01	0.02	0.01	0.01	0.01	NS	0.03	0.01	0.02	0.01	0.01	0.03	0.02	0.02
Pool	0.30	0.28	0.22	0.21	0.30	0.16	0.17	0.14	NS	0.23	0.24	0.23	0.07	0.19	0.31	0.46	0.24
Riffle	0.19	0.16	0.12	0.11	0.43	0.23	0.08	0.11	NS	0.18	0.15	0.15	0.14	0.07	0.12	0.12	0.14
M. Chan	0.45	0.53	0.64	0.67	0.24	0.60	0.74	0.74	NS	0.57	0.60	0.60	0.77	0.73	0.54	0.40	0.60
Densities of age-0 Chinook within habitat types (fish/ha)																	
Glide	254	251	93	55	11	12	78	13	NS	351	187	200	58	49	237	113	127
Pool	584	1,049	619	541	82	122	607	257	NS	1,392	1,468	951	155	492	1,240	1,211	720
Riffle	116	188	124	91	38	52	79	62	NS	336	300	216	101	60	166	118	135
M. Chan	1,710	3,408	2,985	2,328	84	449	2,620	1,201	NS	1,820	2,069	1,626	1,008	1,057	1,147	603	1,445
Number of age- 0 Chinook within habitat types																	
Glide	2,967	2,458	857	623	137	130	837	157	NS	3,231	1,931	1,884	540	442	2,498	1,120	1,321
Pool	13,468	21,814	12,131	11,294	1,755	2,553	11,454	5,933	NS	25,890	32,612	21,091	3,183	9,626	26,754	28,851	15,227
Riffle	8,531	12,616	6,698	6,197	2,525	3,699	5,392	4,626	NS	20,629	19,754	13,783	6,501	3,367	10,753	7,809	8,859
M. Chan	20,517	42,225	35,370	36,965	1,396	9,682	50,728	30,912	NS	64,866	80,576	54,519	34,952	36,196	46,580	25,409	38,060

APPENDIX B

Fish Trapping at the Chiwawa, Upper Wenatchee, and Lower Wenatchee Smolt Traps during 2007.

STATE OF WASHINGTON DEPARTMENT OF FISH AND WILDLIFE
 FISH PROGRAM -SCIENCE DIVISION
 SUPPLEMENTATION RESEARCH TEAM
 3515 Chelan HWY, Wenatchee, WA 98801
 Voice (509) 664-3148 FAX (509) 662-6606

February 13, 2008

To: HCP Hatchery Committee
From: Todd Miller
Cc: Distribution List

Subject: 2007 Chiwawa and Wenatchee River Smolt Estimates

Smolt monitoring programs in the Wenatchee Basin were intended to estimate the number of naturally produced migrating smolts at either the subbasin (i.e., Wenatchee) or watershed scale (i.e., Chiwawa) depending on the target stock (Table 1). In addition, population estimates of hatchery sockeye emigrating from Lake Wenatchee were used to calculate post release survival (i.e., subyearling parr to yearling smolt). The size of smolt traps operated was determined by water depth and river discharge at each of the locations. The number of smolt traps operated was determined by the expected trap efficiency. Smolt traps were located downstream from all (i.e., Chiwawa spring Chinook, Wenatchee spring Chinook, and Wenatchee sockeye), or the majority (i.e., Wenatchee summer Chinook and Wenatchee steelhead) of the spawning areas (Figure 1).

Table 1. Target stocks and corresponding smolt trapping locations used in 2007.

Stock	Smolt trap location	Smolt trap	
		Number	Diameter (m)
Chiwawa spring Chinook	Chiwawa	1	2.6
Wenatchee sockeye	Lake Wenatchee	2	1.5
Wenatchee spring Chinook	Monitor (Lower Wenatchee)	2	2.6
Wenatchee summer Chinook	Monitor (Lower Wenatchee)	2	2.6
Wenatchee steelhead	Monitor (Lower Wenatchee)	2	2.6

Figure 1. Locations of the upper Wenatchee (Lake Wenatchee Trap), Chiwawa, and lower Wenatchee River (Monitor Smolt Trap) smolt traps.

Methods

Fish were removed from the trap at a minimum every morning and placed in an anesthetic solution of MS-222. Fish were identified to species and counted. Non-target species were allowed to fully recover in fresh water prior to being released in an area of calm water downstream from the smolt trap. Target species were held in separate live boxes when needed for mark/recapture efficiency trials conducted in the evening.

Fork length was measured to the nearest millimeter and weight to the nearest 0.1 g . A Fulton type condition factor ($\mathrm{WH} 10^{5} / \mathrm{FL}^{3}$) was calculated for all target species. The degree of smoltification (parr, transitional, or smolt) was assessed by visual examination. Juvenile spring Chinook and steelhead were classified as parr if parr marks were distinct, transitional if parr marks were not distinct, and smolts if parr marks were not visible and the fish exhibited a silvery appearance.

Mark/recapture efficiency trials were conducted throughout the trapping season. The frequency of mark/recapture trials was dependent on the number of fish captured (i.e., no less than 100) and the river discharge. These trials were conducted over the widest range of discharge possible (interval depends on trap location). Fish utilized for mark/recapture trials were marked by clipping the tip of either the upper or lower lobe of the caudal fin or were PIT tagged by Chelan

County PUD personnel. Chinook fry (i.e., FL < 50 mm) used in mark/recapture trials were dyed using a Bismark brown solution. Marked fish were distributed evenly on both sides of the river in pools or in calm pockets of water around boulders. In the case of the upper Wenatchee River trap, marked fish were transported and released into Lake Wenatchee. Marked fish were released between 1800 h and 2000 h . All recaptures of marked fish typically occurred within 48 h after each trial. Emigration estimates were calculated using estimated daily trap efficiency derived from the regression formula using trap efficiency (dependent variable) and discharge (independent variable).

Trap efficiency was calculated using the following formula:

$$
\text { Trap efficiency }=E_{i}=R / M i,
$$

where E_{i} is the trap efficiency during time period $i ; M_{i}$ is the number of marked fish released during time period i; and R_{i} is the number of marked fish recaptured during time period i. The number of fish captured was expanded by the estimated daily trap efficiency (e) to estimate the daily number of fish migrating past the trap $\left(N_{i}\right)$ using the following formula:

$$
\text { Estimated daily migration }=\hat{N}_{i}=C_{i} / \hat{e}_{i}
$$

where N_{i} is the estimated number of fish passing the trap during time period i; C_{i} is the number of unmarked fish captured during time period i; and e_{i} is the estimated trap efficiency for time period i based on the regression equation.

The variance for the total daily number of fish migrating past the trap will be calculated using the following formulas:

$$
\text { Variance of daily migration estimate }=\quad \operatorname{var}\left[\hat{N}_{i}\right]=\hat{N}_{i}^{2} \frac{\operatorname{MSE}\left(1+\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{(n-1) s_{\mathrm{X}}^{2}}\right)}{\hat{e}_{i}^{2}}
$$

where X_{i} is the discharge for time period i, and n is the sample size. If a relationship between discharge and trap efficiency was not present (i.e., $P<0.05 ; r^{2} \sim 0.5$), a pooled trap efficiency was used to estimate daily emigration:

$$
\text { Pooled trap efficiency }=e_{p}=\sum R / \sum M
$$

The daily emigration estimate was calculated using the formula:

$$
\text { Daily emigration estimate }=\hat{N}_{i}=C_{i} / e_{p}
$$

The variance for daily emigration estimates using the pooled trap efficiency was calculated using the formula:
Variance for daily emigration estimate =

$$
\operatorname{var}\left[\hat{N}_{i}\right]=\hat{N}_{i}^{2} \frac{e_{p}\left(1-e_{p}\right) / \sum M}{e_{p}^{2}}
$$

The total emigration estimate and confidence interval was calculated using the following formulas:

$$
\begin{gathered}
\text { Total emigration estimate }=\sum \hat{N}_{i} \\
95 \% \text { confidence interval }=1.96 \times \sqrt{\sum \operatorname{var}}\left[\hat{N}_{i}\right]
\end{gathered}
$$

Results

Chiwawa River Smolt Trap

2005 Brood Year

The Chiwawa River smolt trap was located approximately 1 km upstream from the confluence with the Wenatchee River. The smolt trap operated between 27 February and 27 November. During that time period the trap was inoperable for 23 days as a result of high river flows, debris, snow/ice, or mechanical failure. During breaks in operation, the estimated number of Chinook captured was calculated from the mean of number of fish captured two days prior and two days after the break in operation. The trap was operated in two positions dependent on river discharge (i.e., lower $>12 \mathrm{~m}^{3} / \mathrm{s}$ and upper $<12 \mathrm{~m}^{3} / \mathrm{s}$). Daily trap efficiencies were estimated from two regression models (independent variable = discharge) depending on trap position and age class (i.e., subyearling and yearling Chinook).

Wild yearling spring Chinook (2005 brood) were primarily captured between 1 March and 29 June (Figure 2). We captured 4,433 yearling Chinook (Appendix A) and estimated 4,569 yearling Chinook would have been captured if the trap had operated without interruption. Mortality for the season totaled 9 yearling spring Chinook (0.2 \%). Eleven mark/recapture efficiency trials were conducted in the lower position with a mean (SD) trap efficiency of 12.4 (9.0) \%. In 2007, mark/recapture trials could not be conducted at all required discharge levels due to low catch rates. Therefore, efficiency trials were combined with historical trials (2002 2007) in order to expand the population model's utility over a greater range of river discharge. The 2007 regression model for the lower position ($r^{2}=0.82, P<0.001$) was used to estimate yearling Chinook. The estimated number (95\% C.I.) of yearling Chinook that emigrated from the Chiwawa River in 2007 was 69,064 ($\pm 35,747$). The large confidence interval was due to the number of fish captured at very high discharge (i.e., low trap efficiency). Fish captured during the months of May and June account for only 22% of the estimated population, but 30% of the total variance. More simply, low trap efficiency ($\sim 2.5 \%$) during this period was responsible for the large reported variance.
2006 Brood Year

Wild subyearling spring Chinook were captured between 8 June and 27 November. We captured 16,250 subyearling Chinook and estimated 16,902 subyearling Chinook would have been captured if the trap had operated without interruption (Figure 2). Mortality for the season totaled 130 subyearling spring Chinook (0.8\%). Fifteen mark/recapture efficiency trials were conducted with a mean (SD) trap efficiency of 31.1 (16.8) \%. The 2007 subyearling regression model (i.e., upper trap position) also included data from previous years (2002-2004, 2006-2007; $r^{2}=0.74, P$ <0.01) increasing the utility of the model over a greater range of river discharge. However, subyearling Chinook were also captured while the trap was operated in the lower position. Hence, a separate regression model was used for that time period ($r^{2}=0.82, P<0.01$). In 2007, the estimated number (95\% C.I.) of subyearling spring Chinook (including fry) that moved downstream of the Chiwawa River smolt trap during the sampling period was 70,202 ($\pm 16,147$). The estimate should be considered conservative because several days during peak emigration river discharge exceeded the range of the regression model. Hence, the estimated trap efficiency for those days was actually lower than that estimated using the regression model.

The proportion of the subyearling Chinook that were captured and classified as fry was less in 2007 (4\%) than in 2006 (10\%). Typically the number of fry captured comprises less than 3\% of the total number of Chinook captured for any given brood year. The large proportion of fry captured in 2002, 2003, 2004, and 2005 was attributed to a combination of large escapement, proximity of redds to the trapping location, and high water velocity and discharge during the emergence period. We have been unable to determine if fry captured in the smolt trap migrate upstream at a later date and rear in the Chiwawa River or reside downstream of the smolt trap until the following spring and emigrate as yearling smolts. Hillman and Miller (2002) reported large numbers of subyearling chinook in tributaries of the Chiwawa River where no spawning had been reported. These data suggest considerable movement during the summer rearing period. Due to the high likelihood that fry do migrate upstream and reside in the Chiwawa River, fry have not been included in our emigrant production estimates. Excluding the fry from the estimate, the number of subyearling spring Chinook that emigrated from the Chiwawa River was $62,922(\pm 13,424)$.

Figure 2. Daily number of Chiwawa River spring Chinook smolts, parr, and fry captured in 2007.

Emigrant Survival

The estimated total egg deposition was calculated by multiplying the mean fecundity of the 2005 brood spawners (M. Tonseth, WDFW, personal communication) by the total number of redds found during surveys in the Chiwawa River basin in 2005 (Murdoch et al. 2005). Egg-toemigrant survival was calculated by dividing the estimated egg deposition by the total number of subyearling (excluding fry) that emigrated in 2006 and yearling spring Chinook that emigrated in 2007. The estimated egg-to-emigrant survival for the 2005 brood Chiwawa spring Chinook was 12.4\% (Table 2).

Length and Weight

Individual length and weight measurements were recorded from a sample of the daily catch. The mean fork length (SD) of yearling and subyearling Chinook (fry excluded) captured was 91.3 (7.8) mm and 72.1 (11.5) mm, respectively (Table 3). The mean fork length of subyearling Chinook fry was 38.1 (3.8) mm.

Table 2. Estimated egg deposition (\# of redds x mean broodstock fecundity) and egg-toemigrant survival rates for Chiwawa River spring Chinook salmon.

| $\begin{array}{c}\text { Brood } \\ \text { year }\end{array}$ | $\begin{array}{c}\text { Number } \\ \text { of redds }\end{array}$ | $\begin{array}{c}\text { Estimated } \\ \text { egg } \\ \text { deposition }\end{array}$ | Subyearling | | | Yearling |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | \(\left.\begin{array}{c}Total

emigrants\end{array} $$
\begin{array}{c}\text { Egg-to- } \\
\text { emigrant } \\
\text { survival (\%) }\end{array}
$$\right]\)

Table 3. Mean fork lengths (mm), weights (g), and body condition factor of spring Chinook salmon captured in the Chiwawa River smolt trap during 2007.

	Yearling				Subyearling			
	Mean	SD	N		Mean		SD	N
Fork length	91.3	7.8	2,250		72.1	11.5	1,773	
Weight	8.6	2.5	2,245		4.5	2.1	1,718	
K factor	1.10	0.09	2,245		1.13	0.16	1,718	

Nontarget Salmonids

During the trapping period, 152 steelhead smolts and 1,056 steelhead/rainbow trout parr were also captured. Mortality for the season totaled 4 steelhead juveniles (0.3%). The mean fork length (SD) of steelhead parr and smolts captured was 91.4 (30.0) mm and 151.8 (27.7) mm, respectively (Table 4). Bull trout also comprised a large proportion of incidental species captured. During the trapping period, 29 adult ($>300 \mathrm{~mm}$) and 250 juvenile bull trout were
captured (Table 5). Low numbers of fish captured prevented us from estimating the total number of steelhead and bull trout that emigrated from the Chiwawa River during the sampling period. The monthly totals of all fish captured are listed in Appendix A.

Table 4. Mean fork lengths (mm), weights (g), and body condition factor of juvenile steelhead captured in the Chiwawa River smolt trap during 2007.

	Parr				Smolts		
	Mean	SD	N		Mean		SD
Fork length	91.4	30.0	968		151.8		27.7
Weight	11.3	18.2	965		39.2	19.0	149
K factor	1.07	0.22	965		1.02	0.11	149

Table 5. Mean fork lengths (mm), weights (g), and body condition factor of bull trout captured in the Chiwawa River smolt trap during 2007.

| | Juvenile | | | | Adult | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Mean | SD | N | | Mean | SD | N |
| Fork length | 176.3 | 42.2 | 156 | | 422.5 | 38.9 | 2 |
| Weight | 60.9 | 40.3 | 156 | | 529.5 | 2.1 | 2 |
| K factor | 1.00 | 0.39 | 156 | | 0.72 | .20 | 2 |

Upper Wenatchee River Smolt Trap

The upper Wenatchee River smolt traps were located approximately 0.5 km below the outlet of Lake Wenatchee. The trap operated nightly between 4 March and 23 July. We captured 38,628 wild and 2,387 hatchery sockeye smolts during the sampling period (Figure 3). Mortality during the season totaled 769 wild sockeye ($>2.0 \%$). Of those mortalities, 736 were from a single day and associated heavy debris in the trap. We also captured 1,597 wild spring Chinook smolts and 80 juvenile steelhead. Mortality of wild spring Chinook during trapping was 14 (0.9\%). There was no mortality of juvenile steelhead or bull trout captured during the sampling period. The monthly totals of all fish captured are listed in Appendix B.

A total of 14 mark/recapture efficiency trials (9 wild and 5 hatchery) were conducted during the sampling period. During which, 8,600 wild and 516 hatchery sockeye were marked (i.e., caudal fin clip) and released into Lake Wenatchee. Wild and hatchery sockeye recaptures totaled 119 and 7 , respectively. A delay in migration and subsequent recapture of the marked fish from Lake Wenatchee negatively affected the relationship between discharge and trap efficiency (i.e., unequal probability of recapture). Both the hatchery and wild sockeye smolt production estimate was calculated using a wild and hatchery pooled daily trap efficiency (wild $=1.4 \%$; hatchery $=$ 1.4\%).

The estimated smolt production (95\% C.I.) for wild sockeye was 2,797,313 ($\pm 131,973$). Age classes of wild sockeye were determined from scales collected randomly from the run (Table 6). Egg deposition was calculated based on the spawning escapement determined at Tumwater Dam and the sex ratio and fecundity of the broodstock (M. Tonseth, WDFW, personal communication). Historical egg-to-smolt survival rates for wild Wenatchee sockeye have ranged between 1.18% and 21.17% (Table 7).

The estimated number (95\% CI) of hatchery sockeye that emigrated from Lake Wenatchee was $183,475(\pm 36,799)$. This was the first brood year in which all hatchery sockeye parr were released at a similar size and time since 1999 and the third brood year that hatchery smolt estimates for the late release group were greater than the number of fish released. Because the number of hatchery smolts was greater than the number of parr released we assumed that survival was 100% and adjusted our smolt estimates accordingly (Table 8). Overestimates of hatchery sockeye salmon smolts may be the result of some hatchery fish outmigrating at age-2 or an underestimate of the actual trap efficiency. We suggest the later because coded wire tag recovered from outmigrating smolt between 2001 and 2005 indicated that all hatchery smolts emigrate as at age- 1 the spring following release. Predator abundance in Lake Wenatchee may have increased since smolt trapping began in 1997. Additional studies are needed to determine the source of error in trap efficiency estimates and possible alternatives.

Figure 3. Number of wild and hatchery sockeye captured at the upper Wenatchee smolt trap, 2007.

Table 6. Age composition and estimated number of wild sockeye smolts emigrating from Lake Wenatchee derived from scale samples.

Run year	Proportion of wild smolts			Total emigrants
	Age 1+	Age 2+	Age 3+	
1997	0.075	0.906	0.019	55,359
1998	0.955	0.037	0.008	$1,447,259$
1999	0.619	0.381	0.000	$1,944,966$
2000	0.599	0.400	0.001	985,490
2001	0.943	0.051	0.006	39,353
2002	0.961	0.039	0.000	729,716
2003	0.740	0.026	0.000	$5,303,056$
2004	0.929	0.071	0.000	$5,771,187$
2005	0.230	0.748	0.022	723,413
2006	0.994	0.006	0.000	$1,266,971$
2007	0.959	0.038	0.003	$2,797,313$

Table 7. Estimated egg deposition (mean fecundity x estimated \# of females) and egg-toemigrant survival rates for Lake Wenatchee sockeye salmon.

Brood year	Estimated egg deposition	Estimated number of wild smolts				\qquad
		Age 1+	Age 2+	Age 3+	Total	
1995	4,902,120	4,174	53,549	0	57,723	1.18
1996	10,035,288	1,382,133	741,032	985	2,124,150	21.17
1997	11,796,932	1,203,934	394,196	236	1,598,366	13.55
1998	5,505,944	590,309	2,007	0	592,316	10.76
1999	1,188,488	37,110	28,459	0	65,569	5.52
2000	30,506,949	701,257	1,378,795	0	2,080,052	6.82
2001	64,100,860	4,024,884	409,754	90,427	4,525,065	7.06
2002	49,197,456	5,361,433	511,453	0	5,872,886	12.00
2003	7,576,738	166,385	7,602	8,392	182,379	2.41
$2004{ }^{\text {a }}$	38,332,182	1,259,369	106,298	--	1,365,667	3.56
$2005^{\text {a }}$	14,667,500	2,682,623	--	--	2,682,623	--

[^15]Table 8. Release-to-smolt survival rates for Lake Wenatchee hatchery sockeye.

Brood year	Release year	Run year	Number of fish released	Fork length (mm) at release (SD)	Date of release	Number of fish captured	Estimated number of smolts	Release to smolt survival
1995	1996	1997	150,808	$106.0(6.2)$	25 Oct	130	28,828	19.12%
1996	1997	1998	284,630	$106.5(7.4)$	22 Oct	279	55,985	19.67%
1997	1998	1999	197,195	$122.1(7.4)$	09 Nov	586	112,524	57.06%
1998	1999	2000	121,344	$112.3(7.6)$	27 Oct	66	24,684	20.34%
1999	2000	2001	84,466	$94.4(8.9)$	28 Aug	319	30,326	35.90%
1999	2000	2001	83,489	$134.3(15.4)$	01 Nov	548	63,720	76.32%
2000	2001	2002	92,055	$122.6(7.9)$	27 Aug	142	30,918	33.59%
2000	2001	2002	98,119	$146.3(12.2)$	27 Sept	416	90,593	92.33%
2001	2002	2003	96,486	$117.9(8.7)$	28 Aug	162	36,484	37.81%
2001	2002	2003	104,452	$134.8(8.7)$	23 Sept	465	103,838	99.41%
2002	2003	2004	98,509	$72.7(5.0)$	16 Jun	31	5,192	4.41%
2002	2003	2004	104,855	$118.1(9.1)$	25 Aug	376	98,412	85.88%
2002	2003	2004	112,419	$145.4(13.7)$	22 Oct	292	112,419	100.0%
2003	2004	2005	32,755	$78.7(3.6)$	15 Jun	0		0
2003	2004	2005	104,879	$118.4(7.0)$	25 Aug	229	19,574	18.66%
2003	2004	2005	102,825	$158.2(12.8)$	03 Nov	1,185	102,825	100.0%
2004	2005	2006	81,428	$115.8(6.7)$	29 Aug		1,500	159,500

Lower Wenatchee River Smolt Trap

The lower Wenatchee River smolt traps were located at the West Monitor Bridge (rkm 9.6). The traps operated nightly between 1 February and 5 August. However, due to heavy debris and/or high flow, both traps was not operational for 14 days (i.e., 3 February through 4 February, 12 March through 14 March, 26 March through 27 March, 2 June through 7 June, and 21 June), and one trap was not operational for 68 days (i.e., 3 February through 4 February, 12 March through 31 March, 10 April through 11 April, 8 May through 16 June, and 22 June through 25 June). We captured 1,906 wild and 45,467 hatchery yearling Chinook during the trapping period, respectively (Figure 4). A total of 86,142 subyearling Chinook were also captured comprising 64.5% of the total number of juvenile Chinook captured in 2007. Mortality during the season
totaled 5 wild yearling Chinook (0.3%) and 245 wild subyearling Chinook (0.3%). The number of wild and hatchery steelhead smolts captured was 433 and 2,697, respectively (Figure 5). The number of steelhead fry captured totaled 203. Mortality during the season totaled 3 wild juvenile steelhead smolts (0.7%) and 1 steelhead fry (0.5%). We also captured 6,340 wild and 248 hatchery sockeye (Figure 6). Only two bull trout were captured in 2007. The monthly totals of all fish captured are listed in Appendix C. Smolt production estimates for salmon and steelhead were calculated using efficiency trials conducted with subyearling Chinook, yearling hatchery Chinook, and yearling hatchery coho. Mark/recapture trials were conducted when river discharge changed between 14 and $28 \mathrm{~m}^{3} / \mathrm{s}$ or the trap position had changed. Low abundance of other target species precluded their use in mark/recapture trials.

Smolt production estimates were calculated using separate regression models (independent variable = river discharge) for each trap position and species. However, when too few trials for a given position or species were conducted, efficiency trials from previous years are incorporated into the regression model. Until the relative abundance of wild yearling Chinook and steelhead increases, or trap efficiency significantly increases such that an adequate number of the target species are captured, surrogates must be used in trap efficiency trials. Estimates for yearling Chinook and steelhead incorporated regression models developed with hatchery coho and hatchery Chinook for both the trap positions ($r^{2}=0.70, P=0.04 ; r^{2}=0.76, P<0.01$). Subyearling Chinook were captured in sufficient numbers such that regression models were developed using only subyearling Chinook when the trap was operated in both operating positions ($r^{2}=0.37, P<0.01 ; r^{2}=0.83, P=0.03$). The smolt production estimate ($95 \% \mathrm{CI}$) for wild yearling and subyearling Chinook was $311,699(\pm 293,886)$ and $9,590,569(\pm 1,859,554)$, respectively. The 2005 brood egg-to-smolt survival for Wenatchee spring Chinook was 8.69% (Table 9). The smolt production estimate for Wenatchee steelhead was 85,443 ($\pm 94,717$) and the 2003 brood emigration, completed in 2007, had an egg-to-smolt survival of 1.19\% (Table 10).

Figure 4. Number of yearling wild Chinook and yearling hatchery Chinook captured at the lower Wenatchee River trap in 2007.

Figure 5. Number of wild and hatchery steelhead captured at the lower Wenatchee River trap in 2007.

Figure 6. Number of wild and hatchery sockeye captured at the lower Wenatchee River trap in 2007.

Table 9. Estimated egg deposition (\# of redds x mean broodstock fecundity) and egg-to-smolt survival rates for Wenatchee Basin spring Chinook salmon.

| $\begin{array}{c}\text { Brood } \\ \text { year }\end{array}$ | $\begin{array}{c}\text { Number of } \\ \text { redds }\end{array}$ | $\begin{array}{c}\text { Estimated egg } \\ \text { deposition }\end{array}$ | Total emigrants | |
| :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Egg-to-smolt

survival (\%)\end{array}\right]\)

Table 10. Estimated egg deposition (mean fecundity x estimated \# of females) and egg-toemigrant survival rates for Wenatchee Basin Steelhead.

Brood year	Estimated egg deposition	Estimated number of wild smolts				Egg-tosmolt survival (\%)
		Age 1+	Age 2+	Age 3+	Total	
$1997{ }^{\text {a }}$						
$1998{ }^{\text {a }}$		16,628	14,799	4,293	35,720	
$1999{ }^{\text {a }}$		5,691	24,528	4,203	34,422	
$2000^{\text {a }}$		7,972	26,462	5,857	40,292	
$2001{ }^{\text {b }}$	858,990	1,930	21,522	8,142	31,593	3.68
2002	2,674,250	4,712	28,153	1,708	34,574	1.29
2003	2,919,420	4,887	6,828	23,267	34,976	1.19
$2004{ }^{\text {c }}$	1,933,560	8,963	36,563	--	--	--
$2005{ }^{\text {c }}$	5,620,120	25,613	--	--	--	--

${ }^{\text {a }}$ No redd counts
${ }^{\mathrm{b}}$ Partial basin redd counts
${ }^{\text {c }}$ Incomplete brood year

Discussion

A delay in migration and subsequent recapture of the marked fish from Lake Wenatchee negatively affected the relationship between discharge and trap efficiency (i.e., unequal probability of recapture). Therefore, the pooled trap efficiency (1.4\%) was used to calculate sockeye smolt production estimates. Sockeye egg-to-smolt survival rates were based on the
estimated number of females passing Tumwater Dam. This methodology does not take into account prespawn mortality and likely underestimates survival. In the future, redd based egg deposition estimates provided by Chelan PUD should provide more accurate estimates. Hatchery survival rates were consistent with previous estimates for late releases, but underestimates of trap efficiency have been recognized as a concern. Continuation of this release methodology should result in greater parr-to-adult survival rates of hatchery sockeye, however, an alternate methodology to estimate smolt production (hatchery and wild) may be required.

An increase in the capture of wild spring Chinook at the upper Wenatchee trap was notable in 2007. Assuming that hatchery fish released into the White River and Lake Wenatchee were not 100% coded wire tagged (CWT), fish could be misidentified as wild spring Chinook. Alternatively, higher than average egg-to-smolt survival from Nason, White, Little Wenatchee, and Wenatchee rivers upstream of the trap may have increased the abundance of Chinook smolts outmigrating in 2007. One previously PIT tagged spring Chinook was captured in 2007 that was tagged in November 2006 at Nason Creek smolt trap by Yakama Nation (YN) personnel. It is assumed that Nason Creek fish do influence capture rates in the Upper Wenatchee smolt trap. If captures of wild spring Chinook continue to increase at the trap, individual mark/recapture trials will be conducted in the future using wild spring Chinook.

Low abundance of spring Chinook and steelhead precluded their use for mark/recapture trials at the lower Wenatchee smolt trap. Hatchery Chinook and coho were used as surrogates for mark/recaptures trials, which were conducted at various levels of river discharge or if the trap position had changed. Smolt production estimates were calculated using separate regression models (independent variable = river discharge; dependent variable = trap efficiency) for each of the two trap positions. In some cases, efficiency trials from previous years (i.e., 2001-2006) were used in the regression model to increase the sample size used in the model. Hatchery Chinook and coho will continue to be used as surrogates in trap efficiency trials until the relative abundance of wild spring Chinook and steelhead increases sufficiently to allow species-specific efficiency trials.

The precision (confidence intervals) of wild spring Chinook and steelhead estimates for the Wenatchee Basin was low due to high variability in discharge and low trap efficiency. The majority of trapping occurred when river discharge was outside the calculated regression range (i.e., too high or too low). Efficiency trials were not performed at low discharge because fish numbers were insufficient and trials at high discharge were not performed because the trap was not operated due to fish health concerns. As a result, the extremely low estimated trap efficiencies resulted in high confidence intervals. Variance formulas produce higher estimates as trap efficiency decreases. More simply, a greater degree of confidence in the smolt estimate is assumed as trap efficiency increases. Hence, when trap efficiency is low, the confidence interval of the estimate is high. While the confidence intervals were large as a result of low trap efficiency, we suggest smolt production estimates, based on estimated trap efficiencies, are accurate because the regression models used to estimate trap efficiency was significant and had a high coefficient of determination ($r^{2}=0.76, P<0.001$; $r^{2}=0.70, P<0.05$).

References

Hillman, T.W. and M.D. Miller. 2002. Abundance and total numbers of Chinook salmon and trout in the Chiwawa River Basin, Washington, 2001. Report to Chelan county Public Utility District, Wenatchee, Washington.

Murdoch, A.R., T.N. Pearsons, T.W. Maitland, M.F. Ford, and K. Williamson. 2005.
Monitoring the reproductive success of naturally spawning hatchery and natural spring Chinook salmon in the Wenatchee River. BPA Project No. 2003-039-00. Bonneville Power Administration, Portland, Oregon.

Tonseth, M. 2007. Personal communication. Washington Department of Fish and Wildlife, Science division, Supplementation research team, Wenatchee WA.

Appendix A. Yearly and monthly total juvenile capture information for the Chiwawa River trap.

2007											
Species/Origin	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chinook											
Wild yearling	2,415	1,622	294	100	2	0	0	0	0	--	4,433
Wild subyearling	339	3,396	571	687	2,541	3,365	871	2,980	1,500	--	16,250
Hatchery yearling	0	6,041	11,570	0	2	9	11	1	0	--	
Steelhead											
Wild	228	164	127	465	35	94	54	43	1	--	1,211
Smolt	60	65	12	5	4	6	0	0	0	--	152
Parr	165	99	115	460	31	88	54	43	1	--	1,056
Hatchery	1	0	1,932	21	2	1	5	2	0	--	1,964
Coho											
Wild yearling	0	0	0	0	0	0	0	0	0	--	0
Wild subyearling	0	0	1	10	1	0	0	0	0	--	12
Hatchery yearling	0	0	0	0	0	0	0	0	0	--	0
Bull trout											
Juvenile	33	11	2	22	12	26	72	64	8	--	250
Adult	0	0	0	0	1	4	15	8	1	--	29
Cutthroat	0	3	0	12	1	16	8	0	0	--	40
Eastern brook	1	1	0	0	0	0	0	0	1	--	3
White fish	51	18	8	6	68	1,041	818	169	7	--	2,186
Northern pikeminnow	0	0	0	0	6	8	1	0	0	--	15
Longnose dace	21	96	352	304	133	48	1,087	292	16	--	2,349
Sucker spp.	0	0	0	0	0	0	0	1	0	--	1
Redside shiner	0	0	0	0	0	0	0	0	0	--	0
Yellow perch	0	0	0	0	0	0	0	0	0	--	0
Sculpin spp.	7	4	7	2	8	14	21	10	0	--	73

2006											
Species/Origin	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chinook											
Wild yearling	1,013	3,810	121	26	2	0	2	0	0	--	4,974
Wild subyearling	65	665	70	323	4,066	3,094	1,182	1,445	3,624	--	14,542
Hatchery yearling	0	5,889	3,899	3	1	0	3	1	0	--	9,796
Steelhead											
Wild	37	346	269	173	30	54	112	10	758	--	1,789
Smolt	1	26	7	6	3	0	9	1	0	--	53
Parr	36	320	262	167	27	54	103	9	758	--	1,736
Hatchery	5	0	1,354	16	0	2	4	2	1	--	1,384
Coho											
Wild yearling	3	0	0	0	0	0	0	0	0	--	3
Wild subyearling	0	0	0	2	0	0	0	0	0	--	2
Hatchery yearling	86	40	0	0	0	0	0	0	0	--	126
Bull trout											
Juvenile	12	1	1	7	1	4	31	19	49	--	125
Adult	5	0	0	0	0	4	19	6	5	--	39
Cutthroat	0	0	0	0	2	5	45	1	3	--	56
Eastern brook	0	0	0	0	1	0	0	0	3	--	4
White fish	42	13	0	2	272	1,097	720	62	59	--	2,267
Northern pikeminnow	0	0	0	0	0	0	0	0	0	--	0
Longnose dace	36	59	160	100	51	29	1,226	254	36	--	1,951
Sucker spp.	0	1	2	0	0	0	4	1	0	--	8
Redside shiner	0	0	0	0	0	1	0	0	0	--	1
Yellow perch	0	0	0	0	0	0	0	0	0	--	0
Sculpin spp.	3	0	5	4	34	11	8	27	12	--	104

2005										
Chinook										
Wild yearling	355	2,327	138	54	0	0	0	0	0	-- 2,874
Wild subyearling	803	1,024	12	2,453	2,324	951	505	1,561	,416	-- 11,049
Hatchery yearling	0	1,811	2,134	1	2	7	9	1	0	-- 3,965
Steelhead										
Wild	13	170	173	88	68	626	129	381	24	-- 1,672
Smolt	0	25	7	3	10	0	0	0	0	-- 45
Parr	13	145	166	85	58	626	129	381	24	-- 1,627
Hatchery	0	0	2,069	30	1	2	2	0	0	-- 2,104
Coho										
Wild yearling	0	4	0	0	0	0	0	0	0	-- 4
Wild subyearling	0	0	0	0	0	0	0	0	0	-- 0
Hatchery yearling	0	8	0	0	0	0	0	0	0	-- 8
Bull trout										
Juvenile	2	1	1	5	1	7	67	73	18	-- 175
Adult	0	0	0	0	2	1	15	21	2	-- 41
Cutthroat	0	1	6	11	2	12	8	3	1	-- 44
Eastern brook	0	0	1	0	0	0	0	2	1	-- 4
White fish	17	58	10	97	679	2,213	579	18	1	-- 3,672
Northern pikeminnow	0	0	0	0	0	0	0	0	0	-- 0
Longnose dace	8	117	242	382	86	675	1,500	82	41	-- 3,133
Sucker spp.	0	0	0	0	0	2	5	3	0	-- 10
Redside shiner	0	0	0	0	0	1	1	0	0	-- 2
Yellow perch	0	0	0	0	0	0	0	0	0	-- 0
Sculpin spp.	1	0	0	0	3	5	11	3	0	-- 23

2004											
Chinook											
Wild yearling	1,429	2,446	287	152	4	3	5	0	0	0	4,326
Wild subyearling	871	332	44	632	415	595	510	677	1,145	45	5,266
Hatchery yearling	0	4,766	2,769	1	7	14	0	0	0	0	7,557
Steelhead											
Wild	41	236	186	307	108	1,373	116	33	39	2	2,441
Smolt	2	19	1	1	18	239	0	0	0	0	280
Parr	39	217	185	306	90	1,134	116	33	39	2	2,161
Hatchery	1	4,917	4,709	12	2	18	17	2	0	0	9,678
Coho											
Wild yearling	0	0	0	0	0	0	0	0	0	0	0
Wild subyearling	0	0	0	0	0	0	0	0	0	0	0
Hatchery yearling	0	0	0	0	0	0	0	0	0	0	0
Bull trout	9	18	11	9	5	24	97	45	32	0	250
Juvenile	9	18	11	9	5	20	92	42	32	0	238
Adult	0	0	0	0	0	4	5	3	0	0	12
Cutthroat	0	0	1	11	3	20	10	0	0	0	45
Eastern brook	0	0	2	0	0	0	0	0	0	0	2
White fish	6	1	2	10	563	809	2,244	27	7	0	3,669
Northern pikeminnow	0	1	0	0	10	2	0	0	0	0	13
Longnose dace	0	44	325	589	190	1,175	387	421	31	0	3,162
Sucker spp.	2	0	0	0	0	1	1	1	0	0	5
Redside shiner	0	0	0	0	1	0	0	0	0	0	1
Yellow perch	0	0	0	0	0	0	0	0	0	0	0
Sculpin spp.	1	2	5	1	10	0	0	9	6	0	34

2003											
Chinook											
Wild yearling	2,429	4,293	1,184	52	24	11	19	0	0	-	8,012
Wild subyearling	1,029	4,661	1,894	1,060	4,751	5,588	1,209	4,064	840	-	25,096
Hatchery yearling	0	2,706	3,183	1	3	0	0	0	0	-	5,893
Steelhead											
Wild	18	148	125	274	90	399	157	427	24	-	1,662
smolt	2	22	5	3	0	0	0	0	0	-	32
parr	16	126	120	271	90	399	157	427	24	-	1,630
Hatchery	0	1,457	4,396	23	2	4	2	2	0	-	5,886
Coho											
Wild yearling	0	0	0	0	0	0	0	0	0	-	0
Wild subyearling	0	0	0	0	0	0	0	0	0	-	0
Hatchery yearling	0	0	0	0	0	0	0	0	0	-	0
Bull trout	14	11	19	40	20	36	122	153	29	-	444
Juvenile	14	11	19	40	19	33	120	153	29	-	438
Adult	0	0	0	0	1	3	2	0	0	-	6
Cutthroat	0	0	0	5	3	10	6	0	4	-	28
Eastern brook	0	0	0	5	0	0	0	1	0	-	6
White fish	28	2	1	65	42	889	167	13	5	-	1,212
Northern pikeminnow	0	0	0	1	0	0	0	0	0	-	1
Longnose dace	3	0	0	266	306	92	425	461	4	-	1,557
Sucker spp.	0	0	0	0	0	0	3	1	0	-	4
Redside shiner	0	0	0	0	0	1	0	0	0	-	1
Yellow perch	0	0	0	0	0	0	0	0	0	-	0
Sculpin spp.	0	4	0	2	1	0	3	3	0	-	13

2002											
Chinook											
Wild yearling	21	1,398	1	0	0	3	0	0	0	0	1,423
Wild subyearling	461	7,610	7,694	316	15,235	12,890	3,470	2,797	3,003	196	53,672
Hatchery yearling	479	2,142	291	1	3	5	5	0	0	0	2,926
Steelhead											
Wild	7	153	118	65	65	95	210	28	36	1	778
Smolt	0	9	11	6	12	37	8	2	1	0	86
Parr	7	144	107	59	53	58	202	26	35	1	692
Hatchery	0	0	2,687	0	1	5	23	4	0	0	2,720
Coho											
Wild yearling	0	0	0	0	0	0	0	0	0	0	0
Wild subyearling	0	0	0	0	0	0	0	0	0	0	0
Hatchery yearling	0	0	0	0	1	4	2	0	0	0	0
Bull trout	15	13	4	9	15	43	86	45	107	10	347
Juvenile	15	13	4	9	15	42	80	44	107	10	339
Adult	0	0	0	0	0	1	6	1	0	0	8
Cutthroat	1	0	2	1	3	17	13	0	0	0	37
Eastern brook	0	0	2	0	0	1	0	4	0	0	7
White fish	10	13	8	1	40	414	228	133	24	0	871
Northern pikeminnow	0	0	0	0	0	3	0	0	0	0	3
Longnose dace	13	33	41	77	36	92	281	31	0	0	604
Sucker spp.	0	0	0	0	0	0	0	0	0	0	0
Redside shiner	0	0	0	0	0	0	0	0	0	0	0
Yellow perch	0	1	0	0	0	0	0	0	0	0	1
Sculpin spp.	1	0	1	0	0	9	37	6	1	3	58

2001											
Chinook											
Wild yearling	998	1,650	76	36	0	1	2	0	0	0	2,763
Wild subyearling	18	17	1	32	192	796	236	1,860	1,872	153	5,177
Hatchery yearling	0	0	0	0	0	0	0	0	0	0	0
Steelhead											
Wild	18	167	137	73	9	449	49	79	95	15	1,091
smolt	0	34	4	5	3	4	7	6	0	0	63
parr	18	133	133	68	6	445	42	73	95	15	1,028
Hatchery	0	2	69	11	5	24	18	5	0	0	134
Coho											
Wild yearling	0	0	0	0	0	0	0	0	0	0	0
Wild subyearling	0	0	0	0	0	0	0	0	0	0	0
Hatchery yearling	0	0	0	0	1	0	0	0	1	0	2
Bull trout	36	21	26	31	4	6	48	50	51	16	289
Juvenile	35	21	26	31	4	6	32	42	51	16	264
Adult	1	0	0	0	0	0	16	8	0	0	25
Cutthroat	4	4	5	54	6	16	9	35	50	0	183
Eastern brook	1	0	0	6	0	0	0	15	3	0	25
White fish	15	36	0	0	34	1,432	248	39	21	0	1,825
Northern pikeminnow	0	0	0	0	14	0	0	0	0	0	14
Longnose dace	15	15	12	411	92	247	251	172	2	0	1,217
Sucker spp.	0	0	0	0	0	2	2	2	0	0	6
Redside shiner	0	0	0	0	0	0	0	0	0	0	0
Yellow perch	0	0	0	0	0	6	0	6	0	2	14
Sculpin spp.	4	2	1	0	23	12	9	17	9	0	77

2000											
Chinook											
Wild yearling	334	1,135	308	12	0	1	1	0	0	-	1,791
Wild subyearling	7	0	0	8	112	286	229	679	162	-	1,483
Hatchery yearling	0	4	2	0	0	0	0	0	0	-	6
Steelhead											
Wild	1	102	40	7	11	82	47	32	4	-	326
smolt	0	74	20	2	3	36	31	11	4	-	181
parr	1	28	20	5	8	46	16	21	0	-	145
Hatchery	0	4	7	7	2	13	9	0	3	-	45
Coho											
Wild yearling	0	0	0	0	0	0	0	0	0	-	0
Wild subyearling	0	0	0	0	0	0	0	0	0	-	0
Hatchery yearling	0	0	0	0	0	0	0	0	0	-	0
Bull trout	8	66	71	27	18	19	70	112	49	-	440
Juvenile	4	65	71	26	18	18	64	106	49	-	421
Adult	4	1	0	1	0	1	6	6	0	-	19
Cutthroat	0	1	3	0	1	11	4	2	0	-	22
Eastern brook	0	1	4	1	0	0	1	3	0	-	10
White fish	5	2	1	2	6	669	58	60	34	-	837
Northern pikeminnow	0	0	0	0	5	7	0	0	0	-	12
Longnose dace	1	22	256	486	185	141	165	194	6	-	1,456
Sucker spp.	0	0	36	0	0	3	0	1	0	-	40
Redside shiner	0	0	0	0	0	0	0	0	0	-	0
Yellow perch	0	0	0	0	0	0	0	0	0	-	0
Sculpin spp.	1	2	9	7	3	16	9	8	1	-	56

1999											
Chinook											
Wild yearling	600	2,618	684	8	1	1	5	0	0	0	3,917
Wild subyearling	0	4	2	1	10	108	42	127	252	11	557
Hatchery yearling	0	0	0	0	0	4	51	4	1	0	60
Steelhead											
Wild	1	108	63	19	17	16	19	7	3	0	253
smolt	0	60	24	9	8	10	18	4	0	0	133
parr	1	48	39	10	9	6	1	3	3	0	120
Hatchery	1	2	25	14	9	8	8	4	6	1	78
Coho											
Wild yearling	0	0	0	0	0	0	0	0	0	0	0
Wild subyearling	0	0	0	0	0	0	0	0	0	0	0
Hatchery yearling	0	0	0	0	0	0	0	0	0	0	0
Bull trout	10	25	35	9	21	16	30	37	64	3	250
Juvenile	10	24	35	9	21	16	21	31	64	3	234
Adult	0	1	0	0	0	0	9	6	0	0	16
Cutthroat	0	0	0	0	2	3	7	0	1	0	13
Eastern brook	0	0	0	2	0	0	0	4	3	0	9
White fish	27	76	3	0	2	15	112	49	32	1	317
Northern pikeminnow	0	0	0	0	0	2	0	0	0	0	2
Longnose dace	9	38	34	29	18	0	0	2	0	0	130
Sucker spp.	0	0	0	0	0	0	3	0	0	0	3
Redside shiner	0	0	0	0	0	0	0	0	0	0	0
Yellow perch	0	1	0	0	0	0	0	0	0	0	1
Sculpin spp.	0	5	4	0	1	1	7	5	1	0	24

1998											
Chinook											
Wild yearling	1,619	1,679	110	32	0	9	11	0	0	0	3,460
Wild subyearling	0	13	1	3	439	316	183	297	2,567	24	3,843
Hatchery yearling	0	77	0	0	0	16	4	0	0	0	97
Steelhead											
Wild	22	168	165	71	51	86	19	6	34	0	622
Smolt	2	69	26	8	5	47	3	0	0	0	160
Parr	20	99	139	63	46	39	16	6	34	0	462
Hatchery	0	0	1	0	0	1	0	0	1	0	3
Coho											
Wild yearling	0	0	0	0	0	0	0	0	0	0	0
Wild subyearling	0	0	0	0	0	0	0	0	0	0	0
Hatchery yearling	0	0	0	0	0	0	0	0	0	0	0
Bull trout	34	53	95	66	20	15	94	71	213	1	662
Juvenile	34	53	95	66	20	13	41	69	213	1	605
Adult	0	0	0	0	0	2	53	2	0	0	57
Cutthroat	0	1	5	6	2	18	1	0	1	0	34
Eastern brook	0	0	4	2	0	0	1	0	10	0	17
White fish	31	28	2	5	132	1,103	180	39	45	0	1,565
Northern pikeminnow	0	0	0	0	9	38	7	0	0	0	54
Longnose dace	8	148	293	746	259	2	5	12	8	0	1,481
Sucker spp.	0	0	0	0	0	1	5	4	1	0	11
Redside shiner	0	0	0	0	0	0	0	0	0	0	0
Yellow perch	2	0	0	0	0	0	0	0	2	0	4
Sculpin spp.	3	10	2	1	40	14	20	19	10	0	119

1997											
Chinook											
Wild yearling	336	484	59	1	0	0	0	0	0	-	880
Wild subyearling	0	0	0	0	6	87	70	373	208	-	744
Hatchery yearling	0	0	0	0	0	0	0	0	0	-	0
Steelhead											
Wild	32	56	32	21	22	31	35	26	5	-	260
smolt	1	40	27	3	4	14	9	6	1	-	105
parr	31	16	5	18	18	17	26	20	4	-	155
Hatchery	0	0	0	0	0	0	0	0	0	-	0
Coho											
Wild yearling	0	0	0	0	0	0	0	0	0	-	0
Wild subyearling	0	0	0	0	0	0	0	0	0	-	0
Hatchery yearling	0	0	0	0	0	0	0	0	0	-	0
Bull trout	22	23	17	9	22	28	64	55	16	-	256
Juvenile	22	23	17	9	22	27	50	48	15	-	233
Adult	0	0	0	0	0	1	14	7	1	-	23
Cutthroat	0	2	3	1	1	7	8	0	0	-	22
Eastern brook	0	0	0	0	0	0	3	16	5	-	24
White fish	15	21	1	0	7	298	108	58	17	-	525
Northern pikeminnow	0	0	0	0	1	0	0	2	0	-	3
Longnose dace	6	43	31	87	116	74	174	46	2	-	579
Sucker spp.	0	0	0	0	0	0	0	0	0	-	0
Redside shiner	0	0	0	0	0	0	0	0	0	-	0
Yellow perch	0	0	0	0	0	0	0	0	0	-	0
Sculpin spp.	1	5	0	0	1	18	10	5	2	-	42

Appendix B. Yearly and monthly total juvenile capture information for the Lake River trap.

2007											
Species/Origin	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chinook											
Wild yearling	174	760	595	39	29	--	--	--	--	--	1,597
Wild subyearling	20	130	41	16	6	--	--	--	--	--	213
Hatchery yearling	0	0	694	55	1	--	--	--	--	--	750
Steelhead											
Wild	15	28	16	16	5	--	--	--	--	--	80
Smolt	3	3	5	1	3	--	--	--	--	--	15
Parr	12	25	11	15	2	--	--	--	--	--	65
Hatchery	0	0	177	1	0	--	--	--	--	--	178
Sockeye											
Wild	3	33,388	5,217	20	0	--	--	--	--	--	38,628
Hatchery	0	252	2,116	19	0	--	--	--	--	--	2,387
Coho											
Wild yearling	0	2	1	0	0	--	--	--	--	--	3
Wild subyearling	0	0	0	0	0	--	--	--	--	--	0
Hatchery yearling	17	9	270	15	0	--	--	--	--	--	311
Bull trout											
Juvenile	0	0	5	0	0	--	--	--	--	--	5
Adult	0	2	0	0	0	--	--	--	--	--	2
Cutthroat	0	0	1	0	0	--	--	--	--	--	1
White fish	1	31	8	4	5	--	--	--	--	--	49
Northern pikeminnow	0	24	59	21	9	--	--	--	--	--	113
Longnose dace	0	2	0	4	18	--	--	--	--	--	24
Sucker spp.	0	0	4	7	7	--	--	--	--	--	18
Redside shiner	0	7	12	7	11	--	--	--	--	--	37
Yellow perch	1	0	0	0	0	--	--	--	--	--	1
Sculpin spp.	14	47	57	67	16	--	--	--	--	--	201

2006											
Species/Origin	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chinook											
Wild yearling	18	68	52	--	--	--	--	--	--	--	138
Wild subyearling	636	1,375	1	--	--	--	--	--	--	--	2,012
Hatchery yearling	0	9	1	--	--	--	--	--	--	--	10
Steelhead											
Wild	5	30	7	--	--	--	--	--	--	--	42
Smolt	0	5	5	--	--	--	--	--	--	--	10
Parr	5	25	2	--	--	--	--	--	--	--	32
Hatchery	0	0	160	--	--	--	--	--	--	--	160
Sockeye											0
Wild	1	13,875	6,433	--	--	--	--	--	--	--	20,309
Hatchery	0	434	1,066	--	--	--	--	--	--	--	1,500
Coho											
Wild yearling	5	0	5	--	--	--	--	--	--	--	10
Wild subyearling	0	0	0	--	--	--	--	--	--	--	0
Hatchery yearling	14	88	23	--	--	--	--	--	--	--	125
Bull trout											
Juvenile	0	1	0	--	--	--	--	--	--	--	1
Adult	0	0	0	--	--	--	--	--	--	--	0
Cutthroat	0	0	0	--	--	--	--	--	--	--	0
White fish	2	1	0	--	--	--	--	--	--	--	3
Northern pikeminnow	0	24	22	--	--	--	--	--	--	--	46
Longnose dace	1	1	0	--	--	--	--	--	--	--	2
Sucker spp.	0	2	0	--	--	--	--	--	--	--	2
Redside shiner	0	16	5	--	--	--	--	--	--	--	21
Yellow perch	0	0	0	--	--	--	--	--	--	--	0
Sculpin spp.	6	28	1	--	--	--	--	--	--	--	35

2005											
Chinook											
Wild yearling	10	19	31	1	--	--	--	--	--	--	61
Wild subyearling	224	1,412	769	136	--	--	--	--	--	--	2,541
Hatchery yearling	0	0	6	0	--	--	--	--	--	--	6
Steelhead											
Wild	3	8	16	9	--	--	--	--	--	--	36
Smolt	0	0	1	0	--	-	--	--	--	--	1
Parr	3	8	15	9	--	-	--	--	--	--	35
Hatchery	0	0	354	0	--	-	--	--	--	--	354
Sockeye											
Wild	4	5,898	677	1	--	--	--	--	--	--	6,580
Hatchery	0	833	576	7	--	--	--	--	--	--	1,416
Coho											
Wild yearling	0	2	0	0	--	--	--	--	--	--	2
Wild subyearling	0	0	5	0	--	--	--	--	--	--	5
Hatchery yearling	18	17	302	3	--	--	--	--	--	--	340
Bull trout											
Juvenile	2	1	2	0	--	--	--	--	--	--	5
Adult	0	2	0	1	--	--	--	--	--	--	3
Cutthroat	0	0	1	0	--	--	--	--	--	--	1
White fish	5	19	2	0	--	--	--	--	--	--	26
Northern pikeminnow	0	5	8	4	--	--	--	--	--	--	17
Longnose dace	1	0	4	48	--	--	--	--	--	--	53
Sucker spp.	1	1	6	20	--	--	--	--	--	--	28
Redside shiner	2	8	8	29	--	--	--	--	--	--	47
Sculpin spp.	11	2	10	62	--	--	--	--	--	--	85

2004											
Chinook											
Wild yearling	35	127	186	7	0	0	0	0	0	0	355
Wild subyearling	0	2	2	21	4	7	2	1	100	0	139
Hatchery yearling	0	1	0	0	0	0	0	0	0	0	1
Steelhead											
Wild	1	4	6	13	5	10	6	1	9	0	55
Smolt	0	1	0	0	0	0	0	0	0	0	1
Parr	1	3	6	13	5	10	6	1	9	0	54
Hatchery	0	15	12	0	0	0	0	0	0	0	27
Sockeye											
Wild	198	35,154	2,552	47	1	0	0	0	1	0	37,953
Hatchery	10	1,005	765	51	14	7	5	0	9	0	1,866
Coho											
Wild yearling	0	1	0	0	0	0	0	0	0	0	1
Wild subyearling	0	0	0	0	0	0	0	0	0	0	0
Hatchery yearling	0	6	74	1	0	0	0	0	0	0	81
Bull trout	0	0	1	0	0	0	0	0	0	0	1
Juvenile	0	0	0	0	0	0	0	0	0	0	0
Adult	0	0	1	0	0	0	0	0	0	0	1
Cutthroat	0	1	0	1	0	0	0	0	0	0	2
White fish	2	2	3	0	4	5	2	0	1	0	19
Northern pikeminnow	6	3	12	2	10	11	0	2	0	0	46
Longnose dace	0	1	2	3	14	20	3	11	4	0	58
Sucker spp.	0	1	2	11	23	10	0	0	0	0	47
Redside shiner	3	1	2	10	13	25	5	2	1	0	62
Sculpin spp.	6	8	11	25	8	5	1	2	2	0	68

2003											
Chinook											
Wild yearling	25	117	85	30	0	-	-	-	-	-	257
Wild subyearling	2	30	1	0	7	-	-	-	-	-	40
Hatchery yearling	0	0	0	0	0	-	-	-	-	-	0
Steelhead											
Wild	2	1	2	8	1	-	-	-	-	-	14
smolt	0	0	0	0	0	-	-	-	-	-	0
parr	2	1	2	8	1	-	-	-	-	-	14
Hatchery	0	0	43	0	0	-	-	-	-	-	43
Sockeye											
Wild	14	22,293	2,849	9	0	-	-	-	-	-	25,165
Hatchery	1	466	182	13	6	-	-	-	-	-	668
Coho											
Wild yearling	0	0	0	0	0	-	-	-	-	-	0
Wild subyearling	0	0	0	0	0	-	-	-	-	-	0
Hatchery yearling	0	0	98	0	0	-	-	-	-	-	98
Bull trout	0	0	0	0	0	-	-	-	-	-	0
Juvenile	0	0	0	0	0	-	-	-	-	-	0
Adult	0	0	0	0	0	-	-	-	-	-	0
Cutthroat	0	0	0	0	0	-	-	-	-	-	0
White fish	0	6	0	0	0	-	-	-	-	-	6
Northern pikeminnow	1	2	20	0	0	-	-	-	-	-	23
Longnose dace	0	0	0	0	0	-	-	-	-	-	0
Sucker spp.	0	0	5	2	5	-	-	-	-	-	12
Redside shiner	3	0	7	1	3	-	-	-	-	-	14
Sculpin spp.	6	4	8	12	4	-	-	-	-	-	34

2002											
Chinook											
Wild yearling	-	15	19	-	-	-	-	-	-	-	34
Wild subyearling	-	3	2	-	-	-	-	-	-	-	5
Hatchery yearling	-	0	0	-	-	-	-	-	-	-	0
Steelhead											
Wild	-	1	1	-	-	-	-	-	-	-	2
Smolt	-	1	1	-	-	-	-	-	-	-	2
Parr	-	0	0	-	-	-	-	-	-	-	0
Hatchery	-	4	37	-	-	-	-	-	-	-	41
Sockeye											
Wild	-	2,450	849	-	-	-	-	-	-	-	3,299
Hatchery	-	290	268	-	-	-	-	-	-	-	558
Coho											
Wild yearling	-	0	0	-	-	-	-	-	-	-	0
Wild subyearling	-	0	0	-	-	-	-	-	-	-	0
Hatchery yearling	-	0	27	-	-	-	-	-	-	-	27
Bull trout	-	0	1	-	-	-	-	-	-	-	1
Juvenile	-	0	1	-	-	-	-	-	-	-	1
Adult	-	0	0	-	-	-	-	-	-	-	0
Cutthroat	-	0	0	-	-	-	-	-	-	-	0
White fish	-	3	1	-	-	-	-	-	-	-	4
Northern pikeminnow	-	0	5	-	-	-	-	-	-	-	5
Longnose dace	-	0	0	-	-	-	-	-	-	-	0
Sucker spp.	-	0	0	-	-	-	-	-	-	-	0
Redside shiner	-	0	0	-	-	-	-	-	-	-	0
Sculpin spp.	-	2	10	-	-	-	-	-	-	-	12

2001											
Chinook											
Wild yearling	0	23	37	2	-	-	-	-	-	-	62
Wild subyearling	8	65	28	17	-	-	-	-	-	-	118
Hatchery yearling	0	0	0	0	-	-	-	-	-	-	0
Steelhead											
Wild	1	9	20	7	-	-	-	-	-	-	37
Smolt	1	1	1	1	-	-	-	-	-	-	4
Parr	0	8	19	6	-	-	-	-	-	-	33
Hatchery	0	0	0	0	-	-	-	-	-	-	0
Sockeye											
Wild	2	648	195	3	-	-	-	-	-	-	848
Hatchery	0	449	1,128	4	-	-	-	-	-	-	1,581
Coho											
Wild yearling	0	0	0	0	-	-	-	-	-	-	0
Wild subyearling	0	0	0	0	-	-	-	-	-	-	0
Hatchery yearling	0	2	94	23	-	-	-	-	-	-	119
Bull trout	0	2	2	1	-	-	-	-	-	-	5
Juvenile	0	2	0	1	-	-	-	-	-	-	3
Adult	0	0	2	0	-	-	-	-	-	-	2
Cutthroat	0	3	3	6	-	-	-	-	-	-	12
White fish	0	14	2	0	-	-	-	-	-	-	16
Northern pikeminnow	0	6	21	1	-	-	-	-	-	-	28
Longnose dace	0	0	4	16	-	-	-	-	-	-	20
Sucker spp.	1	4	12	6	-	-	-	-	-	-	23
Redside shiner	0	9	10	2	-	-	-	-	-	-	21
Sculpin spp.	4	24	39	29	-	-	-	-	-	-	96

2000											
Chinook											
Wild yearling	-	35	14	0	-	-	-	-	-	-	49
Wild subyearling	-	2	7	1	-	-	-	-	-	-	10
Hatchery yearling	-	0	0	0	-	-	-	-	-	-	0
Steelhead											
Wild	-	0	1	0	-	-	-	-	-	-	1
Smolt	-	0	1	0	-	-	-	-	-	-	1
Parr	-	0	0	0	-	-	-	-	-	-	0
Hatchery	-	0	0	0	-	-	-	-	-	-	0
Sockeye											
Wild	-	2,354	281	0	-	-	-	-	-	-	2,635
Hatchery	-	7	59	0	-	-	-	-	-	-	66
Coho											
Wild yearling	-	0	0	0	-	-	-	-	-	-	0
Wild subyearling	-	0	0	0	-	-	-	-	-	-	0
Hatchery yearling	-	0	11	0	-	-	-	-	-	-	11
Bull trout	-	2	4	0	-	-	-	-	-	-	6
Juvenile	-	2	4	0	-	-	-	-	-	-	6
Adult	-	0	0	0	-	-	-	-	-	-	0
Cutthroat	-	0	0	0	-	-	-	-	-	-	0
White fish	-	3	1	0	-	-	-	-	-	-	4
Northern pikeminnow	-	10	14	2	-	-	-	-	-	-	26
Longnose dace	-	0	3	0	-	-	-	-	-	-	3
Sucker spp.	-	3	2	0	-	-	-	-	-	-	5
Redside shiner	-	13	2	0	-	-	-	-	-	-	15
Sculpin spp.	-	19	16	11	-	-	-	-	-	-	46

1999											
Chinook											
Wild yearling	4	135	83	6	-	-	-	-	-	-	228
Wild subyearling	0	73	10	1	-	-	-	-	-	-	84
Hatchery yearling	0	1	4	0	-	-	-	-	-	-	5
Steelhead											
Wild	0	6	3	0	-	-	-	-	-	-	9
Smolt	0	1	0	0	-	-	-	-	-	-	1
Parr	0	5	3	0	-	-	-	-	-	-	8
Hatchery	0	0	0	0	-	-	-	-	-	-	0
Sockeye											
Wild	0	6,428	3,458	1	-	-	-	-	-	-	9,887
Hatchery	0	43	506	23	-	-	-	-	-	-	572
Coho											
Wild yearling	0	0	0	0	-	-	-	-	-	-	0
Wild subyearling	0	0	0	0	-	-	-	-	-	-	0
Hatchery yearling	0	4	6	0	-	-	-	-	-	-	10
Bull trout	0	1	1	2	-	-	-	-	-	-	4
Juvenile	0	1	1	2	-	-	-	-	-	-	4
Adult	0	0	0	0	-	-	-	-	-	-	0
Cutthroat	0	0	0	0	-	-	-	-	-	-	0
White fish	1	12	3	0	-	-	-	-	-	-	16
Northern pikeminnow	0	41	2	0	-	-	-	-	-	-	43
Longnose dace	0	4	1	1	-	-	-	-	-	-	6
Sucker spp.	0	2	18	5	-	-	-	-	-	-	25
Redside shiner	1	18	3	1	-	-	-	-	-	-	23
Sculpin spp.	0	20	34	13	-	-	-	-	-	-	67

1998											
Chinook											
Wild yearling	7	51	31	1	-	-	-	-	-	-	90
Wild subyearling	0	0	0	0	-	-	-	-	-	-	0
Hatchery yearling	0	0	0	0	-	-	-	-	-	-	0
Steelhead											
Wild	0	2	2	0	-	-	-	-	-	-	4
Smolt	0	1	2	0	-	-	-	-	-	-	3
Parr	0	1	0	0	-	-	-	-	-	-	1
Hatchery	0	0	0	0	-	-	-	-	-	-	0
Sockeye											
Wild	0	6,758	168	0	-	-	-	-	-	-	6,926
Hatchery	0	173	94	1	-	-	-	-	-	-	268
Coho											
Wild yearling	0	0	0	0	-	-	-	-	-	-	0
Wild subyearling	0	0	0	0	-	-	-	-	-	-	0
Hatchery yearling	0	0	0	0	-	-	-	-	-	-	0
Bull trout	0	0	1	0	-	-	-	-	-	-	1
Juvenile	0	0	1	0	-	-	-	-	-	-	1
Adult	0	0	0	0	-	-	-	-	-	-	0
Cutthroat	0	0	0	0	-	-	-	-	-	-	0
Eastern brook	0	0	0	1	-	-	-	-	-	-	1
White fish	0	0	10	0	-	-	-	-	-	-	10
Northern pikeminnow	0	0	22	11	-	-	-	-	-	-	33
Longnose dace	0	1	1	0	-	-	-	-	-	-	2
Sucker spp.	0	0	3	3	-	-	-	-	-	-	6
Redside shiner	0	0	5	7	-	-	-	-	-	-	12
Sculpin spp.	0	3	14	42	-	-	-	-	-	-	59

1997											
Chinook											
Wild yearling	0	7	3	2	-	-	-	-	-	-	12
Wild subyearling	0	0	0	0	-	-	-	-	-	-	0
Hatchery yearling	0	0	0	0	-	-	-	-	-	-	0
Steelhead											
Wild	0	4	3	0	-	-	-	-	-	-	7
Smolt	0	1	0	0	-	-	-	-	-	-	1
Parr	0	3	3	0	-	-	-	-	-	-	6
Hatchery	0	0	0	0	-	-	-	-	-	-	0
Sockeye											
Wild	0	0	206	59	-	-	-	-	-	-	265
Hatchery	0	53	85	0	-	-	-	-	-	-	138
Coho											
Wild yearling	0	0	0	0	-	-	-	-	-	-	0
Wild subyearling	0	0	0	0	-	-	-	-	-	-	0
Hatchery yearling	0	0	0	0	-	-	-	-	-	-	0
Bull trout	1	1	1	0	-	-	-	-	-	-	3
Juvenile	1	1	1	0	-	-	-	-	-	-	3
Adult	0	0	0	0	-	-	-	-	-	-	0
Cutthroat	0	0	0	0	-	-	-	-	-	-	0
Eastern brook	0	0	0	0	-	-	-	-	-	-	0
White fish	0	11	9	0	-	-	-	-	-	-	20
Northern pikeminnow	1	47	77	0	-	-	-	-	-	-	125
Longnose dace	0	0	0	0	-	-	-	-	-	-	0
Sucker spp.	0	2	3	0	-	-	-	-	-	-	5
Redside shiner	2	11	19	2	-	-	-	-	-	-	34
Sculpin spp.	8	22	21	7	-	-	-	-	-	-	58

Appendix C. Yearly and monthly total juvenile capture information for the Lower Wenatchee River trap.

2007												
Species/Origin	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chinook												
Wild yearling	138	426	918	294	46	84	0	--	--	--	--	1,906
Wild subyearling	135	997	6,769	43,053	28,446	6,711	31	--	--	--	--	86,142
Hatchery yearling	3	2	23,032	22,416	9	5	0	--	--	--	--	45,467
Steelhead												
Wild	4	58	225	177	21	10	0	--	--	--	--	495
Smolt	2	49	192	173	13	4	0	--	--	--	--	433
Parr	2	9	33	4	8	6	0	--	--	--	--	62
Hatchery	0	0	2	2,641	53	1	0	--	--	--	--	2,697
Sockeye												
Wild	2	1	5,691	643	3	0	0	--	--	--	--	6,340
Hatchery	0	0	8	240	0	0	0	--	--	--	--	248
Coho												
Wild yearling	0	62	111	82	14	23	0	--	--	--	--	292
Wild subyearling	2	80	84	30	153	81	1	--	--	--	--	431
Hatchery yearling	0	241	26,233	2,775	55	1	0	--	--	--	--	29,305
Bull trout												
Juvenile	0	2	0	0	0	0	0	--	--	--	--	2
Adult	0	0	0	0	0	0	0	--	--	--	--	0
Cutthroat	0	0	0	0	0	0	0	--	--	--	--	0
White fish	0	2	1	0	15	5	0	--	--	--	--	23
Northern pikeminnow	0	57	6	46	14	12	0	--	--	--	--	135
Longnose dace	52	1,099	310	201	78	78	2	--	--	--	--	1,820
Speckled dace	0	0	0	0	0	0	0	--	--	--	--	0
Umatilla dace	0	0	0	0	0	0	0	--	--	--	--	0
Sucker spp.	4	217	9	40	50	17	2	--	--	--	--	339
Peamouth	0	0	0	1	0	0	0	--	--	--	--	1
Chiselmouth	0	0	0	0	1	0	0	--	--	--	--	1

Redside shiner	2	27	1	5	13	35	1	--	--	--	--
Yellow bullhead	0	0	0	0	0	0	0	--	--	--	--
Pacific lamprey	181	947	819	351	416	162	0	--	--	--	--
River lamprey	0	0	0	0	0	0	0	--	--	--	--
Sculpin spp.	7	20	19	5	9	4	0	--	--	--	--
Stickleback (3 spined)	0	0	0	1	7	31	0	--	--	--	--

2006												
Species/Origin	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chinook												
Wild yearling	18	12	583	37	2	0	0	--	--	--	--	652
Wild subyearling	126	429	6,467	40,376	9,722	6,416	44	--	--	--	--	63,580
Hatchery yearling	0	0	32,792	2,467	1	1	0	--	--	--	--	35,261
Steelhead												
Wild	1	2	87	51	6	4	0	--	--	--	--	151
Smolt	0	0	60	42	2	1	0	--	--	--	--	105
Parr	1	2	26	9	4	3	0	--	--	--	--	45
Hatchery	0	0	1	3,736	32	0	0	--	--	--	--	3,769
Sockeye												
Wild	1	29	4,990	180	4	0	0	--	--	--	--	5,204
Hatchery	0	0	40	28	0	0	0	--	--	--	--	68
Coho												
Wild yearling	12	0	37	41	13	0	0	--	--	--	--	103
Wild subyearling	0	1	74	271	166	945	3	--	--	--	--	1,460
Hatchery yearling	0	0	10,480	3,076	70	1	0	--	--	--	--	13,627
Bull trout												
Juvenile	0	0	0	1	0	0	0	--	--	--	--	1
Adult	0	0	0	0	0	0	0	--	--	--	--	0
Cutthroat	0	0	0	0	0	0	0	--	--	--	--	0
White fish	0	0	18	11	0	58	0	--	--	--	--	118
Northern pikeminnow	20	9	48	142	214	41	1	--	--	--	--	475
Longnose dace	7	39	313	219	170	52	1	--	--	--	--	801
Speckled dace	0	0	0	0	0	0	0	--	--	--	--	0
Umatilla dace	0	0	0	0	0	0	0	--	--	--	--	0
Sucker spp.	21	86	1,151	1,525	484	153	0	--	--	--	--	3,420
Peamouth	0	0	0	0	0	0	0	--	--	--	--	0
Chiselmouth	4	2	2	2	9	13	0	--	--	--	--	32

Redside shiner	1	1	109	255	435	148	3	--	--	--	--
Yellow bullhead	0	0	0	0	0	0	0	--	--	--	--
Pacific lamprey	22	133	582	475	503	218	0	--	--	--	--
River lamprey	0	0	0	0	0	0	0	--	--	--	--
Sculpin spp.	4	31	29	18	13	23	0	--	--	--	--
Stickleback (3 spined)	1	1	0	14	25	37	0	--	--	--	--

2005												
Chinook												
Wild yearling	43	64	156	61	9	0	--	--	--	--	--	333
Wild subyearling	227	1,642	42,294	149,126	29,624	1,945	--	--	--	--	--	224,858
Hatchery yearling	1	3	17,328	6,375	2	0	--	--	--	--	--	23,709
Steelhead												
Wild	5	2	63	167	8	1	--	--	--	--	--	246
Smolt	0	0	47	155	8	0	--	--	--	--	--	210
Parr	5	2	16	12	0	1	--	--	--	--	--	36
Hatchery	0	1	1	1,964	47	0	--	--	--	--	--	2,013
Sockeye												
Wild	0	8	112	82	0	0	--	--	--	--	--	202
Hatchery	0	0	17	62	0	0	--	--	--	--	--	79
Coho												
Wild yearling	14	18	97	57	3	0	--	--	--	--	--	189
Wild subyearling	2	30	214	1,091	453	56	--	--	--	--	--	1,846
Hatchery yearling	0	1	3,476	8,347	119	0	--	--	--	--	--	11,943
Bull trout												
Juvenile	0	0	1	2	0	0	--	--	--	--	--	3
Adult	0	0	0	0	0	0	--	--	--	--	--	0
Cutthroat	0	0	0	0	0	0	--	--	--	--	--	0
White fish	0	0	1	7	1	0	--	--	--	--	--	9
Northern pikeminnow	0	1	28	45	16	0	--	--	--	--	--	90
Longnose dace	3	14	87	399	126	30	--	--	--	--	--	659
Speckled dace	0	0	0	0	0	0	--	--	--	--	--	0
Umatilla dace	0	0	0	0	0	0	--	--	--	--	--	0
Sucker spp.	6	12	63	102	20	0	--	--	--	--	--	203
Peamouth	0	0	0	0	0	0	--	--	--	--	--	0
Chiselmouth	0	0	0	0	0	0	--	--	--	--	--	0
Redside shiner	0	1	11	47	89	18	--	--	--	--	--	166

Yellow bullhead	0	0	0	0	0	0	--	--	--	--	--
Pacific lamprey	13	37	156	320	157	2	--	--	--	--	--
River lamprey	0	0	0	0	0	0	--	--	--	--	--
Sculpin spp.	14	35	29	65	23	5	--	--	--	--	--
Stickleback (3 spined)	1	3	2	34	10	1	--	--	--	--	--

2004												
Chinook												
Wild yearling	11	237	554	241	18	0	--	--	--	--	--	1,061
Wild subyearling	129	1,001	4,895	149,570	63,410	6,544	--	--	--	--	--	225,549
Hatchery yearling	0	36	9,693	2,108	8	1	--	--	--	--	--	11,846
Steelhead												
Wild	1	12	117	205	23	2	--	--	--	--	--	360
Smolt	0	2	94	187	15	1	--	--	--	--	--	299
Parr	1	10	23	18	8	1	--	--	--	--	--	61
Hatchery	0	0	519	2,690	256	0	--	--	--	--	--	3,465
Sockeye												
Wild	0	48	3,047	106	23	0	--	--	--	--	--	3,224
Hatchery	0	3	139	128	52	13	--	--	--	--	--	335
Coho												
Wild yearling	0	1	12	13	25	7	--	--	--	--	--	58
Wild subyearling	0	5	27	572	233	90	--	--	--	--	--	927
Hatchery yearling	0	40	2,285	12,216	914	0	--	--	--	--	--	15,455
Bull trout	0	0	1	1	0	0	--	--	--	--	--	2
Juvenile	0	0	1	1	0	0	--	--	--	--	--	2
Adult	0	0	0	0	0	0	--	--	--	--	--	0
Cutthroat	0	0	0	0	0	0	--	--	--	--	--	0
White fish	0	2	1	12	15	4	--	--	--	--	--	34
Northern pikeminnow	0	0	3	25	14	33	--	--	--	--	--	75
Longnose dace	5	66	498	1,444	241	120	--	--	--	--	--	2,374
Speckled dace	0	4	0	0	0	1	--	--	--	--	--	5
Umatilla dace	1	0	0	1	0	0	--	--	--	--	--	2
Sucker spp.	0	7	13	67	95	26	--	--	--	--	--	208
Peamouth	0	0	0	0	0	0	--	--	--	--	--	0
Chiselmouth	0	0	0	0	4	3	--	--	--	--	--	7
Redside shiner	0	0	2	46	34	18	--	--	--	--	--	100

Yellow bullhead	0	0	0	0	0	0	--	--	--	--	--	0
Pacific lamprey	2	69	147	221	201	10	--	--	--	--	--	650
River lamprey	0	0	0	0	0	0	--	--	--	--	--	0
Sculpin spp.	1	5	17	30	19	14	--	--	--	--	--	86
Stickleback (3 spined)	0	0	0	6	9	70	--	--	--	--	--	85

2003												
Chinook												
Wild yearling	21	321	664	538	75	0	--	--	--	--	--	1,619
Wild subyearling	90	1,423	10,039	67,378	25,014	6,584	--	--	--	--	--	110,528
Hatchery yearling	0	0	19,952	984	3	0	--	--	--	--	--	20,939
Steelhead												
Wild	5	15	81	273	38	1	--	--	--	--	-	413
Smolt	0	2	52	269	19	1	--	--	--	--	--	343
Parr	5	13	29	4	19	0	--	--	--	--	--	70
Hatchery	0	0	3	2,098	66	8	--	--	--	-	--	2,175
Sockeye												
Wild	0	14	6,747	782	1	0	--	--	--	--	--	7,544
Hatchery	0	0	150	72	27	22	--	--	--	--	--	271
Coho												
Wild yearling	6	59	56	75	3	0	--	--	--	-	--	199
Wild subyearling	2	0	1	12	9	5	--	--	--	--	--	29
Hatchery yearling	0	109	582	7,036	304	3	--	--	--	-	--	8,034
Bull trout	0	0	0	0	0	0	--	--	-	-	--	0
Juvenile	0	0	0	0	0	0	--	--	-	-	--	0
Adult	0	0	0	0	0	0	--	--	--	--	--	0
Cutthroat	0	0	0	0	0	0	--	--	--	-	--	0
White fish	0	2	5	65	15	28	--	--	--	--	--	115
Northern pikeminnow	1	2	4	12	2	0	--	--	--	--	--	21
Longnose dace	1	44	104	124	126	89	--	--	--	--	--	488
Speckled dace	1	2	1	0	0	0	--	--	--	--	--	4
Umatilla dace	0	0	0	0	0	1	--	--	--	--	--	1
Sucker spp.	1	17	59	53	30	12	--	--	--	--	--	172
Peamouth	0	0	0	0	0	0	--	--	--	--	--	0
Chiselmouth	0	0	0	0	0	2	--	--	--	--	--	2
Redside shiner	0	0	4	0	3	7	--	--	--	--	--	14

Yellow bullhead	0	0	0	0	0	0	--	--	--	--	--
Pacific lamprey	6	67	257	168	390	34	--	--	--	--	--
River lamprey	0	0	0	1	0	0	--	--	--	--	--
Sculpin spp.	0	10	17	17	12	15	--	--	--	--	--
Stickleback (3 spined)	0	0	2	6	6	4	--	--	--	--	--

2002												
Chinook												
Wild yearling	--	51	170	111	3	1	0	0	0	0	0	336
Wild subyearling	--	401	1,422	17,679	7,682	11,666	556	20	100	133	55	39,714
Hatchery yearling	--	6	797	2,610	5	0	0	0	0	3	0	3,421
Steelhead												
Wild	--	0	85	137	3	9	3	0	7	8	0	252
Smolt	--	0	52	129	2	3	1	0	0	0	0	187
Parr	--	0	33	8	1	6	2	0	7	8	11	76
Hatchery	--	0	37	2,207	16	0	0	0	0	0	0	2,260
Sockeye												
Wild	--	0	4,711	327	1	0	3	0	0	0	0	5,042
Hatchery	--	0	216	65	0	0	0	0	0	0	0	281
Coho												
Wild yearling	--	9	17	44	1	1	0	0	0	0	0	72
Wild subyearling	--	20	33	186	108	1,021	48	1	8	18	0	1,443
Hatchery yearling	--	1	1,502	10,680	134	46	0	0	0	0	0	12,363
Bull trout	--	0	0	1	0	0	0	0	0	0	0	1
Juvenile	--	0	0	1	0	0	0	0	0	0	0	1
Adult	--	0	0	0	0	0	0	0	0	0	0	0
Cutthroat	--	0	0	0	0	0	0	0	0	0	0	0
White fish	--	0	3	2	3	21	0	0	1	1	0	31
Northern pikeminnow	--	1	8	37	6	37	0	0	3	0	10	93
Longnose dace	--	29	170	240	43	88	9	1	5	6	20	593
Speckled dace	--	0	0	1	1	1	0	0	0	0	0	3
Umatilla dace	--	0	0	3	2	5	2	0	0	0	0	012
Sucker spp.	--	7	44	49	8	54	3	0	1	2	1	169
Peamouth	--	0	0	0	0	0	0	0	0	0	0	0
Chiselmouth	--	0	0	1	0	6	0	1	0	0	0	7

Redside shiner	--	1	0	0	1	34	9	0	1	1	0	47
Yellow bullhead	--	0	0	0	0	0	0	0	0	0	0	0
Pacific lamprey	--	15	212	384	95	256	2	0	0	8	6	978
River lamprey	--	0	0	0	0	0	0	0	0	0	0	0
Sculpin spp.	--	9	38	27	4	15	2	0	0	2	0	97
Stickleback (3 spined)	--	9	17	8	5	7	2	0	0	0	0	48

2001												
Chinook												
Wild yearling	--	27	83	73	23	0	--	--	--	--	--	206
Wild subyearling	--	95	1,183	34,156	31,098	4,420	--	--	--	--	--	70,952
Hatchery yearling	--	0	8,446	294	17	1	--	--	--	--	--	8,758
Steelhead												
Wild	--	29	123	163	25	1	--	--	--	--	--	341
smolt	--	5	93	154	21	0	--	--	--	--	--	273
parr	--	24	30	9	4	1	--	--	--	--	--	68
Hatchery	--	0	169	1,376	162	4	--	--	--	--	--	1,711
Sockeye												
Wild	--	0	31	26	0	1	--	--	--	--	--	58
Hatchery	--	0	45	85	1	0	--	--	--	--	--	131
Coho												
Wild yearling	--	0	0	0	0	0	--	--	--	--	--	0
Wild subyearling	--	0	26	105	43	17	--	--	--	--	--	191
Hatchery yearling	--	8	4,210	6,193	847	7	--	--	--	--	--	11,265
Bull trout	--	0	1	1	0	0	--	--	--	--	--	1
Juvenile	--	0	1	1	0	0	--	--	--	--	--	1
Adult	--	0	0	0	0	0	--	--	--	--	--	0
Cutthroat	--	0	0	2	0	0	--	--	--	--	--	2
White fish	--	0	5	33	30	10	--	--	--	--	--	78
Northern pikeminnow	--	0	0	6	1	3	--	--	--	--	--	10
Longnose dace	--	11	21	175	73	165	--	--	--	--	--	445
Speckled dace	--	0	0	4	3	0	--	--	--	--	--	7
Umatilla dace	--	0	1	0	14	21	--	--	--	--	--	36
Sucker spp.	--	5	36	108	34	18	--	--	--	--	--	201
Peamouth	--	0	0	0	0	0	--	--	--	--	--	0
Chiselmouth	--	0	0	0	0	1	--	--	--	--	--	1
Redside shiner	--	0	5	8	7	27	--	--	--	--	--	47

Yellow bullhead	--	0	0	0	0	0	--	--	--	--	--
Pacific lamprey	--	12	466	521	240	28	--	--	--	--	--
River lamprey	--	0	12	6	0	0	--	--	--	--	--
Sculpin spp.	--	2	6	15	9	23	--	--	--	--	--
Stickleback (3 spined)	--	0	0	0	0	246	--	--	--	--	--

2000												
Chinook												
Wild yearling	--	8	192	67	8	9	0	--	--	--	--	284
Wild subyearling	--	162	3,737	41,790	21,618	4,627	310	--	--	--	--	72,244
Hatchery yearling	--	0	2,471	270	8	2	2	--	--	--	--	2,753
Steelhead												
Wild	--	1	171	254	4	16	22	--	--	--	--	468
Smolt	--	0	164	254	3	3	2	--	--	--	--	426
Parr	--	1	7	0	1	13	20	--	--	--	--	42
Hatchery	--	0	208	1,952	59	0	0	--	--	--	--	2,219
Sockeye												
Wild	--	3	1,041	70	0	0	0	--	--	--	--	1,114
Hatchery	--	0	6	5	0	0	1	--	--	--	--	12
Coho												
Wild yearling	--	0	0	0	0	0	0	--	--	--	--	0
Wild subyearling	--	0	0	0	0	0	0	--	--	--	--	0
Hatchery yearling	--	82	2,724	8,769	726	4	0	--	--	--	--	12,305
Bull trout	--	0	2	1	0	1	0	--	--	--	--	4
Juvenile	--	0	2	1	0	1	0	--	--	--	--	4
Adult	--	0	0	0	0	0	0	--	--	--	--	0
Cutthroat	--	0	0	0	0	0	0	--	--	--	--	0
White fish	--	1	9	5	12	41	5	--	--	--	--	73
Northern pikeminnow	--	0	2	2	2	2	1	--	--	--	--	9
Longnose dace	--	1	45	35	128	92	18	--	--	--	--	319
Speckled dace	--	0	3	0	10	4	0	--	--	--	--	17
Umatilla dace	--	0	0	0	6	7	4	--	--	--	--	17
Sucker spp.	--	0	21	70	13	15	2	--	--	--	--	121
Peamouth	--	0	0	0	11	0	0	--	--	--	--	11
Chiselmouth	--	0	0	0	2	4	0	--	--	--	--	6
Redside shiner	--	0	0	1	1	5	1	--	--	--	--	8

Yellow bullhead	--	0	0	0	1	0	0	--	--	--	--	1
Pacific lamprey	--	3	610	268	243	265	4	--	--	--	--	1,393
River lamprey	--	0	1	0	9	10	0	--	--	--	--	20
Sculpin spp.	--	1	16	15	22	17	5	--	--	--	--	76
Stickleback (3 spined)	--	0	0	0	0	0	0	--	--	--	--	0

APPENDIX C

Summary of ISEMP PIT Tagging Activities in the Wenatchee Basin, 2007.

Appendix C. Numbers of fish captured, PIT tagged, lost, and released in the Wenatchee Basin during February through November, 2007.

Sampling location	Species and life stage	Number captured	Number tagged	Number that died	Number of shed tags	Number released
Chiwawa Trap	Wild subyearling Chinook	6,676	6,155	17	1	6,137
	Wild yearling Chinook	4,798	4,689	30	0	4,659
	Wild Steelhead/Rainbow	885	840	8	0	832
	Hatchery Steelhead/Rainbow	4	3	0	0	3
Chiwawa River (upstream from trap)	Wild subyearling Chinook	23	21	1	0	20
	Wild yearling Chinook	1	0	0	0	0
	Wild Steelhead/Rainbow	179	167	0	0	167
	Hatchery Steelhead/Rainbow	52	47	0	0	47
Upper Wenatchee Trap	Wild subyearling Chinook	21	20	5	0	15
	Wild yearling Chinook	1,493	1,456	21	1	1,434
	Wild Steelhead/Rainbow	41	38	1	0	37
	Hatchery Steelhead/Rainbow	0	0	0	0	0
Upper Wenatchee River (from Tumwater to Lake)	Wild subyearling Chinook	68	61	0	0	61
	Wild yearling Chinook	0	0	0	0	0
	Wild Steelhead/Rainbow	1,020	1,001	0	0	1,001
	Hatchery Steelhead/Rainbow	69	64	0	0	64
Nason Creek (upstream from trap) ${ }^{1}$	Wild subyearling Chinook	7	7	1	0	6
	Wild yearling Chinook	7	7	0	0	7
	Wild Steelhead/Rainbow	483	453	1	0	452
	Hatchery Steelhead/Rainbow	116	75	0	0	75
Lower Wenatchee Trap	Wild subyearling Chinook	0	0	0	0	0
	Wild yearling Chinook	1,690	1,646	5	0	1,641
	Wild Steelhead/Rainbow	473	462	1	0	461
	Hatchery Steelhead/Rainbow	0	0	0	0	0
Totals	Wild subyearling Chinook	6,795	6,264	24	1	6,239
	Wild yearling Chinook	7,989	7,798	56	1	7,741
	Wild Steelhead/Rainbow	3,081	2,961	11	0	2,950
	Hatchery Steelhead/Rainbow	241	189	0	0	189

[^16]
APPENDIX D

Wenatchee Steelhead Spawning Ground Surveys, 2007

STATE OF WASHINGTON DEPARTMENT OF FISH AND WILDLIFE
 FISH PROGRAM - SCIENCE DIVISION
 SUPPLEMENTATION RESEARCH TEAM

3515 Chelan HWY, Wenatchee, WA 98801
Voice (509) 663-9678 FAX (509) 662-6606

6 February 2008

To: Distribution List

From: Michael Tonseth
Subject: 2007 Wenatchee River Basin Steelhead Spawning Ground Surveys
Summer steelhead migrate to their spawning grounds as earlier as nine months prior to spawning. Run escapement estimates of summer steelhead counted at Columbia River dams or Tumwater Dam in the Wenatchee River do not accurately reflect the size of the spawning population due to prespawn mortality. Redd counts may be used to calculate a more accurate estimate of the spawning population, but requires knowledge concerning the number of redds per female and the number of fish per redd. An estimate of the spawning population coupled with other population specific information (i.e., ratio of hatchery and wild spawners and age composition) are critical data needed to assess the productivity of the population (i.e., recruits per spawner).

Our objectives in conducting steelhead spawning ground surveys were to 1) determine spawn timing of naturally spawning steelhead (both hatchery and wild origin) and 2) estimate the abundance of redds and naturally spawning steelhead within selected tributaries. We also examined the relationship between run escapement upstream of Tumwater Dam (i.e., female and total) and redd counts as a method of assessing the precision of our estimates.

Methods

Survey efforts were primarily concentrated in the upper Wenatchee basin because all hatchery fish were released upstream of Tumwater Dam. Peshastin Creek was included in our surveys because it was identified as a potential reference stream (i.e., no hatchery releases since 1998) for the Wenatchee Basin. Survey methodology involved surveying non-random index areas, defined as major spawning area(s) for each stream, as frequently as once a week. Redds were either individually flagged or in the case of localized spawning, mapped and numbered sequentially. All redds were also geo-referenced using handheld global positioning devices. Between 2000 and 2003, the number of index areas has increased as more information became available. Beginning in 2004, survey
methodology has remained similar. Hence, direct comparisons of redd counts to years before 2004 may not be appropriate.

Index area spawning ground surveys were conducted by foot or raft using the on the Wenatchee River and most major tributaries (Appendix A). For each index area, the same surveyor(s) conducted all weekly surveys. However, when the end of spawning within an index area was thought to be nearly complete, a different observer (i.e., naïve) surveyed the index area to determine the number of redds still visible at the end of spawning. At approximately the same time, non-index areas within a reach or stream were also surveyed. The total number of redds in non-index areas was estimated by dividing the number of redds found in non-index areas by the proportion of redds still visible inside the index area. The reach total redd count was calculated by combining the number of redds in the index area and the estimated number of redds in the non-index. Murdoch and Peven (2005) provide a more detailed description of the methodology (Appendix F, Task 7-3).

Secondary sexual characteristics were used to calculate sex ratios for the entire run at Tumwater Dam. The sex ratio of the run was subsequently used as the value for the number fish per redd (i.e., assuming each female constructed one redd and male spawned with one female). Spawning escapement was estimated by multiplying the estimated total number of redds by the number of fish per redd. Linear regression analysis was used to examine the relationship between run escapement, index redd counts, and total redd counts upstream of Tumwater Dam.

Results

The number of steelhead migrating upstream of Tumwater Dam decreased 38\% between 2006 and 2007 and was 64% below the 5 -year average of 1,820 fish (Table 1). A greater proportion of female than male steelhead were observed at Tumwater Dam resulting in a fish per redd value of 1.94. The origin of fish over Tumwater Dam could not be determined because most returning hatchery steelhead were not adipose fin clipped. However, based upon steelhead run composition sampling conducted at Dryden Dam in 2006 (i.e., 2007 spawners), the proportion of naturally produced fish, based on scale samples was estimated at 37\% (WDFW, unpublished data). We estimated that the number of hatchery and naturally produced steelhead migrating upstream of Tumwater Dam was 414 and 243, respectively. Because the majority of hatchery releases occur upstream of Tumwater Dam, the proportion of hatchery fish estimated at Dryden Dam should adequately represent the origin composition upstream of Tumwater Dam.

In 2007, river conditions were similar to that observed in 2003 and 2006. High snow pack and warm weather conditions in March and May kept water conditions fluctuating considerably during each of those months. Steelhead began spawning during the second week of April in the Wenatchee River and Nason Creek and progressed upstream as water temperatures increased. Spawning was observed in water temperatures ranging from $3.2-6.9^{\circ} \mathrm{C}$. Based on preliminary data, most spawning activity appeared to begin once a mean daily stream temperature reached $\sim 4.2^{\circ} \mathrm{C}$. Peak spawning in the Wenatchee

River occurred the fourth week of April. Steelhead spawning also peaked in Nason and Peshastin Creek the fourth week of April (Appendix B). Spawning ground surveys were limited beyond the fourth week of May due to poor river conditions. However, one survey was conducted the second week of June to determine if any late spawning could be detected. The high water through much of May resulted in all previously constructed redds being erased with no new redds being located.

Table 1. Total number, gender, and sex ratio of steelhead migrating upstream of Tumwater Dam between 2001 and 2007. Sex ratio in 2001 was determined by the number of fish passed and collected during broodstock collection at Tumwater and Dryden dams. For 2002-2007, gender was determined using Tumwater Dam video data.

Year	Number of steelhead above Tumwater Dam			Male to female ratio	Number of fish per redd
	Total	Female	Male		
2001	820	394	426	1.08	2.08
2002	1,720	642	1,078	1.68	2.68
2003	1,810	1,133	677	0.60	1.60
2004	1,869	846	1,023	1.21	2.21
2005	2,650	1,644	1,006	0.61	1.61
2006	1,053	513	540	1.05	2.05
2007	657	339	318	0.94	1.94

The estimated number of redds in the Wenatchee Basin decreased 60% between 2006 (N $=395)$ and $2007(N=159)$ and is 75% below the 3 -year average of 644 redds (Table 2). High river discharge occurring before, during, and following the peak of spawning decreased observer efficiency and may have resulted in an underestimate of redd abundance. For the above Tumwater Dam spawning aggregate, the decrease in the proportion of redds (59\%) was well below the observed decrease in the estimated number of spawners (44\%) between 2006 and 2007. The proportion of redds in tributaries upstream of Tumwater Dam generally increased and decreased in tributaries downstream of Tumwater Dam as well as in the Wenatchee River. The decline in redd abundance in spawning areas below Tumwater Dam was likely the function of poor survey conditions.

In 2007, the proportion of redds in Nason Creek (49\%) was greater than the 3-year mean (32\%; Table 2). This large increase was likely due to good survey conditions (i.e., water clarity) even during higher flow periods compared to other streams in the Wenatchee Basin. While the overall number of redds in Nason Creek was lower than previous years, spawning continues to be primarily occurring in the middle two reaches (77\%; Appendix D1). Steelhead redds observed in the Chiwawa River were also found in locations consistent with previous years (Appendix D2). The proportion of redds found in all streams upstream of Tumwater Dam increased from 57\% in 2006 to 96% in 2007 (Appendix D3). While Peshastin Creek experienced only a slight decrease in the proportion of redds, the overall abundance of redds in 2007 was 75% lower than 2006
(Appendix D4). The number of steelhead redds in Icicle Creek, another major spawning tributary downstream of Tumwater Dam, was only 85\% of that observed in 2007.

Table 2. Comparison of the number and distribution of steelhead redds in 2007 and the three year mean (2004-2006).

| Stream | 2007 | | | Mean (2004-2006) | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Number of
 redds | Distribution
 $(\%)$ | | Number of
 redds | Distribution
 $(\%)$ |
| Nason Creek | 78 | 49.1 | | 205 | 31.8 |
| Chiwawa River | 11 | 6.9 | | 81 | 12.6 |
| White River | 1 | 0.6 | | 1 | 0.2 |
| L. Wenatchee River | 0 | 0.0 | | 0 | 0.0 |
| Peshastin Creek | 17 | 10.7 | | 66 | 10.2 |
| Icicle Creek | 6 | 3.8 | | 24 | 3.7 |
| Wenatchee River | 46 | 28.9 | | 267 | 41.5 |
| \quad Above Tumwater | 44 | 95.7 | | 227 | 85.0 |
| \quad Below Tumwater | 2 | 4.3 | | 40 | 15.0 |
| Total | 159 | | | 644 | |

As a result of poor survey conditions throughout much of the spawning period (particularly in those indexes downstream of the Chiwawa and Icicle rivers), observer efficiency was likely reduced, resulting in fewer visible redds and subsequent lower expansions. The proportion of redds found within index areas upstream of Tumwater Dam (78\%) was slightly lower than the 3-year average of 82% (2004-2006, Table 3).

Table 3. Comparison of the number of redds found within index areas and the estimated number of redds in non-index areas upstream of Tumwater Dam between 2001 and 2007.

Year	Index area	Non-index area	Estimated total	Within index area (\%)
2001	118	19	137	86
2002	296	179	475	62
2003	353	88	441	80
2004	277	92	369	75
2005	828	136	964	86
2006	192	34	226	85
2007	105	29	134	78

Total run escapement explained a slightly greater proportion of the variation in the estimated total number of redds than the number of female steelhead (Figure 1). While, total run escapement explained a greater proportion of the variation in total redd counts
than index redd counts, suggesting that expanded redd counts are a better predictor of the spawning population than index counts (Figure 2).

Figure 1. Relationship between steelhead run escapement (total and female) upstream of Tumwater Dam and total redd counts.

Figure 2. Relationship between steelhead run escapement upstream of Tumwater Dam and total and index area redd counts.

In 2007, only 40% of the steelhead migrating above Tumwater Dam were accounted for on spawning ground surveys compared to the 3-year average (2004-2006) of 49\% (Table 4). Difficult survey conditions (i.e., numerous freshets) likely resulted in lower observer efficiency. Other factors that may have influenced spawning escapement (i.e., fall back and prespawn mortality) are unknown.

Table 4. Comparison of run and estimated spawning escapement for steelhead upstream of Tumwater Dam between 2001 and 2007.

Year	Run Escapement (A)	Number of redds (B)	Number of fish per redd (C)	Estimated spawning escapement (D = B x C)	Proportion of run escapement (E = D/A)
2001	820	137	2.08	285	0.35
2002	1,720	475	2.68	1,273	0.74
2003	1,810	441	1.60	706	0.39
2004	1,869	369	2.21	815	0.44
2005	2,650	964	1.61	1,552	0.59
2006	1,053	226	2.05	463	0.44
2007	657	134	1.94	260	0.40

Discussion

The high correlation between the expanded total redd counts and run escapement ($r=$ 0.94) suggest that the methodology used to estimate the number of steelhead can be very robust in estimating spawning escapement. It also suggests that factors responsible for the observed difference in run and estimated spawning escapement are relatively constant with respect to escapement levels and time. Given the large differences between run and spawn escapement upstream of Tumwater Dam, it is evident that there are multiple contributing factors that are influencing the disparity between the two estimates including:

- Fallback or "wandering" rates of summer steelhead are unknown.
- Prespawn survival rates of summer steelhead are unknown.
- Assumption of one redd per female is invalid.
- Unknown error in the number of fish per redd value.
- Observer efficiency is less than 100% in index areas.
- Spawning occurs in areas not surveyed (i.e., missed redds)

Tumwater Dam offers a unique opportunity to examine all the possible factors that may influence the size of the spawning population. Furthermore, it is not unreasonable to apply results of studies designed to answer these critical uncertainties to all populations in the upper Columbia River Basin. In the following section, we discuss each factor in more detail.

Fallback rates over Tumwater Dam are unknown and would inflate run escapement estimates if not accounted for. Radio telemetry studies on adult steelhead migration between Priest Rapids and Wells dams reported fallback rates ranging from 4.3% to 7.8% (English et. al., 2001). It is unknown if fallback rates in the Columbia River are similar to those in spawning tributaries. Naturally produced steelhead PIT tagged at Tumwater Dam have been detected at Roza Dam in the upper Yakima River approximately one month after tagging (M. Johnston, YN, personal communication). Installation of a PIT tag detector at Tumwater Dam and instream PIT tag antennae arrays throughout the upper Columbia Basin may provide estimates of "wandering" for both hatchery and naturally produced steelhead, but will require that a sufficient number of adult steelhead are PIT tagged. Radio tags would also be an appropriate technique to estimate "wandering" rates, but a large number of tags may be required if rates are low.

Prespawn mortality for adult steelhead is likely greater than the 5% assumed in the management of Upper Columbia Basin steelhead fisheries (Kirk Truscott, WDFW, personal communication). Summer steelhead are iteroparous and as a species have evolved survival traits (i.e., disease resistance) to overcome the extreme rigors of holding in freshwater as much as eleven months in duration before spawning. PIT tags may be used to infer prespawn mortality rates, but radio tags programmed with a motion sensor would likely be required.

In some populations, female steelhead were reported to construct multiple redds. If steelhead in the Wenatchee do construct multiple redds, differences in run and escapement estimates would increase as a result of a lower spawning escapement estimate. A tagging study, internal or external, would be required to test this assumption. Surveys would also need to be conducted on daily basis.

The number of fish per redd is based on the sex ratio of the population. Error associated with observer accuracy (i.e., gender misassignment) could be corrected using portable ultrasound devices. However, if the sex ratio does not accurately reflect the number of fish per redd, additional studies would need to be designed and implemented.

Observer efficiency error in counting redds can be estimated by using multiple surveyors for each index reach. However, studies would also need to be designed to determine the actual number of redds in a given reach in order to determine observer efficiency.

Of all the factors that are contributing to the difference between run and spawning escapement estimates, redds constructed in streams not included in the survey area have the potential to account for a significant portion of the difference. The reported number of redds upstream of Tumwater Dam underestimate the total number of redds because all available spawning habitat (i.e., low order streams) is not surveyed. Studies have been ongoing in the Wenatchee Basin designed to estimate the number of redds in areas not covered under the current survey design. Data from these studies (ISEMP) must be analyzed and incorporated into spawning escapement estimates. Only after these data are included will the magnitude of the other factors be understood. Researchers could then
prioritize which factors likely explain the greatest proportion of the observed difference and studies can be designed and implemented.

The timing and distribution of natural spawning hatchery and naturally produced steelhead in the Wenatchee River is unknown. Differences in spawn timing have been observed in Wenatchee summer steelhead broodstock, but fish are held in a controlled environment on well water. Based on the differences observed in the hatchery, it is possible that a considerable portion of hatchery origin steelhead spawn prior to initiation of spawning ground surveys. Spawning ground surveys start in early March and typically no redds have been found until April suggesting that hatchery steelhead are spawning within the current survey period. However, bi-modal spawning distribution has not been detectable under the current survey protocols, but may be masked by the large proportion of hatchery fish on the spawning grounds. The inability to discern hatchery and naturally produced fish on the spawning grounds precludes determining the spawning distribution and timing of hatchery steelhead relative to naturally produced steelhead. Studies developed and implemented to examine the factors previously discussed, should incorporate as many objectives as possible, to include the temporal and spatial distribution of hatchery and wild steelhead in the Wenatchee Basin.

References

Murdoch, A. R. and C. M. Peven. 2005. Conceptual approach to monitoring and evaluating the Chelan county Public Utility District hatchery programs. Chelan County PUD, Wenatchee, WA.

English, K. K., C. Sliwinski, B. Nass, and J. R. Stevenson. 2001. Assessment of adult steelhead migration through the Mid-Columbia River using radio-telemetry techniques, 1999-2000. Report prepared by LGL Limited for Public Utility District No. 2 of Grant County, Public Utility District No. 1 of Chelan County, and Public Utility District No. 1 of Douglas County. 48 p. + appendices.

Appendix A. Wenatchee River Basin survey reach and index/reference areas - surveys conducted weekly from March through June.

Reach	Index/reference area
Wenatchee River	
Sleepy Hollow Br. to Lower Cashmere Br. (W2)	Monitor boat ramp to Cashmere boat ramp
Leavenworth Bridge to Icicle Road Bridge (W6)	Leavenworth boat ramp to Icicle River
Tumwater Dam to Tumwater Bridge (W8)	Swiftwater boat ramp to Tumwater Bridge
Tumwater Bridge to Plain (W9)	Tumwater Bridge to Plain
Plain to Lake Wenatchee (W10)	Chiwawa pump station to Lake Wenatchee
Peshastin Creek	
Mouth to Camas Creek (P1)	Kings Bridge to Camas Creek
Camas Creek to mouth of Scotty Creek (P2A)	Ingalls Creek to Ruby Creek
Camas Creek to mouth of Scotty Creek (P2)	FR7320 to mouth of Shaser Cr.
Ingalls Creek	
Mouth to Trailhead rm 1.0 (D1)	Mouth to Trailhead rm 1.0
Trailhead to Wilderness Boundary rm 1.5 (D2)	Trailhead to Wilderness Boundary rm 1.5
Chiwawa River	
Mouth to Grouse Creek (C1)	Mouth to Road 62 Bridge rm 6.4
Grouse Creek to Rock Creek (C2)	Chikamin Creek to Log jam
Clear Creek	
Mouth to HWY 22 (V1)	Mouth to HWY 22
HWY 22 to Lower culvert rm 2.0 (V2)	HWY 22 to Lower culvert
Nason Creek	
Mouth to Kahler Creek Bridge (N1)	Mouth to Swamp Creek
HWY 2 Bridge to Lower R.R. Bridge (N3)	Highway 2 Bridge to Merrit Bridge
Lower R.R. Bridge to Whitepine Creek (N4)	Rayrock to Church camp
Icicle River	
Mouth to Hatchery (I1)	Mouth to Hatchery
Little Wenatchee River	
Mouth to Lost Creek (L2)	Fish Weir to Lost Creek
Lost Creek to Rainy Creek Bridge (L3)	Lost Creek to Rainy Creek Bridge
White River	
Sears Cr. Bridge to Napeequa River (H2)	Riprap bank to Napeequa River
Napeequa River to mouth of Panther Creek (H3)	Napeequa River to Grasshopper Meadows.
Napeequa River	
Mouth to rm 1.0 (Q1)	Mouth to rm 1.0

Appendix B. Summary of steelhead spawning ground index surveys in the Wenatchee River basin in 2007.

Reach	Survey Week of Index Area															Reach Total	Expanded \#of redds
	$\begin{gathered} \hline 4 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 11 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 18 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 25 \\ \text { Mar } \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{Apr} \end{gathered}$	$\begin{gathered} 8 \\ \hline 8 \\ \text { Apr } \end{gathered}$	$\begin{gathered} 15 \\ \text { Apr } \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Apr} \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Apr} \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { May } \end{gathered}$	$\begin{gathered} \hline 13 \\ \text { May } \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { May } \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { May } \end{gathered}$	$\begin{gathered} \hline 3 \\ \text { June } \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { June } \end{gathered}$		
Wenatchee River																	
W1																	
W2	0				0		0	0	0							0	0
W3																	
W4																	
W5																	
W6			0	0			1	1								2	2
W7																	
W8	0		0		0	0	0	0	0	0						0	0
W9	0		0		0	0	3	2	5							10	10
W10	0		0		0	5	9	7	6			7				34	34
Total	0		0	0	0	5	13	10	11	0		7				46	46
	Peshastin Creek																
P1					0		2	3	1							6	6
P2					0		2	2	1			6				11	11
Total					0		4	5	2			6				17	17
	Chiwawa River																
C1					0	0	1	2	0							3	3
C2																	
Total					0	0	1	2	0							3	3

Appendix B. Continued.

Reach	Survey Week of Index Area															Reach Total	Expanded \#of redds
	$\begin{gathered} \hline 4 \\ \mathrm{Mar} \end{gathered}$	$\begin{gathered} \hline 11 \\ \mathrm{Mar} \\ \hline \end{gathered}$	$\begin{gathered} \hline 18 \\ \mathrm{Mar} \\ \hline \end{gathered}$	$\begin{gathered} \hline 25 \\ \mathrm{Mar} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} \hline 22 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} \hline 29 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \text { June } \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { June } \\ \hline \end{gathered}$		
Clear Creek																	
V1	0		0		0	0	0	0	0	8		0			0	8	8
V2										0		0			0	0	0
Total	0		0		0	0	0	0	0	8		0			0	8	8
Nason Creek																	
N1	0	0			0	0	7	1	0	2		0			0	10	11
N2										10						10	25
N3	0	0			0	1	4	4	5	8		2			0	24	35
N4	0	0			0	2	1	1	0	1		0			0	5	7
Total	0	0			0	3	12	6	5	21		2			0	49	78
Icicle River																	
Total			0	0	0		4	1								6	6
White River																	
H2					0		0	0	0							0	0
H3					0		0	1	0							1	1
Total					0		0	1	0							1	1
Little Wenatchee River																	
L2															0	0	0
L3								0							0	0	0
Total								0							0	0	0
Wenatchee River Basin																	
Total	0	0	0	0	0	8	34	25	19	29		15			0	130	159

Appendix C. Steelhead spawning surveys in the Wenatchee River basin, 2001-2007. Redd counts are expanded values derived from sample rates within index areas.

Basin/subbasin	2001	2002	2003	2004	2005	2006	2007
Chiwawa River Basin							
Chiwawa River	25	27	26	17	118	8	3
Rock Creek	--	1	0	0	0	0	--
Chikamin creek	--	0	0	1	2	1	0
Meadow Creek	--	5	1	5	16	3	0
Twin Creek	--	4	0	--	0	--	--
Goose Creek	--	0	--	--	--	--	--
Alder Creek	--	0	5	2	14	0	0
Deep Creek	--	0	--	--	--	--	--
Clear Creek	--	43	32	37	12	7	8
Subtotal	25	80	64	62	162	19	11
Nason Creek Basin							
Nason Creek	27	80	121	124	410	74	78
White Pine Creek	--	--	--	0	0	0	0
Un-named Creek	--	--	--	3	0	3	0
Roaring Creek	--	--	--	--	2	0	0
Subtotal	27	80	121	127	412	77	78
White River Basin							
White River	--	0	1	0	2	0	1
Panther Creek	--	--	0	0	0	0	0
Napeequa River	--	0	2	0	0	0	0
Subtotal		0	3	0	2	0	1
Little Wenatchee River							
Mainstem	--	1	5	0	0	--	0
Icicle Creek							
Mainstem	19	27	16	23	8	41	6
Peshastin Creek Basin							
Peshastin Creek	--	--	15	32	91	67	17
Mill Creek	--	--	--	--	1	0	0
Ingalls Creek	--	--	0	0	0	0	--
Ruby Creek	--	--	0	0	0	--	--
Tronsen Creek	--	--	0	2	5	0	0
Scotty Creek	--	--	0	0	0	0	0
Shaser Creek	--	--	0	0	0	0	0
Schafer Creek	--	--	--	0	0	0	0
Subtotal	--	--	15	34	97	67	17
Wenatchee River							
Mainstem	116	315	248	136	456	191	46
Beaver Creek	--	0	0	* 15	3	0	0
Chiwaukum Creek	--	--	0	--	0	0	--
Subtotal	116	315	248	151	459	191	46
Wenatchee Basin Total	187	503	472	397	1,140	395	159

*Redds were enumerated by USFS

Appendix D1. Steelhead spawning distribution in the Nason Creek Basin in 2007.

Appendix D2. Steelhead spawning distribution in the Chiwawa River Basin in 2007.

Appendix D3. Steelhead spawning distribution in the Wenatchee River in 2007.

Appendix D4. Steelhead spawning distribution in the Peshastin Creek Basin in 2007.

APPENDIX E

NPDES Hatchery Effluent Monitoring, 2007

National Pollutant Discharge Elimination System (NPDES) Effluent Summary

for the period of January 1, 2007 through December 31, 2007
as reported on the Discharge Monitoring Reports (DMRs)
submitted to the Washington State Department of Ecology
Eastbank
Hatchery
NPDES Permit Number WAG13-
5011

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	FLOW PA	SS PA	SS \%	TSS PA	TSS \%	Lbs of Fish	Lbs of Feed
2007	JAN	30.4	0	0.2	0.2	15000	0.1		6.8		77439	10969
	FEB	30.4	0	0.9	1.2	15000	0.1		28		78836	17615
	MAR	30.4	0	0	0	12000	0.1		26.3		65978	18649
	APR	22.62	0	0.2	0.2	15000	0.1		16.2		7835	3066
	MAY	22.62				3500	0.1		16.6		13018	3755
	JUN	26.18				7000	0.1		19.7		10633	3851
	JUL	30.4	0	0.4	0.4	15000	0.1		10.8		17355	4684
	AUG	30.4	0	0	0	3500	0.1		10.4		28058	14396
	SEP	31.7	0	0.2	0.2	7000	0.1		20.8		43604	15144
	OCT	30.4	0	0	0	15000	0		11		17341	10742
	NOV	30.4	0	1	1	3500	0		15		19000	14920
	DEC	31.7	0	0.4	0.4	7000	0.1		13		25817	64036

Turtle Rock
NPDES Permit Number WAG13-5004

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	Lbs of Fish	Lbs of Feed	SS DD	TSS DD
2007	JAN	14.4	0	0.6	0.6	21030	3564		
	FEB	14.4	0	1	1	33457	3840		
	MAR	14.4	0	-0.3	-0.2	42021	4117		
	APR	14.4	0	0.2	0.2	54715	8976		
	MAY	14.4	0	1.8	1.8	7428	1732	0.1	2.75
	JUN	14.4	0	1.4	1.4	18409	10736		
	JUL	0	0	1.2	1.2	26473	0	0.05	0.9
	SEP	No					0	0	

Wells Hatchery
NPDES Permit Number WAG13-

YEAR	MONTH	FLOW	SS EFF	TSS COMP	$\begin{aligned} & \text { TSS } \\ & \text { MAX } \end{aligned}$	FLOW PA	SS PA	SS \%	TSS PA	TSS \%	Lbs of Fish	Lbs of Feed	$\begin{aligned} & \hline \text { SS } \\ & \text { DD } \end{aligned}$	TSS DD
2007	JAN	19.5	0	1.6	1.6	895	0		0.6		47000	11345		
	FEB	20.7	0	0.4	0.4	895	0		0.6		48000	11038		
	MAR	23.4	0	-0.4	-0.2	895	0		1.6		55000	12550		
	APR	23.8	0	-0.2	-0.2	895	0		3		51824	18960		
	MAY	23.4	0	0.4	0.4	880	0		1		52205	5144	0.25	6.55
	JUN	4	0	0.2	0.2	802	0		1		13888	4154		
	JUL	7	0	-0.4	-0.4	895	0		1.6		11000	3255		
	AUG	10	0	0.5	0.6	895	0		0.8		14054	4706		
	SEP	10.7	0	1.2	1.2	895	0		1.2		16675	5193		
	OCT	10.4	0	0	0	895	0		24.2		28563	6392		
	NOV	10.4	0	0.4	0.4	895	0		1		31924	9060		
	DEC	11.4	0	0	0	895	0		1.4		64246	11896		

Chiwawa Ponds
NPDES Permit Number WAG13-5015

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	Lbs of Fish	Lbs of Feed	SS DD	TSS DD		
2007	JAN	9.07	0.03	0	0	21000	175				
	FEB	9.07	0.03	0	0	20634	1650				
	MAR	9.07	0.03	0	0	24470	4025				
	APR	9.07	0.03	0.4	0.4	26000	4651				
	MAY	4.5				7300	0	0.04	49.5		
	JUN	No Monitoring					0	0			
Monitoring										\quad	No
:---:											

Carlton Acclimation Pond
NPDES Permit Number WAG13-5013

YEAR	MONT H	FLOW	SS EFF	TSS COMP	TSS MAX	Lbs of Fish	Lbs of Feed	SS DD	TSS DD
2007	JAN	No Monitoring				0	0		
	FEB	No Monitoring				0	0		
	MAR	10.08	-0.4	-1.8	-1.8	21295	425		
	MPR	10.08	-0.25	-0.2	0.4	17500	1280		
	JUN	JUL	No Monitoring No Monitoring No Monitoring				0	0	0.5
No Monitoring				0	0		46.6		
	SEP	No Monitoring				0	0		
No Monitoring				0	0				
	OCT				0	0			
	NOV				0	0			
	DEC	No Monitoring				0	0		

Methow Hatchery
NPDES Permit Number WAG13-
5000

YEAR	MONTH	FLOW	SS EFF	TSS COMP	$\begin{aligned} & \hline \text { TSS } \\ & \text { MAX } \end{aligned}$	FLOW PA	SS PA	SS \%	TSS PA	TSS \%	Lbs of Fish	Lbs of Feed	$\begin{aligned} & \hline \text { SS } \\ & \text { DD } \end{aligned}$	TSS DD
2007	JAN	10.8	-0.03	-0.2	-0.2	14400	0.07		8		23130	3700		
	FEB	10.8	-0.03	0	0	14400	0.1		42.2		25000	3700		
	MAR	10.2	0	-1.4	-1.4	14400	0.07		19.8		12000	2320		
	APR	5.47	0.05	0.2	0.2	14400	0.05		0.6		11479	2250		
	MAY	5.47				14400	0.05		7.8		2720	762	0.07	20
	JUN	5.47				14400	0.05		15.6		4758	1465		
	JUL	5.26				14400	0.07		1		6261	2995		
	AUG	5.47				14400	0.05		0.8		8599	2665		
	SEP	6.48				14400	0.05		3.8		13137	2443		
	OCT	6.48				14400	0.5		41.2		16212	2585		
	NOV	9.5	0.05	-1.2	-1	14400	0.5		0.6		18444	2412		
	DEC	9.5	0.05	-0.2	-0.2	14400	0.5		4.6		20000	2310		

Similkameen Hatchery

NPDES Permit Number WAG13-5007

YEAR	$\begin{gathered} \hline \text { MONT } \\ \mathrm{H} \\ \hline \end{gathered}$	FLOW	SS EFF	TSS COMP	$\begin{aligned} & \hline \text { TSS } \\ & \text { MAX } \\ & \hline \end{aligned}$	FLOW PA	SS IW*	$\begin{aligned} & \hline \text { TSS } \\ & \text { IW* }^{*} \\ & \hline \end{aligned}$	Lbs of Fish	Lbs of Feed	SS DD	TSS DD
2007	JAN	6.5	0	1.2	1.2	14895	0.2	229.2	12244	0		
	FEB	6.5	0	2.8	2.8	9360	0.1	66	12634	352		
	MAR	6.5	0	-0.6	-0.6	45491	0.5	683.2	13743	1320		
	APR	6.5	0	-0.4	-0.4	43050	7.5	303.4	14970	4160		
	MAY	6.5							15078	0	0.1	40
	JUN	No Monitoring							0	0		
	JUL	No Monitoring							0	0		
	AUG	No Monitoring							0	0		
	SEP	No Monitoring							0	0		
	OCT	9.77	0	-0.6	-0.6	18519		576	16310	1936		
	NOV	5.9	0	0.4	0.6	16640		59.6	19740	1056		
	DEC	5.9	0	1.2	1.2			30.4	18750	0		

* IW- influent waste

Chelan Hatchery
NPDES Permit Number WAG13-
5006

YEAR	MONTH	FLOW	SS EFF	TSS COMP	$\begin{aligned} & \text { TSS } \\ & \text { MAX } \end{aligned}$	FLOW PA	SS PA	SS \%	TSS PA	TSS \%	Lbs of Fish	$\begin{aligned} & \text { Lbs of } \\ & \text { Fepd } \end{aligned}$
2007	JAN	8.86	0.04	2.2	2.2	132173	0.05		4.4		28680	11708
	FEB	8.76	0.04	-0.4	-0.4	110775	0.05		12.6		41573	9828
	MAR	9.01	0.05	0	0	113030	0.05		6.8		49687	14425
	APR	8.86	0.04	1.4	1.4	132173	0.22		9.2		18485	14249
	MAY	8.76	0.04	0.3	0.4	110775	0.05		9.8		4390	4001
	JUN	9.01	0.05	0.2	0.2	113030	0.05		9.8		6560	2271
	JUL	9.02	0.05	1	1	145161	0.05		0.1		10452	4955
	AUG	9.72	0.05	1.6	1.6	155566	0.05		1.2		21185	11045
	SEP	9.16	0.05	1.2	1.2	146673	0.05		1.4		20731	9212
	OCT	8.38	**	-4.4	1.8	131112	**		16.8		17187	8830
	NOV	8.43	**	2.4	2.4	135666	**		2.2		22500	10047
	DEC	8.74	**	2.4	2.4	140714	**		9.4		20000	7668

**Samples not taken by hatchery employee.

Dryden Acclimation Pond
NPDES Permit Number WAG13-5014

YEAR	$\begin{gathered} \text { MONT } \\ \mathrm{H} \\ \hline \end{gathered}$	FLOW	SS EFF	TSS COMP	$\begin{aligned} & \text { TSS } \\ & \text { MAX } \end{aligned}$	$\begin{gathered} \text { Lbs of } \\ \text { Fish } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Lbs of } \\ & \text { Feed } \end{aligned}$	SS DD	TSS DD
2007	JAN	No Monitoring				0	0		
	FEB	No Monitoring				0	0		
	MAR	20.8	-0.02	-0.2	-0.2	49866	1804		
	APR	20.8	-0.008	0.6	0.6	55094	7920	0.03	4.6
	MAY	No Monitoring				0	0		
	JUN	No Monitoring				0	0		
	JUL	No Monitoring				0	0		
	AUG	No Monitoring				0	0		
	SEP	No Monitoring				0	0		
	OCT	No Monitoring				0	0		
	NOV	No Monitoring				0	0		
	DEC	No Monitoring				0	0		

National Pollutant Discharge Elimination System (NPDES) Effluent Summary
for the period of January 1, 2006 through December 31, 2007 as reported on the Discharge Monitoring Reports (DMRs) submitted to the Washington State Department of Ecology

Priest Rapids
NPDES Permit Number WAG13-
7013

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	Lbs of Fish	Lbs of Feed	SS DD	TSS DD
2006	JAN	11.9	0			0	0		
	FEB	11.2	0	0.8	0.8	7437	1671		
	MAR	30.3	0	-0.4	-0.4	25344	13197		
	APR	33.5	0	-0.8	-0.8	53999	25737		
	MAY	45	0	0.6	0.6	118648	55000		
	JUN	48.2	0	1	1	144666	32725	0	4.2
	JUL	7.95	0			12	7		
	AUG	1.3				13	8		
	SEP	65	0	0	0	12800	0		
	OCT	65.5	0	0.8	0.8	37290	0		
	NOV	67.5	0	-0.5	-0.4	2860	0		
	DEC	61.1	0			0	0		
2007	JAN	61.4	0			0	0		
	FEB	62.8	0	0.6	0.6	9128	1273		
	MAR	68.6	0	0.2	0.2	26114	8470		
	APR	68.1	0	-0.2	0.2	66212	20936		
	MAY	67.7	0	0	0	127589	43802		
	JUN	68.3	0	0.2	0.2	137533	12188	0	3.4
	JUL	1.2	0			0	0		
	AUG	1.2	0			0	0		
	SEP	59.5	0	3.1	3.4	1280	0		
	OCT	63.1	0	3.2	3.2	8755	0		
	0.2			0.8	0	0	0	0	
	NOV	67.7	0	-0.8	-0.8	2320	0		
	DEC	64.3	0			0	0		

APPENDIX F

Steelhead Stock Assessment at Priest Rapids Dam, 2007

Priest Rapids Dam Upper Columbia River Steelhead Stock Assessment Sampling Report, 2006

This report will be available in June 2008.

APPENDIX G

Wenatchee Sockeye and Summer Chinook Spawning Ground Surveys, 2007

PUBLIC UTILITY DISTRICT NUMBER 1 OF CHELAN COUNTY Fish and Wildlife Department

327 N. Wenatchee Ave., Wenatchee WA 98801 (509) 663-8121

January, 2008
To: HCP Hatchery Committee
From: Chuck Peven

Subject: 2007 Wenatchee River Basin Summer Chinook and Sockeye Salmon Spawning Ground Surveys

Introduction

The Chelan County Public Utility District (District) has conducted or funded others to conduct intensive spawning ground surveys of spring and summer/fall (late run) ${ }^{1}$ Chinook salmon Oncorhyncus tshawytscha and sockeye salmon (O. nerka) in river basins of the Columbia River upstream of Rock Island Dam. Summer/fall Chinook spawn in the entire mainstem of the Wenatchee River, from the mouth to the lake (Figure 1; Table 1). Sockeye spawn in the White and Little Wenatchee River basins (Figure 2).

The spawning surveys are performed yearly to assist in evaluating the effectiveness of the District's hatchery program. The purpose of this document is to report the results of the 2007 Chinook and sockeye salmon spawning ground surveys in the Wenatchee River basin. Information included in this document describes abundance, distribution, and timing of spawning activity.

Study Area

The Wenatchee River originates from Lake Wenatchee and flows 54 miles south/southeast to its confluence with the Columbia River near the city of Wenatchee (Figures 1 and 2). The river drains an area approximately 1,301 square miles (United States Geological Survey (USGS) 2006). From its origin at the lake to river mile (RM) 22, it passes through heavily forested mountains. Below RM 22, the river enters a broad valley predominantly planted with fruit orchards. The mean annual flow at Monitor gage station is $3,255 \mathrm{ft}^{3} / \mathrm{s}$ (1963-2004; USGS 2006), with a mean gradient ranging from $0.21-1.3 \%$ (Peven 1990). Primary tributaries of the Wenatchee River include the Little Wenatchee and White rivers, which flow into Lake Wenatchee, and Nason Creek, Chiwawa River, Icicle and Peshastin creeks (Figures 1 and 2).

[^17]

Figure 1. Map of the Wenatchee River Basin with spawning and migrational areas of late-run (summer/fall Chinook) areas highlighted (copied from the Wenatchee Subbasin Plan, NWPCC 2004).

Figure 2. Map of the Wenatchee River Basin with spawning and migrational areas for sockeye highlighted (copied from the Wenatchee Subbasin Plan, NWPCC 2004).

Methods

Chinook Spawning Ground Surveys

Chinook spawning ground surveys are conducted by foot, raft, or canoe. The most appropriate survey method is chosen for a given stream reach based on stream size, flow, and density of spawners. Because of the broad stream width and high spawner densities, individual summer Chinook redds are not flagged. Each reach is surveyed approximately once per week.

In 2007, summer Chinook spawning ground surveys occurred from October 2 to November 15.

Table 1: Designated survey reaches for spawning ground areas on the Wenatchee, Little Wenatchee, White, and Nepeequa rivers for all species.

Wenatchee River			
Survey Section	River Mile		
Mouth to Sleepy Hollow Bridge	$0-3.5$		
Sleepy Hollow Bridge to Lower Cashmere Bridge	$3.5-9.5$		
Lower Cashmere Bridge to Dryden Dam	$9.5-17.5$		
Dryden Dam to Peshastin Bridge	$17.5-20.0$		
Peshastin Bridge to Leavenworth Bridge	$20.0-23.9$		
Leavenworth Bridge to Icicle Road Bridge	$23.9-26.4$		
Icicle Road Bridge to Tumwater Dam	$26.4-30.9$		
Tumwater Dam to Tumwater Bridge	$30.9-35.6$		
Tumwater Bridge to Chiwawa River	$35.6-48.4$		
Chiwawa River to Lake Wenatchee	$48.4-54.2$		
Mouth to Old Fish Weir	$0-2.7$		
Old Fish Weir to Lost Creek	$2.7-5.2$		
Lost Creek to Rainey Creek	$5.2-9.2$		
Rainey Creek to End	$9.2-$ End		
Mouth to Sears Creek Bridge	$0-6.4$		
Sears Creek Bridge to Napeequa River	$6.4-11.0$		
Napeequa River to Grasshopper Meadows	$11.0-12.9$		
Grasshopper Meadows to Falls	$12.9-14.3$		
Naper	$0-$ End		
Mouth to End			

Peak and total redd count methodologies were used during the summer Chinook surveys in 2007 (see Appendix F of Murdoch and Peven (2005) for more detail). A peak count is conducted by counting all visible redds (new and old) observed within a reach on each survey. The objective of the peak redd count methodology is to capture the apex of spawning activity over an entire spawning season. This apex occurs at different times
between reaches during the season, i.e. spawning begins sooner in the upstream reaches compared to the downstream reaches. The sum of all of the apex counts for the entire river is the peak redd count for the year. Peak counts provide an index of spawning and have been used historically (Appendix 1).

Two different approaches were used to estimate the total number of redds within the Wenatchee River. The first method used map counts to expand peak counts. Under this approach, a total redd count is conducted by counting or mapping only new or recently constructed redds within an area. Each new redd is mapped on aerial photos and enumerated. The objective of the total redd count methodology is to capture 1) "early" redds that may fade over time due to siltation or algae growth, and 2) redds that become disfigured by superimposition (when new redds are constructed on top of previously existing redds).

Since it is not feasible to map all new redds within the entire river, an expansion is used to estimate total count for the entire Wenatchee River. To account for the different spawning substrate types in the main stem Wenatchee River, the river was delineated into six distinct reaches in consultation with WDFW (Table 2). Within each of these reaches, index areas have been identified as being representative areas of spawning activity. Peak counts are performed within each total reach (referred to as non-index areas), while mapping new redds only occurs within the index areas. An expansion is developed based on the ratio of mapped to peak counts for each reach (i.e., each reach has its own expansion factor), and the sum of the expanded counts is the estimate of the total redd counts. Additional details of how total redd counts are calculated is provided below.
a. Calculate an index peak expansion factor (IP) by dividing the peak number of redds in the index by the total number of redds (map count) in the index area.

$$
I P=\frac{n_{\text {peak }}}{} / n_{\text {total }}
$$

b. Expand the non-index area peak redd counts by the $I P$ to estimate the total number of redds in the entire reach (reach total; $R T$).

$$
R T=n_{\text {peak }} / I P
$$

c. Estimate the total number of redds (total redds; $T R$) by summing the reach totals.

$$
T R=\sum R T
$$

The second approach relied on a "naïve" count to expand redd numbers in reaches that did not have map counts. As noted above, the reaches with map counts are referred to as index reaches and those that were not mapped are called non-index reaches. Near the end
of the spawning period (early November), one team of observers counts all visible redds within all non-index reaches. A separate, independent team counts all visible redds within the index reaches (these are the naïve counts). Surveys within the index and non-index areas should occur within one day of each other near the end of the spawning period. The naïve counts are divided by the total map count to estimate an index expansion factor. This factor is then applied to the total visible count in the non-index areas to estimate the total number of redds within each reach. The sum of the expanded counts is the estimate of the total redd count for the river. Additional details of how total numbers of redds are estimated using this approach is provided below.
a. Calculate an index expansion factor (IF) by dividing the number of visible redds in the index by the total number of redds (map counts) in the index area.

$$
I F=n_{\text {visible }} / n_{\text {total }}
$$

b. Expand the non-index area redd counts by the proportion of visible redds in the index to estimate the total number of redds in the entire reach (reach total; $R T$).

$$
R T=n_{\text {non-index }} / I F
$$

c. Estimate the total number of redds (total redds; $T R$) by summing the reach totals.

$$
T R=\sum R T
$$

The total redd count methods are believed to provide a more accurate indication of total spawning than the peak redd count methodology, because the peak count methodology only accounts for visible redds each week during the survey season. For example, summer Chinook redds that were visible during the first week of spawning may not be visible during the third week; those redds would be missed in the third and subsequent weeks' redd counts. Using the total count methodology, the redds in the first week would be mapped and accounted for in subsequent weeks, even though they may fade at some point during the future surveys.

Table 2: Index (Mapping) Areas on the Wenatchee River.

Wenatchee River		
River Reach	Check Points (sections)	Mapping Index Area
1	Mouth to Sleepy Hollow Bridge	Monitor Bridge to Lower Cashmere Bridge
	Sleepy Hollow Bridge to Lower Cashmere Bridge	
	Lower Cashmere Bridge to Dryden Dam	
2	Dryden Dam to Peshastin Bridge	Dryden Dam to Peshastin Bridge
	Peshastin Bridge to Leavenworth Bridge	
3	Leavenworth Bridge to Icicle Road Bridge	Icicle Mouth to Takeout
4	Icicle Road Bridge to Tumwater Dam	SwiftwaterCampground toTumwater Bridge
	Tumwater Dam to Tumwater Bridge	
5	Tumwater Bridge to Chiwawa River	Swing Pool to Railroad Tunnel
6	Chiwawa River to Lake Wenatchee	Swamp to Bridge

Sockeye Spawning Ground Surveys

In 2007, we employed one survey method; area-under-the-curve (AUC). Sockeye spawning ground surveys began August 30 and ended October 19. Spawning areas in the Little Wenatchee, White, and Napeequa rivers (Table 1) were surveyed at least once per week. Both the Little Wenatchee and White rivers have blocking falls, and spawning is only known to occur within the first few miles of the Napeequa River.

Area-under-the-curve

The AUC method is based on the number of live spawners counted. Using AUC, the number of fish observed in a survey is plotted against the day of the year and the number of fish-days is estimated using an algorithm. The number of fish spawning is then estimated by dividing the cumulative fish-days by the estimated mean number of days that the average spawner is alive in the survey area (survey- or stream-life). This is then multiplied by a correction factor for fish visibility (observer efficiency; Hillborn et al. 1999).

Hillborn et al. (1999) outlined what they termed as the most commonly used form of AUC, trapezoidal approximation:

$$
\mathrm{AUC}=\sum_{\mathrm{i}=2}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}\right)\left(\underline{\left.\mathrm{x}_{\underline{i}}+\frac{\mathrm{x}_{\mathrm{i}-1}}{2}\right)}\right)^{2}
$$

where t_{i} is the day of the year and x_{i} is the number of salmon observed for the i th survey. Attempts are often made to initiate surveys prior to the presence of fish; however when
the first or last survey is not zero, then the above algorithm is not valid and Hillborn et al. (1999) recommend using the "rules" that the Alaska Department of Fish and Game use:

$$
\mathrm{AUC}_{\text {first }}=\frac{x_{i} \underline{S}}{2}
$$

where s is the survey life. Attempts should also be made until all salmon die, but when this is not possible, then the final survey should be calculated:

$$
\mathrm{AUC}_{\text {last }}=\underline{x}_{\text {last }} \frac{S}{2}
$$

Then total escapement (E) is estimated:

$$
\mathrm{E}^{\wedge}=\frac{\mathrm{AUC}}{s} v
$$

where v is a correction for observer efficiency. In 2008, the District will be estimating both observer efficiency and survey life. However, since survey life has not been empirically estimated for the Wenatchee system yet, we used 11 days based on the following:

Perrin and Irvine (1990) reviewed literature and conducted surveys to determine stream life for five species of Pacific salmon. For sockeye, the mean stream-life was 13.2 days (range: 7-26.5). Hyatt et al. (2006) used a stream-life of 11 days because of the Okanogan sockeye's similarity to Early Stuart sockeye.

Results

Summer Chinook

Peak Counts (non-index areas)

A peak redd count of 1,857 summer Chinook redds was estimated in 2007 based on ground surveys along the Wenatchee River (Table 3). Spawning activity began the last week of September and peaked during the second week of October.

Density of redds was greatest near the confluence of the Icicle and Wenatchee rivers (W6). From the mouth of the Chiwawa River to Lake Wenatchee was the next highest area (W10; Figure 3).

Table 3. Summary of summer Chinook redd counts in the Wenatchee River, 2007.

Survey Section	River Section	Peak Counts	Total Counts	
Mouth to Sleepy Hollow Bridge	W-1	7	6	0
Sleepy Hollow Bridge to Lower Cashmere Bridge	W-2	61	49	28
Lower Cashmere Bridge to Dryden Dam	W-3	172	138	77
Dryden Dam to Peshastin Bridge	W-4	34	39	39
Peshastin Bridge to Leavenworth Bridge	W-5	45	52	78
Leavenworth Bridge to Icicle Road	Bridge	W-6	873	933
Icicle Road Bridge to Tumwater Dam	W-7	107	144	102
Tumwater Dam to Tumwater Bridge	W-8	61	82	64
Tumwater Bridge to Chiwawa River	W-9	280	306	288
Chiwawa River to Lake Wenatchee	W-10	217	208	176
Totals		$\mathbf{1 , 8 5 7}$	$\mathbf{1 , 9 5 7}$	$\mathbf{1 , 4 0 2}$

Total Counts

The total number of redds in the Wenatchee River varied depending on the expansion method used. Using the peak expansion method (IP), a total of 1,957 summer Chinook redds were estimated in 2007 (Table 3). Based on the naïve expansion factor (IF), a total of 1,402 summer Chinook redds were estimated in the Wenatchee River (Table 3). This later estimate is not very reliable because the naïve counts were not well coordinated with counts in the non-index areas. In some cases the counts in index and non-index areas were more than five days apart.

Historical Summer Chinook Spawning Ground Survey Data

The historical summer Chinook survey estimates (1996-2007) for the Wenatchee River basin are presented in Appendix A. The estimated summer Chinook redd count for the 2007 season was the lowest count since the mid 1990s (Figure 4).

Figure 3. The density of summer Chinook redds in the Wenatchee River, 2007.

Figure 4. Historic summer/fall Chinook redd counts in the Wenatchee River Basin (see Appendix A for more information).

Sockeye

Live fish counts
Fish counts were conducted for sockeye from August 28 through October 19. Peak spawning occurred in the White River basin $(1,183)$ and Little Wenatchee (102) during the third-fourth week of September (Figure 5; Table 4).

Escapement
The estimated escapement of sockeye in 2007 was 1,870 , (Table 5).

Figure 4. Approximate live counts and survey dates for sockeye salmon in the Wenatchee River Basin, 2007.

Table 5. Number of live fish and total spawning escapement estimates for sockeye salmon in the Wenatchee Basin, August through October, 2007.

Sampling area	Peak number of live fish	Escapement
Little Wenatchee	102	150
White R Basin	1,183	1,720
Total	$\mathbf{1 , 2 8 5}$	$\mathbf{1 , 8 7 0}$

Summary

District crews conducted extensive redd counts in the Wenatchee River basin in 2007 for summer Chinook and sockeye salmon. These surveys were conducted from late August to midNovember.

District crews counted 1,857 summer/fall Chinook redds (peak counts), and 1,402-1,957 (total counts) in 2007. Discrepancies between naïve and other survey methodologies may cause the total count estimate to be suspect. This discrepancy will be corrected prior to the 2008 survey season.

Between late August and mid-October, 1,285 live sockeye were counted, and escapement was estimated at 1,870 using the AUC method.

Recommendations

For estimating total summer/fall Chinook redd counts, all 10 mainstem Wenatchee River reaches should have index areas that are mapped so that expansions can be reach-specific. Protocols between those doing the naïve surveys and other summer Chinook surveys need to be better coordinated.

Perform studies to investigate whether observer efficiency and spawner residency time can be estimated.

References

Hillborn, R. B.G. Bue, and S. Sharr. 1999. Estimating spawning escapements from periodic counts: a comparison of methods. Can. J. Fish. Aquat. Sci. 56: 888-896.

Hyatt, K.D., M.M. Stockwell, H. Wright, K. Long, J. Tamblyn, and M. Walsh. 2006. Fish and Water Management Tool Project Assessments: Okanogan Adult Sockeye Salmon (Oncorhynchus nerka) Abundance and Biological Traits in 2005. DRAFT Report to file: JSID-SRe 3-05. Salmon and Freshwater Ecolsystems Division, Fisheries and Oceans Canada, Nanaimo, B.C. V9T 6N7.

Mullan, J. W. 1987. Status and propagation of Chinook salmon in the mid-Columbia River through 1985. U.S. Fish and Wildlife Serv. Biol. Rep. 87(3) 111 pp.

Murdoch, A. and C. Peven. 2005. Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Hatchery Programs. Prepared for: Chelan PUD Habitat Conservation Plan's Hatchery Committee. Chelan PUD, Wenatchee, WA

Perrin, C.J. and J.R. Irvine. 1990. A review of survey life estimates as they apply to the area-under-the-curve method for estimating the spawning escapement of Pacific salmon. Canadian Tech. Rep. of Fisheries and Aquatic Sciences No. 1733. Departmet of Fisheries and Oceans, Nanaimo, B.C. V9R 5K6.

Peven, C. M. 1990. The life history of naturally produced steelhead trout from the MidColumbia River Basin. MS Thesis, University of Washington, Seattle.

Appendix A.

Historic peak redd counts in the Wenatchee River for summer/fall Chinook salmon. Prior to 1995 , all counts based on highest count of multiple agencies surveys, which were usually aerial counts from fixed-wing aircraft. Since 1995, counts are ground counts based on Chelan PUD surveys.

Year	Highest Count	Year	Highest Count	Year	Highest Count
1960	502	1970	1333	1980	2024
1961	872	1971	1419	1981	1469
1962	1035	1972	1364	1982	1140
1963	1223	1973	1119	1983	723
1964	1300	1974	1155	1984	1332
1965	706	1975	925	1985	1058
1966	1260	1976	1106	1986	1322
1967	1593	1977	1365	1987	2955
1968	1776	1978	1956	1988	2102
1969	1354	1979	1698	1989	3331
1990	2479	2000	2022		
1991	2180	2001	2857		
1992	2328	2002	5419		
1993	2334	2003	4281		
1994	2426	2004	3764		
1995	1872	2005	3327		
1996	1435	2006	7165		
1997	1388	2007	1857		
1998	1660				

APPENDIX H

Genetic Diversity of Wenatchee Sockeye Salmon, 2007.

Developed for
Chelan County PUD
and the
Habitat Conservation Plan's Hatchery Committee
Developed by
Scott M. Blankenship, Cheryl A. Dean, Jennifer Von Bargen WDFW Molecular Genetics Laboratory
Olympia, WA
and
Andrew Murdoch
Supplementation Research Team
Wenatchee, WA

March 2008
Executive Summary 1
Introduction
Lake Wenatchee Sockeye Salmon 3
Sockeye Artificial Propagation In Lake Wenatchee 5
Previous Genetic Analyses 6
Study objectives 7
Methods
Tissue collection 9
Laboratory Analysis 9
Genetic Analysis
Assessing within collection genetic diversity 10
Assessing among-collection genetic differentiation 10
Effective population size 11
Results/Discussion 12
Conclusions 13
Acknowledgements 14
Literature Cited 15
Tables 19

Executive Summary

Nine spawning populations of sockeye (Oncorhynchus nerka) salmon have been identified in Washington, including stocks in the Lake Wenatchee basin (SaSI 5800) (Washington Department of Fisheries et al. 1993). Lake Wenatchee sockeye are classified as an Evolutionary Significant Unit (ESU), and consists of sockeye salmon that spawn primarily in tributaries above Lake Wenatchee (the White River, Napeequa River, and Little Wenatchee Rivers). Since 1990, the Wenatchee Sockeye Program has released juveniles into Lake Wenatchee to supplement natural production of sockeye salmon in the basin. The program's broodstock are predominantly natural-origin sockeye adults returning to the Wenatchee River captured at Tumwater Dam (Rkm 52.0), where a netpen system is used to house both maturing adults and juveniles prior to release into Lake Wenatchee to over-winter.

Previous genetic studies have generally found a lack of concordance between population genetic relationships and their geographic distributions. These studies indicate that the nearest geographic neighbors of sockeye salmon populations are not necessarily the most genetically similar. Specifically for the Columbia River Basin, sockeye from Lake Wenatchee, Okanogan River, and Redfish Lake may be more closely related to a population from outside the Columbia River (depending on marker used) then to each other.

In this study we investigated the temporal and spatial genetic structure of Lake Wenatchee sockeye collections, without regard to sockeye populations outside of the Lake Wenatchee area. Our primary objective here was to determine if the Wenatchee Sockeye Program affected the natural Lake Wenatchee sockeye population. More specifically, we were tasked to determine if the genetic composition of Lake Wenatchee sockeye population had been altered by a supplementation program that was based on the artificial propagation of a small subset of that population. Using microsatellite DNA allele frequencies, we investigated population differentiation between temporally replicated collections of natural-origin Lake Wenatchee sockeye and program broodstock. We analyzed thirteen collections of Lake Wenatchee sockeye (Table 1), eight temporally replicated collections of natural-origin Lake Wenatchee sockeye ($\mathrm{N}=786$) and five temporally replicated collections of Wenatchee Sockeye Program broodstock ($\mathrm{N}=248$). Paired natural - broodstock collections were available from years 2000, 2001, 2004, 2006, and 2007.

Conclusions

We observed that allele frequency distributions were consistent over time, irrespective of collection origin, resulting in small and statistically insignificant measures of genetic differentiation among collections. We interpreted these results to indicate no year-to-year differences in allele frequencies among natural-origin or broodstock collections.
Furthermore, there were no observed difference between pre- and post-supplementation collections. Therefore, we accepted our null hypothesis that the allele frequencies of the broodstock collections equaled the allele frequencies of the natural collections, which
equaled the allele frequency of the donor population. Given the small differences in genetic composition among collections, the genetic model for estimating N_{e} produced estimates with extremely large variances, preventing the observation of any trend in N_{e}.

Introduction

A report titled "Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Hatchery Programs" was prepared July 2005 by Andrew Murdoch and Chuck Peven for the Chelan PUD Habitat Conservation Plan's Hatchery Committee. This report outlined 10 objectives to be applied to various species assessing the impact (positive or negative) of hatchery operations mitigating the operation of Rock Island Dam. This current study pertains only to Lake Wenatchee sockeye and objective 3:

> Determine if genetic diversity, population structure, and effective population size have changed in natural spawning populations as a result of the hatchery program. Additionally, determine if hatchery programs have caused changes in phenotypic characteristics of natural populations.

In order to evaluate cause and effect of hatchery supplementation, WDFW Molecular Genetics Lab surveyed genetic variation of Lake Wenatchee sockeye. The conceptual approach for this project follows that of a parallel study regarding the Wenatchee River spring Chinook supplementation program (Blankenship et al. 2007). We determined the genetic diversity present in the Lake Wenatchee sockeye population by analyzing temporally replicated collections spanning 1989-2007, which included collections from before and following the inception of the Wenatchee Sockeye Program. Documenting the genetic composition of the Lake Wenatchee sockeye population is necessary to assess the effect of the hatchery program on the Lake Wenatchee population. In addition, this work provides a genetic baseline for future projects requiring genetic data. See study objectives below for specific details about how this project addresses Murdoch and Peven (2005) objective 3.

Lake Wenatchee Sockeye Salmon

Nine spawning populations of sockeye (Oncorhynchus nerka) salmon have been identified in Washington (Washington Department of Fisheries et al. 1993): 1) Baker

River, 2) Ozette Lake, 3) Lake Pleasant, 4) Quinault Lake, and 5) Okanogan River (classified as native stock); 6) Cedar River (classified as non-native stock); 7) Lake Wenatchee, classified as mixed stock); 8) Lake Washington/Lake Sammamish tributaries; and 9) Lake Washington beach spawners (classified as unknown origin). Chapman et al. (1995) listed four additional spawning aggregations of sockeye salmon that appear consistently in Columbia River tributaries: the Methow, Entiat, and Similkameen Rivers; and Icicle Creek in the Wenatchee River drainage.

Located in north central Washington, the Wenatchee River basin drains a portion of the eastern slope of the Cascade Mountains, including high mountainous regions of the Cascade crest. The headwater area of the Wenatchee River is Lake Wenatchee, a typical low productivity oligotrophic or ultra-oligotrophic sockeye salmon nursery lake (Allen and Meekin 1980, Mullan 1986, Chapman et al. 1995). Sockeye salmon bound for Lake Wenatchee enter the Columbia River in April and May and arrive at Lake Wenatchee in late July to early August (Chapman et al. 1995; Washington Department of Fisheries et al. 1993). The run timing of Lake Wenatchee sockeye salmon, classified as an Evolutionary Significant Unit (ESU), appears to have become earlier by 6-30 days during the past 70 years (Chapman et al. 1995; Quinn and Adams 1996). Additionally, scale pattern analysis suggests Wenatchee sockeye migrate past Bonneville Dam earlier than the sockeye bound for the Okanogan River (Fryer and Schwartzberg 1994). The Wenatchee population spawns from mid-September through October in the Little Wenatchee, White, and Napeequa Rivers above Lake Wenatchee (Washington Department of Fisheries et al. 1993), peaking in late September (Chapman et al. 1995). Limited beach spawning is believed to occur in Lake Wenatchee (L. Lavoy pers. com.; Mullan 1986), although Gangmark and Fulton (1952) reported two lakeshore seepage areas in Lake Wenatchee that were used by spawning sockeye salmon. Sockeye salmon fry enter Lake Wenatchee between March and May (Dawson et al. 1973), and typically rear in the lake for one year before leaving as smolts (Gustafson et al. 1997; Peven 1987).

Both the physical properties of the habitat and ecological/biological factors of the sockeye populations differ between the Lake Wenatchee ESU and the geographically
proximate Okanogan ESU. For example: 1) Different limnology is encountered by sockeye salmon in Lakes Wenatchee and Osoyoos; 2) Lake Wenatchee sockeye predominantly return at ages four and five (a near absence of 3-year-olds), where a large percentage of 3-year-olds return to the Okanogan population; and 3) the apparent one month separation in juvenile outmigration-timing between Okanogan- and Wenatcheeorigin fish (Gustafson et al. 1997 and references therein).

Sockeye Artificial Propagation In Lake Wenatchee

The construction of Grand Coulee Dam completely blocked fish passage to the upper Columbia River, and 85\% of sockeye salmon passing Rock Island Dam between 1935 and 1936 were estimated to be from natural stocks bound for areas up-river to Grand Coulee Dam (Mullan 1986; Washington Department of Fisheries et al. 1938). To compensate for loss of habitat resulting from Grand Coulee Dam, the federal government initiated the Grand Coulee Fish-Maintenance Project (GCFMP) in 1939 to maintain fish runs in the Columbia River above Rock Island Dam. Between 1939 and 1943, all sockeye salmon entering the mid-Columbia River were trapped at Rock Island Dam, and over 32,000 mixed Lake Wenatchee, Okanogan River, and Arrow Lake adult sockeye salmon were released into Lake Wenatchee (Gustafson et al. 1997 Appendix Table D-2). In addition to adult relocation, between 1941 and 1969 over 52.8 million fry descended from original spawners collected at Rock Island and Bonneville Dams, were released into Lake Wenatchee (Gustafson et al. 1997 Appendix Table D-2).

No releases of artificially-reared sockeye salmon occurred in the Wenatchee watershed during the years 1970 to 1989 (Gustafson et al. 1997 Appendix Table D-2). Since 1990, the Wenatchee Sockeye Program has released juveniles into Lake Wenatchee to supplement natural production of sockeye salmon in the basin. Sockeye adults returning to the Wenatchee River are captured at Tumwater Dam (Rkm 52.0) and transferred to Lake Wenatchee net pens until mature. The Wenatchee Sockeye Program goals are 260 adults with an equal sex ratio, $<10 \%$ hatchery-origin returns (identified by coded wire tags), and the adults removed for broodstock account for $<10 \%$ of the run size. Fish are spawned at Lake Wenatchee and their gametes are taken to Rock Island Fish Hatchery

Complex (i.e., Eastbank) for fertilization and incubation. Fry are returned to the Lake Wenatchee net -pens after they are large enough to be coded wire tagged, and are housed in the pens until fall (one year after spawning), when they are liberated into the lake to over-winter. For brood years 1991 - 2004 an average of 218,683 (std. dev. $=71,090$) pen-reared Lake Wenatchee-origin juvenile sockeye salmon have been released yearly into Lake Wenatchee.

Previous Genetic Studies

Protein (allozyme) variation - Surveying genetic variation at 12 allozyme loci, Utter et al. (1984) reported moderate population structure among 16 sockeye collections from southeast Alaska through the Columbia River Basin, including Okanogan and Wenatchee stocks, with an apparent genetic association between upper Fraser River and Columbia River sockeye salmon. Winans et al. (1996) surveyed variation at 55 allozyme loci for 25 sockeye salmon and two kokanee collections from 21 sites in Washington, Idaho, and British Columbia, and reported the lowest level of allozyme variability of any species of Pacific salmon and a highest level of inter-population differentiation. Furthermore, these authors reported that there was no clear relationship between geographic and genetic differentiation among the populations within there study. Other studies corroborate the results of Winans et al. (1996), finding a lack of discernible geographic patterning for sockeye salmon populations in British Columbia, Alaska, and Kamchatka (Varnavskaya et al. 1994, Wood et al. 1994, Wood 1995). These studies indicate that the nearest geographic neighbors of sockeye salmon populations are not necessarily the most genetically similar, which contrasts with the other Pacific salmon species that exhibit concordance between geographic and genetic differentiation (Utter et al. 1989, Winans et al. 1994, Shaklee et al. 1991). As part of the comprehensive status review of west coast sockeye salmon (Gustafson et al. 1997), NMFS biologists collected new allozyme genetic information for 17 sockeye salmon populations and one kokanee population in Washington and combined these data for analysis with the existing Pacific Northwest sockeye salmon and kokanee data from Winans et al. (1996). Results of the updated study were consistent with Winans et al. (1996), with no clear concordance between geographic and genetic distances. Sockeye salmon from Lake Wenatchee, Redfish Lake,

Ozette Lake, and Lake Pleasant are very distinct from other collections in the study, and Columbia River populations were not necessarily most closely related to each other. Gustafson et al. (1997) also examined between-year variability within a collection location and found low levels of statistical significance among the five Lake Wenatchee collections included in the study (For 10 pair-wise comparisons using sum-G test, five were statistically significant). Lake Wenatchee brood year 1987 accounted for three of the significant comparisons, which were driven by unusually high frequencies of two allozyme alleles (ALAT*95 and ALAT*108) (Winans et al. 1996). Nevertheless, Gustafson et al. (1997) conclude that, in general, temporal variation at a locale was considerably less than between-locale variation.

Nucleic acid variation - Beacham et al. (1995) reported levels of variation in nuclear DNA of O. nerka using minisatellite probes. They analyzed 10 collections, including a sample from Lake Wenatchee. Cluster analysis showed the Lake Wenatchee sample was different from all the other collections, including those from the Columbia River. Using a similar molecular technique, Thorgaard et al. (1995) examined the use of multi-locus DNA fingerprinting (i.e., banding patterns) to discriminate among 14 sockeye salmon and kokanee populations. Dendrograms based on analysis of banding patterns produced different genetic affinity groups depending on the probes used. While none of the five DNA probes showed a close relationship between Lake Wenatchee and Okanogan River sockeye salmon, if information from all probes were combined, O. nerka from Redfish Lake, Wenatchee, and Okanogan were separate from kokanee of Oregon and Idaho and a sockeye salmon sample from the mid-Fraser River.

Study Objective

We documented temporal variation in genetic diversity (i.e., heterozygosity and allelic diversity), and investigated population differentiation between temporally replicated collections of natural-origin Lake Wenatchee sockeye and program broodstock, using microsatellite DNA allele frequencies. Temporally replicated collections from the same location can also be used to estimate effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$. If populations are "ideal", the census size of a population is equal to the "genetic size" of the population.

Yet, numerous factors lower the "genetic size" below census, such as, non-equal sex ratios, changes in population size, and variance in the numbers of offspring produced from parent pairs. N_{e} is thought to be between 0.10 and 0.33 of the estimated census size (Bartley et al. 1992; RS Waples pers. comm.), although numerous observations differ from this general rule. N_{e} can be calculated directly from demographic data, or inferred from observed differences in genetic variance over time. Essentially, when calculated from genetic data, N_{e} is the estimated size of an "ideal" population that accounts for the genetic diversity changes observed, irrespective of abundance.

We will address the hypotheses associated with Objective 3 in Murdock and Peven (2005) using the following four specific tasks:

Task 1 - Document the observed genetic diversity.
Task 2 - Test for population differentiation among Lake Wenatchee collections and the associated supplementation program.

Task 2 was designed to address two hypotheses listed as part of Objective 3 in Murdoch and Peven (2005):

- Ho: Allele frequency Hatchery $=$ Allele frequency ${ }_{\text {Naturally produced }}=$ Allele frequency ${ }_{\text {Donor pop }}$.
- Ho: Genetic distance between subpopulations Year $^{x}={\text { Genetic distance between subpopulations }{ }_{\text {Year }} \mathrm{y}}$ Murdoch and Peven (2005) proposed these two hypotheses to help evaluate supplementation programs through a "Conceptual Process" (Figure 5 in Murdoch and Peven 2005). There are two components to the first hypothesis, which must be considered separately for Lake Wenatchee sockeye. The first component involves comparisons between natural-origin populations from Lake Wenatchee to determine if there have been changes in allele frequencies through time starting with the donor population. Documenting a change does not necessarily indicate that the supplementation program has directly affected the natural-origin fish, as additional tests would be necessary to support that hypothesis. The intent of the second component is to determine if the hatchery produced populations have the same genetic composition as the naturally produced populations.

Task 3 - Calculate N_{e} using the temporal method for multiple samples from the same location to document trend.

Task 4-Compare N_{e} estimates with trend in census size for Lake Wenatchee sockeye.

Methods and Materials

Sampling

Thirteen collections of Lake Wenatchee sockeye were analyzed, eight temporally replicated collections of natural Lake Wenatchee sockeye ($\mathrm{N}=786$) and five temporally replicated collections of Wenatchee Sockeye Program broodstock (N=248) (Table 1). Paired natural - broodstock collections were available from years 2000, 2001, 2004, 2006, and 2007 (Table 1). All collections were made at Tumwater Dam on the Wenatchee River. Note that collections classified as broodstock were predominantly natural-origin sockeye. A majority of the genetic samples were from dried scales. The tissue collections from 2006 and 2007 were fin clips stored immediately in ethanol after collection. DNA was extracted from stored tissue using Nucleospin 96 Tissue following the manufacturer's standard protocol (Macherey-Nagel, Easton, PA, U.S.A.).

Laboratory Analysis

Polymerase chain reaction (PCR) amplification was performed using 17 fluorescently end-labeled microsatellite marker loci, One 2 (Scribner et al 1996) One 100, 101, 102, 105, 108, 110, 114, and 115 (Olsen et al. 2000), Omm 1130, 1135, 1139, 1142, 1070, and 1085 (Rexroad et al. 2001), Ots 3M (Banks et al. 1999) and Ots 103 (Small et al. 1998). PCR reaction volumes were $10 \mu \mathrm{~L}$, with the reaction variables being $2 \mu \mathrm{~L} 5 \mathrm{x}$ PCR buffer (Promega), $0.6 \mu \mathrm{~L} \mathrm{MgCl}_{2}(1.5 \mathrm{mM})$ (Promega), $0.2 \mu \mathrm{~L} 10 \mathrm{mM} \mathrm{dNTP}$ mix (Promega), and $0.1 \mu \mathrm{~L}$ Go Taq DNA polymerase (Promega). Loci were amplified as part of multiplexed sets, so primer molarities and annealing temperatures varied. Multiplex one had an annealing temperature of $55^{\circ} \mathrm{C}$, and used 0.09 Molar (M) One 108, 0.06 M One 110, and 0.11 M One 100. Multiplex two had an annealing temperature of $53^{\circ} \mathrm{C}$, and used 0.08 M One 102, 0.1 M One 114, and 0.05 M One 115. Multiplex three had an annealing temperature of $55^{\circ} \mathrm{C}$, and used 0.08 M One 105 and 0.07 M Ots 103 . Multiplex four had
an annealing temperature of $53^{\circ} \mathrm{C}$, and used 0.09 M Omm 1135 and 0.08 M Omm 1139 . Multiplex five had an annealing temperature of $60^{\circ} \mathrm{C}$, and used $0.2 \mathrm{M} \mathrm{Omm} \mathrm{1085}$, Omm 1070, and 0.05 M Ots 3 M . Multiplex six had an annealing temperature of $48^{\circ} \mathrm{C}$, and used 0.06 M One 2, $0.08 \mathrm{M} \mathrm{Omm} \mathrm{1142} ,\mathrm{and} 0.08 \mathrm{M} \mathrm{Omm} \mathrm{1130}$.One 101 was run in isolation with a primer molarity of 0.06 . Thermal cycling was conducted on either PTC200 (MJ Research) or GeneAmp 9700 thermal cyclers as follows: $94^{\circ} \mathrm{C}(2 \mathrm{~min}) ; 30$ cycles of $94^{\circ} \mathrm{C}$ for 15 sec ., 30 sec . annealing, and $72^{\circ} \mathrm{C}$ for 1 min .; a final $72^{\circ} \mathrm{C}$ extension and then a $10^{\circ} \mathrm{C}$ hold. PCR products were visualized by denaturing polyacrylamide gel electrophoresis on an ABI 3730 automated capillary analyzer (Applied Biosystems). Fragment analysis was completed using GeneMapper 3.7 (Applied Biosystems).

Genetic data analysis

Assessing within collection genetic diversity - Heterozygosity measurements were reported using Nei's (1987) unbiased gene diversity formula (i.e., expected heterozygosity) and Hedrick's (1983) formula for observed heterozygosity. Both tests were implemented using the microsatellite toolkit (Park 2001). For each locus and collection FSTAT version 2.9.3.2 (Goudet 1995) was used to assess Hardy-Weinberg equilibrium, where deviations from the neutral expectation of random associations among alleles were calculated using a randomization procedure. Alleles were randomized among individuals within collections (4160 randomizations for this dataset) and the $\mathrm{F}_{\text {IS }}$ (Weir and Cockerham 1984) calculated for the randomized datasets were compared to the observed $\mathrm{F}_{\text {IS }}$ to obtain an unbiased estimation of the probability that the null hypothesis was true. The 5% nominal level of statistical significance was adjusted for multiple tests (Rice 1989). Genotypic linkage disequilibrium was calculated following Weir (1979) using GENETIX version 4.05 (Belkhir et al. 1996). Statistical significance of linkage disequilibrium results was assessed using a permutation procedure implemented in GENETIX for each locus by locus combination within each collection.

Assessing among collection genetic differentiation - The temporal stability of allele frequencies was assessed by the randomization chi-square test implemented in FSTAT version 2.9.3.2 (Goudet 1995). Multi-locus genotypes were randomized between
collections. The G-statistic for observed data was compared to G-statistic distributions from randomized datasets (i.e., null distribution of no differentiation between collections). Population differentiation was also investigated using pairwise estimates of $\mathrm{F}_{\text {ST }}$. Multi-locus estimates of pairwise $\mathrm{F}_{\text {ST }}$, estimated by a "weighted" analysis of variance (Weir and Cockerham, 1984), were calculated using GENETIX version 4.05 (Belkhir et al.1996). F_{ST} was used to quantify population structure, the deviation from statistical expectations (i.e., excess homozygosity) due to non-random mating between populations. To determine if the observed F_{ST} estimate was consistent with statistically expectations of no population structure, a permutation test was implemented in GENETIX (1000 permutations).

Effective population size $\left(\mathbf{N}_{\mathbf{e}}\right)$ - Estimates of the effective population size were obtained using a multi-collection temporal method (Waples 1990a). The temporal method assumes that cohorts are used, but we did not decompose the collection year samples into their respective cohorts using age data. Therefore, N_{e} estimates that pertain to individual year classes of breeders are not valid; however the harmonic mean over all samples will estimate an N_{e} that pertains to the time period from which the collections are derived. Comparing samples from years i and j, Waples’ (1990a) temporal method estimates the effective number of breeders ($\left.\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right)$ according to:

$$
\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}=\frac{\mathrm{b}}{2\left(\hat{\mathrm{~F}}-1 / \widetilde{\mathrm{S}}_{\mathrm{i}, \mathrm{j}}\right)}
$$

The standardized variance in allele frequency ($\hat{\mathrm{F}}$) is calculated according to Pollack (1983). The parameter b is calculated analytically from age structure information and the number of years between samples (Tajima 1992). The age-at-maturity information required to calculate b was obtained from ecological data (Hillman et al. 2007). The harmonic mean of sample sizes from years i and j is $\widetilde{\mathrm{S}}_{\mathrm{i}, \mathrm{j}}$. The harmonic mean over all pairwise estimates of $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ is $\widetilde{\mathrm{N}}_{\mathrm{b}}$. SALMONNb (Waples et al. 2007) was used to calculate $\widetilde{\mathrm{N}}_{\mathrm{b}}$.

Results and Discussion

In this section we combine our presentation and interpretations of the genetic analyses. Additionally, this section is organized based on the task list presented in the study plan.

Task 1 - Document the observed genetic diversity.

Substantial genetic diversity was observed over all Lake Wenatchee sockeye collections analyzed (Table 1), with heterozygosity estimates over all loci having a mean of 0.79 . Genetic diversity was consistent with expected Hardy-Weinberg random mating genotypic proportions for all collections. The $\mathrm{F}_{\text {IS }}$ observed for each collection was not statistically significant given the distribution of $\mathrm{F}_{\text {IS }}$ generated using a randomization procedure. Additionally, there were no statistically significant associations observed between alleles across loci (i.e., linkage equilibrium) (data not shown). We concluded from these results that the genetic data from each collection was consistent with statistical expectations for random association of alleles within and between loci. In other words, each collection represents samples from a single gene pool (i.e., populations), and the genetic diversity observed has no detectable technical artifacts or evidence of natural selection.

Task 2 - Test for differentiation among Lake Wenatchee collections and the associated supplementation program.

We explicitly tested the hypothesis of no significant differentiation within natural-origin or broodstock collections from Lake Wenatchee using a randomization chi-square test. The null hypothesis for these tests was that the allele frequencies from two different populations were drawn from the same underlying distribution. We show the results for the pairwise comparisons among eight temporally replicated natural-origin collections from Lake Wenatchee (28 pairwise tests), and report all tests were non-significant (Table 2A). Similarly, for five temporally replicated broodstock collections, 10 of 10 pairwise tests were non-significant (Table 2B). We also tested if natural-origin and broodstock
collections were differentiated from each other over time, and report that 40 of 40 tests were non-significant (Table 2C). The nominal level of statistical significance ($\alpha=0.05$) was adjusted for multiple comparisons using strict Bonferroni correction (Rice 1989). Yet, there are perhaps slight differences between paired natural-broodstock collections. Note that the p-values for comparisons regarding 2006 and 2007 paired collections are lower than for comparisons regarding 2000, 2001, and 2004. The small sample sizes for broodstock collections in 2006 and 2007 may not have been random samples from the Lake Wenatchee sockeye population.

Given the consistencies observed for allele frequency distributions over time, metrics of population structure were expected to be small. This was the case, as the estimated $\mathrm{F}_{\text {ST }}$ over all thirteen collections was 0.0003 . This observed value fell within the distribution of F_{ST} values expected if there were no population structure present (permutation test pvalue 0.12). Analysis of the paired natural-broodstock collections corroborated this result. Pairwise estimates of $\mathrm{F}_{\text {ST }}$ were 0.000 for years 2000, 2001, 2004, and 2007, and 0.002 for 2006. All five estimates were non-significant. Essentially, all 13 sockeye collections could be considered samples from the same population. Given these results, it is valid to combine all collections for statistical analysis. Therefore, we did not calculate genetic distances among any collections, as it is inappropriate to estimate distances that are effectively zero.

Conclusions

We interpret these data to indicate that there appears to be no significant year-to-year differences in allele frequencies among natural-origin or broodstock collections, nor are there observed differences between collections pre- and post-supplementation. As a result, we accept the null hypothesis that the allele frequencies of the broodstock collections equal the allele frequencies of the natural collections, which equals the allele frequency of the donor population. Furthermore, the observed genetic variance that can be attributed to among collection differences was negligible.

Task 3 - Calculate N_{e} using the temporal method for multiple samples from the same location to document trend.

The fundamental parameter for inferring N_{e} using genetic data is the standardized variance in allele frequency ($\hat{\mathrm{F}}$) (Pollack 1983). Methods estimate N_{e} from observed changes in \hat{F} over temporally replicated collections from the same location. Yet, as previously shown, there were no statistically significant differences detected in allele frequencies. The underlying model for estimating N_{e} produced estimates with extremely large variances, given small temporal differences in \hat{F}, which rendered any trend in N_{e} unobservable. Table 3 shows N_{e} estimates calculated using temporally replicated natural collections.

Task 4-Compare N_{e} estimates with trend in census size for Lake Wenatchee sockeye.

See Task 3

Acknowledgements

We would like to thank Jeff Fryer (CRITFC) for providing critical collections of naturalorigin sockeye from Lake Wenatchee. We would like to thank Norm Switzler for collection curation and Ken Warheit and Denise Hawkins for helpful comments regarding this project. This project was funded by Chelan County PUD and the Washington State General Fund.

Literature Cited

Allen RL and Meekin TK (1980) Columbia River sockeye salmon study, 1971-1974. Wash. Dep. Fish. Prog. Rep. 120, 75 p.

Banks MA, Blouin MS, Baldwin BA, Rashbrook VK, Fitzgerald HA, Blankenship SM, Hedgecock D (1999) Isolation and inheritance of novel microsatellites in chinook salmon (Oncorhynchus tschawytscha). Journal of Heredity, 90:281-288.

Bartley D, Bentley B, Brodziak J, Gomulkiewicz R, Mangel M, and Gall GAE (1992) Geographic variation in population genetic structure of chinook salmon from California and Oregon. Fish. Bull., U.S. 90:77-100.

Blankenship SM, Von Bargen J, Warheit KI, and Murdoch AR (2007) Assessing the Genetic Diversity of Natural Chiwawa River Spring Chinook Salmon and Evaluating the Effectiveness of its Supportive Hatchery Supplementation Program. WDFW report to Chelan County PUD, March 2007.

Belkhir K, Borsa P, Chikhi L et al (1996) GENETIX, logiciel sous Windows TM pour la Génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France).

Chapman D, Peven C, Giorgi A, Hillman T, and Utter F (1995) Status of spring chinook salmon in the mid-Columbia River. Don Chapman Consultants, Inc., 477 p. (Available from Don Chapman Consultants, 3653 Rickenbacker, Ste. 200, Boise, ID 83705.)

Crawford BA (1979) The origin and history of trout brood stocks of the Washington Department of Game. Wash. State Game Dep., Fish. Res. Rep. 76 p.

Dawson JJ, Thorne RE, and Traynor JJ (1973) Acoustic surveys of Lake Wenatchee and Lake Osoyoos in 1973. Final Report, Service Contr. 526, to Wash. Dep. Fish., by Fish. Res. Inst., Coll. of Fish., Univ. Washington, Seattle, WA, 18 p.

Fryer JK and Schwartzberg M (1994) Identification of Columbia Basin sockeye salmon stocks using scale pattern analyses in 1993. Columbia River Inter-Tribal Fish Commission, Tech. Rep. 94-2, 39 p.

Gangmark HA and Fulton LA (1952) Status of Columbia blueback salmon runs, 1951. U. S. Fish Wildl. Serv. Spec. Sci. Rep. 74, 29 p.

Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86: 485-486.

Gustafson RG, Wainwright TC, Winans GA, Waknitz FW, Parker LT, and Waples RS (1997) Status review of sockeye salmon from Washington and Oregon. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-33, 282 p.

Hedrick PW (1983) Genetics of Populations, Science Books International, Boston
Hillman T, Miller M, Peven C, Tonseth M, Miller T, Truscott K, and Murdoch A (2007) Monitoring and Evaluation of the Chelan County PUD Hatchery Programs: 2007 Annual Report.

Knutzen D (1995) Letter to R. Gustafson, NMFS, from D. Knutzen, WDFW, re. Historical kokanee planting records for Lake Wenatchee, Lake Pleasant, Lake Ozette, Lake Shannon, and Baker Lake from 1981-1994, dated 17 July 1995. 1 p. plus attachment. (Available from West Coast Sockeye Salmon Administrative Record, Environmental and Technical Services Division, Natl. Mar. Fish. Serv., 525 N. E. Oregon Street, Portland, OR 97232.)

Mullan JW (1986) Determinants of sockeye salmon abundance in the Columbia River, 1880's-1982: A review and synthesis. U.S. Fish Wildl. Serv. Biol. Rep. 86(12), 135 p .

Murdoch AR and Peven C (2005) Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Hatchery Programs, Final Report.

Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-590.

Olsen JB, Wilson SL, Kretschmer EJ, Jones KC, Seeb JE (2000) Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon. Molecular Ecology 9, 2185-2187.

Park SDE (2001) Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection [Ph.D. thesis], University of Dublin

Peven CM (1987) Downstream migration timing of two stocks of sockeye salmon on the Mid-Columbia River. Northwest Sci. 61(3):186-190.

Pollak E (1983) A new method for estimating the effective population size from allele frequency changes. Genetics 104, 531-548.

Quinn TP and Adams DJ (1996) Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77:1151-1162.

Rexroad CE, Coleman RL, Martin AM, Hershberger WK, Killefer J (2001) Thirty-five polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Animal Genetics, 32:317-319.

Rice WR, (1989) Analyzing tables of statistical tests. Evolution. 43:223-225.
Scribner KT, Gust JR, Fields RL (1996) Isolation and characterization of novel salmon microsatellite loci: cross-species amplification and population genetic applications. Candian Journal of Fisheries and Aquatic Sciences. 53, 833-841.

Shaklee JB, Klaybor DC, Young S, and White BA (1991) Genetic stock structure of oddyear pink salmon, Oncorhynchus gorbuscha (Walbaum), from Washington and British Columbia and potential mixed-stock fisheries applications. J. Fish. Biol. 39(A):21-34.

Small MP, Beacham TD, Withler RE, and Nelson RJ (1998) Discriminating coho salmon (Oncorhynchus kisutch) populations within the Fraser River, British Columbia. Molecular Ecology 7: 141-155.

Tajima F (1992) Statistical Method for Estimating the Effective Population Size in Pacific Salmon. J Hered 83, 309-311.

Utter F, Aebersold P, Helle J, and Winans G (1984) Genetic characterization of populations in the southeastern range of sockeye salmon. In J. M. Walton and D. B. Houston (editors), Proceedings of the Olympic wild fish conference, p. 17-31. Fisheries Technology Program, Peninsula College, Port Angeles, WA.

Utter F, Milner G, Stahl G, and Teel D (1989) Genetic population structure of chinook salmon, Oncorhynchus tshawytscha, in the Pacific Northwest. Fish. Bull., U.S. 87:239-264.

Varnavskaya NV, Wood CC, and Everett RJ (1994) Genetic variation in sockeye salmon (Oncorhynchus nerka) populations of Asia and North America. Can. J. Fish. Aquat. Sci. 51(Suppl. 1):132-146.

Waples RS (1990a) Conservation genetics of Pacific salmon. III. Estimating effective population size. Journal of Heredity 81:277-289

Waples RS, Masuda M, Pella J (2007) SALMONNb: a program for computing cohortspecific effective population sizes $\left(\mathrm{N}_{\mathrm{b}}\right)$ in Pacific salmon and other semelparous species using the temporal method. Molecular Ecology Notes 7, 21-24.

Washington Department of Fisheries (WDF), Washington Department of Game (WDG), and United States Bureau of Fisheries (USBF) (1938) A report on the preliminary investigations into the possible methods of preserving the Columbia River salmon and steelhead at the Grand Coulee Dam. Wash. Dep. Fish, Olympia, WA, 120 p.

Washington Department of Fisheries (WDF), Washington Department of Wildlife (WDW), and Western Washington Treaty Indian Tribes (WWTIT) (1993) 1992 Washington State salmon and steelhead stock inventory (SASSI). Wash. Dep. Fish Wildl., Olympia, WA, 212 p. plus 5 regional volumes.

Washington Department of Fish and Wildlife (WDFW) (1996) Letter to M. Schiewe, NMFS, from R. Lincoln, Assistant Director, Fish Management Program, Washington Department of Fish and Wildlife, dated 12 July 1996. 3 p. plus appendix. (Available from West Coast Sockeye Salmon Administrative Record, Environmental and Technical Services Division, Natl. Mar. Fish. Serv., 525 N. E. Oregon Street, Portland, OR 97232.)

Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35:235-254.
Weir BS, Cockerham CC (1984) Estimating F-Statistics for the Analysis of PopulationStructure. Evolution 38:1358-1370.

Winans GA, Aebersold PB, Urawa S, and Varnavskaya NV (1994) Determining continent of origin of chum salmon (Oncorhynchus keta) using genetic stock identification techniques: status of allozyme baseline in Asia. Can. J. Fish. Aquat. Sci. 51 (Suppl. 1):95-113.

Winans GA, Aebersold PB, and Waples RS (1996) Allozyme variability of Oncorhynchus nerka in the Pacific Northwest, with special consideration to populations of Redfish Lake, Idaho. Trans. Am. Fish. Soc. 205:645-663.

Wood CC, Riddell BE, Rutherford DT, and Withler RE (1994) Biochemical genetic survey of sockeye salmon (Oncorhynchus nerka) in Canada. Can. J. Fish. Aquat. Sci. 51(Suppl. 1):114-131.

Wood CC (1995) Life history variation and population structure in sockeye salmon. In J. L. Nielsen (editor), Evolution and the aquatic ecosystem: defining unique units in population conservation. Am. Fish. Soc. Symp. 17:195-216.

Table 1 Lake Wenatchee sockeye collections analyzed. MNA is the mean number of alleles per locus, Hz is unbiased heterozygosity, Obs Hz is observed heterozygosity, and HW is the p-value of the null hypothesis of random association of alleles (i.e., Hardy - Weinberg equilibrium). For reference, the nominal level of statistical significance at $\alpha=0.05$ is 0.0002 after correction for multiple tests.

	Collection Year Code	Tissue Type	Source	N	MNA	Hz	Obs Hz	HW
1989	89^{1}	Scales	Natural	96	14.35	0.792	0.791	0.424
1990	90^{1}	Scales	Natural	96	13.19	0.793	0.779	0.131
2000	00 AAE	Scales	Broodstock	96	12.31	0.787	0.776	0.213
2000	00^{1}	Scales	Natural	96	11.76	0.801	0.826	0.868
2001	01 AAS	Scales	Broodstock	53	9.47	0.788	0.793	0.392
2001	01^{1}	Scales	Natural	96	14.35	0.786	0.794	0.456
2002	02^{1}	Scales	Natural	96	14.53	0.794	0.777	0.780
2004	04^{1}	Scales	Natural	96	14.65	0.798	0.803	0.704
2004	$04 A A V$	Scales	Broodstock	43	14.35	0.796	0.795	0.051
2006	$06 C N$	Tissue	Broodstock	38	14.59	0.793	0.785	0.688
2006	$06 C O$	Tissue	Natural	96	14.53	0.806	0.803	0.408
2007	$07 E E$	Tissue	Broodstock	18	14.00	0.790	0.790	0.221
2007	$07 E F$	Tissue	Natural	96	14.35	0.789	0.800	0.347

[^18]Table 2 Allelic differentiation for Lake Wenatchee sockeye collections. A single analysis tested (pairwise) the allelic differentiation between all thirteen collections; however p-values for G-statistics are partitioned in the table by A) natural-origin, B) broodstock, and C) natural versus broodstock. Underlined values are for paired naturalbroodstock collections from the same year. For reference, the nominal level of statistical significance at $\alpha=0.05$ is 0.0006 after correction for multiple tests. No significant values were observed.
A) Natural-Origin Collections

	89	90	00	01	02	04	06 CO
89		0.257	0.359	0.531	0.331	0.127	0.031
90		0.953	0.148	0.753	0.903	0.077	0.283
00			0.328	0.527	0.607	0.604	0.400
01				0.209	0.081	0.127	0.093
02					0.085	0.707	0.235
04						0.312	0.577
06 CO							0.435
07 EF							

B) Broodstock Collections

	00 AAE	01 AAS	04 AAV	06 CN
0.189	0.090	0.008	0.058	
00 AAE	0.189	0.122	0.020	0.116
01AAS			0.008	0.031
04AAV				0.326
06CN				
07 EE				

C) Natural vs. Broodstock

	89	90	00	01	02	04	06 CO	07 EF
00AAE	0.027	0.309	$\underline{0.572}$	0.018	0.041	0.012	0.093	0.040
01AAS	0.115	0.471	0.160	$\underline{0.219}$	0.519	0.049	0.654	0.133
04AAV	0.136	0.219	0.210	0.423	0.208	$\underline{0.328}$	0.037	0.153
06CN	0.029	0.004	0.053	0.007	0.022	0.004	$\underline{0.019}$	0.001
$\underline{07 E E}$	0.099	0.229	0.053	0.015	0.093	0.178	0.090	$\underline{0.037}$

Table 3 Estimation of N_{e} for temporally replicated natural-original sockeye collections. Above the diagonal are pairwise estimates of N_{e}, where negative values mean sampling variance can account for genetic variance observed (i.e., genetic drift unnecessary).
Below the diagonal are variances for pairwise estimates of N_{e}. Absent variance values (denoted by -) were too large for SalmonNb to display.

Collection	89	90	00	01	02	04	06 CO	07 EF
89		-3936.6	-1414	-2636.3	671.4	1871.1	1066.1	1951.2
90	$2.59 \mathrm{E}+09$		-1490.3	3649.1	-31144	-6808.4	817.6	93190.2
00	$1.40 \mathrm{E}+09$	$4.45 \mathrm{E}+09$		-592.2	-6842.2	-667.1	-1736.9	-1350.1
01	$1.21 \mathrm{E}+09$	$1.47 \mathrm{E}+09$	$2.33 \mathrm{E}+09$		977.1	6160.4	387.8	2531.5
02	$1.91 \mathrm{E}+09$	$1.33 \mathrm{E}+09$	$1.16 \mathrm{E}+09$	$2.29 \mathrm{E}+09$		1495.6	-848.5	3213.6
04	$2.21 \mathrm{E}+09$	$3.62 \mathrm{E}+09$	$4.08 \mathrm{E}+09$	$1.27 \mathrm{E}+09$	$1.14 \mathrm{E}+09$		896.6	2155.3
06 CO	$1.34 \mathrm{E}+09$	$1.39 \mathrm{E}+09$	$1.73 \mathrm{E}+09$	-	$4.51 \mathrm{E}+09$	$1.2 \mathrm{E}+09$		3278.6
07 EF	$2.15 \mathrm{E}+09$	$1.51 \mathrm{E}+09$	$1.18 \mathrm{E}+09$	$1.68 \mathrm{E}+09$	-	$1.36 \mathrm{E}+09$	$2.65 \mathrm{E}+09$	

APPENDIX I

Genetic Diversity of Natural Chiwawa River Spring Chinook Salmon, 2007.

Assessing the Genetic Diversity of Natural Chiwawa River Spring Chinook Salmon and Evaluating the Effectiveness of its Supportive Hatchery Supplementation Program

Developed for
Chelan County PUD
and the
Habitat Conservation Plan's Hatchery Committee

Developed by
Scott M. Blankenship, Jennifer Von Bargen, and Kenneth I. Warheit
WDFW Molecular Genetics Laboratory
Olympia, WA
and
Andrew R. Murdoch
Supplementation Research Team
Wenatchee, WA

March 30, 2007

Table of Contents

Executive Summary 3
Introduction
Reasons for evaluation project 7
History of artificial propagation 8
Previous genetic analyses 10
Study objectives 12
Methods
Tissue collection 13
Laboratory Analysis 13
Genetic Analysis
Assessing within population genetic diversity 14
Within- and among-population genetic differentiation 15
Effective population size 17
Individual assignment 18
Results/Discussion 19
Conclusions 44
Acknowledgements 46
Literature Cited 47
Figures 52
Tables 59

Executive Summary

The main objective of this study was to determine the potential impacts of the Chiwawa River Supplementation Program on natural spring Chinook in the upper Wenatchee system. We did this by investigating population differentiation between temporally replicated Chiwawa River natural and hatchery samples from the Wenatchee River watershed using microsatellite DNA allele frequencies and the statistical assignment of individual fish to specific populations. Additionally, to assess the genetic effect of the hatchery program, we investigated the relationship between census and effective population sizes using collections obtained before and after the supplementation program. In this summary, we briefly describe the salient results contained within this report; however, each "Task" within the Results/Discussion section below contains extended coverage for each topic along with an expanded interpretation of each result.

Overall, we observed substantial genetic diversity within collections, with heterozygosities equal to roughly 80%, over thirteen microsatellite markers. Microsatellite allele frequencies among temporally replicated collections from the same population (i.e., location) were variable, resulting in significant genetic differentiation among these collections. However, these difference are likely the result of salmon life history in this area, as four-year-old Chinook comprise a majority of returns each year. That is, the genetic tests are detecting the differences of contributing parents from each cohort, rather than a hatchery effect.

Analysis of Chiwawa River Collections

To assess the multiple competing hypotheses regarding population differentiation within and among Chiwawa River collections, we found it necessary to organized the Chiwawa genetic data into three data sets: (1) fish origin (hatchery versus natural), (2) spawning location (hatchery broodstock versus in-river (natural) spawners), and (3) four "treatment" groups (1. hatchery-origin hatchery broodstock, 2. hatchery-origin natural spawner, 3. natural-origin natural spawner, and 4. natural-origin hatchery broodstock). We conducted separate analyses using each of the three data sets, with each analysis
touching on some aspect of the components necessary to move through the Conceptual Process outlined by Murdoch and Peven (2005).

Origin Dataset - We report that allele frequencies within and between natural- and hatchery-origin collections are significantly different, but there does not appear to be a robust signal indicating that the recent natural-origin collections have diverged greatly from the pre- or early post-supplementation collections. Genetic drift will occur in all populations, but does not appear to be a major factor affecting allele frequencies within the Chiwawa collections.

Spawning Location Dataset - There are significant allele frequency differences within and between hatchery broodstock and natural spawner collections. However, in recent years the allele frequency differences between the hatchery broodstock and natural spawner collections have declined. Furthermore, based on linkage disequilibrium, there is a genetic signal that is consistent with increasing homogenization of allele frequencies within hatchery broodstock collections, but a similar homogenization within the natural spawner collection is not apparent. These data suggest that there exists consistent year-to-year variation in allele frequencies among hatchery and natural spawning collections, but there is a trend toward homogenization of the allele frequencies of the natural- and hatchery-origin fish that compose the hatchery broodstock.

Four Treatment dataset - Although there are signals of allelic differentiation among Chiwawa River collections, there are no robust signs that these collections are substantially different from each other. We used two different analyses to measure the degree of genetic variation that exists among individuals and collections within the Chiwawa River. First, we conducted a principal component analysis using all Chiwawa samples with complete genotypes (i.e., no missing alleles from any locus). Although the first two principal component axes account for only 10.5% of the total molecular variance, a substantially greater portion of that variance is among individual fish, regardless of their identity, rather than among hatchery and natural collections. The
variances in principal component scores among individuals are 11 and 13 times greater than the variance in scores among collections.

Secondly, using an Analysis of Molecular Variance (AMOVA), we were able to determine how best to group populations, with "best" being defined as that grouping that accounts for the greatest proportion of among group (i.e., population) variance. Furthermore, by partitioning molecular variance into different hierarchical components, we are able to determine what level accounts for the majority of the molecular variance. The AMOVA results clearly show that nearly all molecular variation, no matter how the data are organized, resides within a collection. The percentage of total molecular variance occurring within collections ranged from 99.68% to 99.74%. These results indicate that the significant differences among collections of Chiwawa fish account for less than one percent of the total molecular variance, and these differences cannot be attributed to fish origin or spawning location.

Effective Population Size $\left(N_{e}\right)$

The contemporary estimate of N_{e} calculated using genetic data combined for Chiwawa natural-origin spawners (NOS) and hatchery-origin spawners (HOS) Chinook is $\mathrm{N}_{\mathrm{e}}=386.8$, which is slightly larger than the pre-hatchery N_{e} we estimated using demographic data from 1989 - 1992. Additionally, the $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio calculated using 386.8 for N_{e} and the arithmetic mean yearly census of NOS and HOS Chinook from 1989 2005 for N is 0.40 . These results suggest the N_{e} has not declined during the period of Chiwawa Hatchery Supplementation Program operation.

Analysis Of Upper Wenatchee Tributary Collections

We compared genetic data for spring Chinook collected from the major spawning aggregates of the Wenatchee River. We observed significant differences in allele frequencies among temporally replicated collections within populations, and among populations within the upper Wenatchee. However, these differences account for a very small portion of the overall molecular variance, and these populations overall are very similar to each other. Of all the populations within the Wenatchee River, the White River
appears to be the most distinct. Yet, this distinction is more a matter of detail than of large significance, as the median $\mathrm{F}_{\text {ST }}$ between White River collections and all other collections (except the Little Wenatchee collection; see Results/Discussion) is less than 1.5% among population variance. We consider the implications of these results in the Conclusion section that follows the Results/Discussion section. Additionally, there is no evidence that the Chiwawa River Supplementation Program has changed the allele frequencies in the Nason Creek and White River populations, despite the presence of hatchery-origin fish in both these systems.

Introduction

Murdoch and Peven (2005) outlined 10 objectives to assess the impact (positive or negative) of hatchery operations mitigating the operation of Rock Island Dam. Two objectives relate to monitoring the genetic integrity of populations:

Objective 3: Determine if genetic diversity, population structure, and effective population size have changed in natural spawning populations as a result of the hatchery program. Additionally, determine if hatchery programs have caused changes in phenotypic characteristics of natural populations.

Objective 5: Determine if the stray rate of hatchery fish is below the acceptable levels to maintain genetic variation between stocks.

This study addresses Objective 3 (above), and documents analyses and results WDFW completed for populations of spring Chinook (Oncorhynchus tshawytscha) in the Wenatchee River watershed. This study was not intended to specifically address Objective 5 (above); however, genetic data provide results relevant to Objective 5. The critical component of Objective 3 is to determine if hatchery supplementation has effected change. Furthermore, change in this context means altering census size and/or genetic marker allele frequencies; we did not attempt to measure changes in fitness. Perhaps a more meaningful rewording of Objective 3 is, "Did the hatchery supplementation program succeed at increasing the census size of a target population while leaving genetic integrity intact?" In order to evaluate cause and effect of hatchery supplementation, we surveyed and compared genetic variation in samples collected before and after potential effects from the Chiwawa Hatchery Supplementation Program. Samples were acquired from the primary spawning aggregates in the upper Wenatchee River watershed: Nason Creek, Little Wenatchee River, White River, and Chiwawa River. Hatchery samples were acquired from programs that could potentially affect genetic composition of Wenatchee stocks, the integrated Chiwawa River stock (local stock), Leavenworth National Fish Hatchery spring Chinook (Carson Stock - non local), and Entiat NFH (Carson Stock - non local). Additionally, the genetic markers used were the Genetic Analysis of Pacific Salmonids (GAPS) (Seeb et al. in review) standardized
microsatellites, so all data from the Wenatchee study will be available for inclusion in the GAPS Chinook coastwide microsatellite baseline.

History of Artificial Propagation

Artificial propagation in the upper Columbia River began in 1899 when hatcheries were constructed on the Wenatchee and Methow rivers (Mullan 1987). These initial operations were small, with the Tumwater Hatchery on the Wenatchee River releasing several hundred thousand fry, and the Methow River hatchery producing few Chinook salmon before it was closed in 1913 (Craig and Suomela 1941, Nelson and Bodle 1990). The Leavenworth State Hatchery operated in the Wenatchee River Basin between 1913 and 1931 using eggs from non-native stocks (Willamette River spring-run and lower Columbia Chinook hatchery fall-run). These early attempts at hatchery production were largely unsuccessful for spring-run Chinook (WDF 1934). Between 1931 and 1939, no Chinook salmon hatcheries were in operation above Rock Island Dam (Rkm 730).

In 1938, the last salmon was allowed to pass upstream through the uncompleted Grand Coulee Dam (Rkm 959). To mitigate the loss of habitat, adult Chinook salmon were trapped, under the auspices of the Grand Coulee Fish Maintenance Project (GCFMP), at Rock Island Dam beginning in May 1939, and relocated into three of the remaining accessible tributaries to the upper Columbia River: the Wenatchee, Entiat, and Methow Rivers. GCFMP transfers continued through the autumn of 1943. Spring- and summer/fall-run fish were differentiated at Rock Island Dam based on a 9 July cutoff date for Chinook arrivals at Rock Island Dam (Fish and Hanavan 1948). Spring-run adults collected at Rock Island Dam (pre 9 July fish) were either transported to Nason Creek on the Wenatchee River to spawn naturally (1939-43), or to the newly constructed Leavenworth NFH (1940) for holding and subsequent spawning (1940-43). Eggs were incubated on site or transferred to the Entiat NFH (1941) and Winthrop NFH (1941). In 1944 spring-run adults were allowed to freely pass Rock Island Dam. The GCFMP did not differentiate among late-run stocks (post 9 July fish) passing Rock Island Dam. Laterun offspring reared at the Leavenworth NFH, Entiat NFH, and Winthrop NFHs were an
amalgamation of summer and fall upper Columbia River populations (Fish and Hanavan 1948). Late-run fish were transplanted into the upper and lower Wenatchee, Methow, and Entiat Rivers.

After 1943, the Winthrop NFH continued to use local spring-run Chinook for hatchery production, while the other NFHs largely focused on summer-run Chinook salmon. Renewed emphasis on spring run production in the mid-1970s saw the inclusion of local and non-local eggs (Carson NFH stock, Klickitat River stock, and Cowlitz River stock) to the NFHs. In the early 1980s, imports of non-native eggs were reduced significantly, and thereafter the Leavenworth, Entiat, and Winthrop NFHs have relied on adults returning to their facilities for their egg needs (Chapman et al. 1995). Regarding late-run Chinook, due to the variety of methods employed to collect broodstock at dams, hatcheries, or the result of juvenile introductions into various areas, Chinook populations and runs (i.e., summer and fall) have been mixed considerably in the upper Columbia system over the past five decades (reviewed in Chapman et al. 1994).

Washington Department of Fish and Wildlife (WDFW) operates two facilities producing spring-run Chinook, the Methow Fish Hatchery (MFH) owned by Douglas County PUD that began operation in 1992 and Eastbank Fish Hatchery (EFH) owned by Chelan County PUD that began operation in 1989. Both programs were designed to implement supplementation (supportive breeding) programs for naturally spawning populations on the Methow and Wenatchee Rivers, respectively (Chapman et al. 1995). As part of the Rock Island Mitigation Agreement between Chelan County Public Utility District and the fishery management parties (RISPA 1989), a supplementation (supportive breeding) program was initiated in 1989 on the Chiwawa River to mitigate smolt mortality resulting from the operation of Rock Island Hydroelectric Project. EFH uses broodstock collected at a weir on the Chiwawa River, although in recent years hatchery fish have been collected at Tumwater Dam. Similarly, the MFHC uses returning adults collected at weirs on the Methow River and its tributaries, the Twisp and Chewuch Rivers (Chapman et al. 1995; Bugert 1998). Although low run size and trap efficiency has resulted in most broodstock being collected from the hatchery outfall or in some years Wells Dam,
progeny produced from these programs are reared at and released from satellite sites on the tributaries where the adults were collected. Numerous other facilities have reared spring-run Chinook salmon on an intermittent basis.

Previous Genetic Studies - Population differentiation

Waples et al. (1991a) examined 21 polymorphic allozyme loci in samples from 44 populations of Chinook salmon in the Columbia River Basin. These authors reported three major clusters of Columbia River Basin Chinook salmon: 1) Snake River springand summer-run Chinook salmon, and mid and upper Columbia River spring-run Chinook salmon, 2) Willamette River spring-run Chinook salmon, 3) mid and upper Columbia River fall- and summer-run Chinook salmon, Snake River fall-run Chinook salmon, and lower Columbia River fall- and spring-run Chinook salmon. Utter et al. (1995) examined allele frequency variability at 36 allozyme loci in samples of 16 upper Columbia River Chinook populations. Utter et al. (1995) indicated that spring-run populations were distinct from summer- and fall-run populations, where the average genetic distance between spring-run and late-run Chinook were about eight times the average of genetic distances between samples within each group. Additionally, allele frequency differences among spring-run populations were considerably greater than that among summer- and fall-run populations in the upper Columbia River. Utter et al. (1995) also reported hatchery populations of spring-run Chinook salmon were genetically distinct from natural spring-run populations, but hatchery populations of fall-run Chinook salmon were not genetically distinct from natural fall-run populations.

As part of an evaluation of the relative reproductive success for the Chiwawa River supplementation program, Murdoch et al. (2006), used eleven microsatellite loci to assess population differentiation among spring Chinook salmon population samples in the upper Wenatchee River. Murdoch et al. (2006) reported a $>99 \%$ accuracy of correctly identifying spring-run and fall-run Chinook from the Wenatchee River. They also reported slight, but significantly different genetic variation among wild spring populations and between wild and hatchery stocks. Yet, since the spring-run populations
are genetically similar, identifying individuals genetically from the upper tributaries of the Wenatchee River was difficult. This result is exemplified in their individual assignment results, where $<8 \%$ of spring-run individuals, hatchery or wild, were correctly assigned using their criterion of an LOD (log of odds) score greater than 2. Murdoch et al. (2006) also reported contemporary natural spring Chinook show heterozygote deficit and low linkage disequilibrium (LD), while contemporary hatchery spring Chinook show heterozygote excess and high LD.

Williamson et al. (submitted) have continued the work of Murdoch et al. (2006) by analyzing Chiwawa River demographic data from 1989 - 2005 to estimate the proportions of recruits that were produced by Chinook with hatchery or wild origin. In an "ideal" population, the genetic size (i.e., effective size or N_{e}) and the census size are equal; however various demographic factors such as unequal sex ratios and variance in reproductive success among individuals reduces the genetic size below the census size. It is generally thought that the genetic size is approximately $10-33 \%$ the census size (Bartley et al. 1992; RS Waples pers. comm.), although values have been reported outside this range (Araki et al. 2007; Arden and Kapuscinski 2003; Heath et al. 2002). Despite being difficult to estimate, the effective population size in many respects is a more important parameter to know than census size, because N_{e} determines how genetic diversity is distributed within populations and how the forces of evolution (i.e., forces that change genetic diversity over time) will affect the genetic variation present.

Williamson et al. (submitted) used demographic data to 1) investigate the effect of unequal sex ratio on genetic diversity, 2) investigate the effect of variation in reproductive success on genetic diversity, 3) investigate the effect of fluctuations in population size on genetic diversity, and 4) estimate the effective population size, using the inbreeding method (Ryman and Laikre 1991). Most importantly, they use demographic data from 1989 - 2000 to assess the impact of the Chiwawa Hatchery Supplementation Program on the effective population size of natural-origin Chiwawa River spring Chinook. They estimate that the N_{e} of naturally spawning Chiwawa Chinook (i.e., both hatchery- and wild-origin fish on the spawning grounds) from 1989 -

1992 was $\mathrm{N}_{\mathrm{e}}=2683$ and in $1997-2000$ was $\mathrm{N}_{\mathrm{e}}=989$. They compare spawning ground N_{e} to estimates calculated from combined broodstock and naturally spawning Chinook demographic data. The combined inbreeding N_{e} estimate from 1989-1992 was $\mathrm{N}_{\mathrm{e}}=$ 147 and in $1997-2000$ was $\mathrm{N}_{\mathrm{e}}=490$. Williamson et al. (submitted) argue that since the combined N_{e} estimate is lower than the naturally spawning estimate, the supplementation program has had a negative impact on the Chiwawa River N_{e}.

Williamson et al. (submitted) also present genetic data for Chinook recovered on spawning grounds in upper Wenatchee River tributaries in 2004 and 2005. These genetic data are derived from the Murdoch et al. (2006) study. They compare samples collected from Chiwawa River (i.e., hatchery and wild), White River, Nason Creek, and Leavenworth Hatchery. Additionally, they include a 1994 Chiwawa River wild smolt sample for comparison with the 2004 brood year. Williamson et al. (submitted) report statistically significant genetic differentiation among Chiwawa River, White River and Nason Creek. Additionally, they report that the 1994 and 2004 Chiwawa River wild samples are not statistically different, but the 2004 Chiwawa wild and hatchery collections are statistically different.

Study Objectives

This study investigated within and among population genetic diversity to assess the effect of the Chiwawa Hatchery's supplemental program on the natural Chiwawa River spring Chinook population. Differences among temporal population samples, the census size, heterozygosity, and allelic diversity were documented. We investigated population differentiation between the Chiwawa River natural and hatchery samples, and among all temporally replicated samples from the Wenatchee River watershed using microsatellite DNA allele frequencies and the statistical assignment of individual fish to specific populations. To assess the genetic effect of the hatchery program, correlation between census and effective population sizes were investigated using temporally replicated samples obtained before and after the supplementation program operation. To address the hypotheses associated with Objective 3 in Murdock and Peven (2005) we developed
eleven specific "Tasks" (Blankenship and Murdoch 2006), to which we analyzed specific genetic data. We present the results from these analyses specific to each individual Task.

Methods and Materials

Tissue collection and DNA extraction

We analyzed thirty-two population collections of adult spring Chinook salmon (Oncorhynchus tshawytscha) obtained from the Wenatchee River between 1989 and 2006 (Table 1). Nine collections of natural Chinook adults from the Chiwawa River ($\mathrm{n}=501$), and nine collections of Chiwawa Hatchery Chinook ($\mathrm{n}=595$) were collected at a weir located in the lower Chiwawa River. The 1993 and 1994 Chiwawa Hatchery samples are smolt samples from the 1991 and 1992 hatchery brood years, respectively. Additional samples were collected from upper Wenatchee River tributaries, White River, Little Wenatchee River, and Nason Creek. Six collections of natural White River Chinook ($\mathrm{n}=179$), one collection from the Little Wenatchee ($\mathrm{n}=19$), and six collections from Nason Creek ($\mathrm{n}=268$) were obtained. Single collections were obtained for Chinook spawning in the mainstem Wenatchee River and Leavenworth National Fish Hatchery. An additional out-of-basin collection from Entiat River was also included in the analysis. Samples collected in 1992 or earlier are scale samples. All other samples were either fin clips or operculum punches, stored immediately in ethanol after collection. DNA was extracted from stored tissue using Nucleospin 96 Tissue following the manufacturer's standard protocol (Macherey-Nagel, Easton, PA, U.S.A.).

Laboratory analysis

We performed polymerase chain reaction (PCR) amplification on each fish sample using the 13 fluorescently end-labeled microsatellite marker loci standardized as part of the GAPS project (Seeb et al. in review). GAPS genetic loci are: Ogo2, Ogo4 (Olsen et al. 1998); Oki 100 (unpublished); Omm 1080 (Rexroad et al. 2001); Ots201b (unpublished); Ots208b, Ots211, Ots212, and Ots213 (Grieg et al. 2003); Ots3M, Ots9 (Banks et al.
1999); OtsG474 (Williamson et al. 2002); Ssa408 (Cairney et al. 2000). PCR reaction volumes were $10 \mu \mathrm{~L}$, and contained $1 \mu \mathrm{~L} 10 \mathrm{x}$ PCR buffer (Promega), $1.0 \mu \mathrm{~L} \mathrm{MgCl} 2$ (1.5 mM final) (Promega), $0.2 \mu \mathrm{~L} 10 \mathrm{mM}$ dNTP mix (Promega), and 0.1 units/mL Taq DNA polymerase (Promega). Loci were amplified as part of multiplexed sets, so primer molarities and annealing temperatures varied. Multiplex one had an annealing temperature of $50^{\circ} \mathrm{C}$, and used 0.37 Molar (M) Oki100, 0.35 M Ots201b, and 0.20 M Ots208b, and 0.20 M Ssa 408 . Multiplex two had an annealing temperature of $63^{\circ} \mathrm{C}$, and used $0.10 \mathrm{M} \mathrm{Ogo2}$, and 0.25 M of a non-GAPS locus (Ssa 197). Multiplex three had an annealing temperature of $56^{\circ} \mathrm{C}$, and used $0.18 \mathrm{M} \mathrm{Ogo4}, 0.18 \mathrm{M} \mathrm{Ots} 213$, and 0.16 M OtsG474. Multiplex four had an annealing temperature of $53^{\circ} \mathrm{C}$, and used 0.26 M Omm1080, and 0.12 M Ots3M. Multiplex five had an annealing temperature of $60^{\circ} \mathrm{C}$, and used 0.30 M Ots212, 0.20 M Ots211, and 0.10 M Ots 9 . Thermal cycling was conducted on either a PTC200 thermal cycler (MJ Research) or GeneAmp 9700 (Applied Biosystems) as follows: $95^{\circ} \mathrm{C}(2 \mathrm{~min}) ; 30$ cycles of $95^{\circ} \mathrm{C}$ for $30 \mathrm{sec} ., 30 \mathrm{sec}$. annealing, and $72^{\circ} \mathrm{C}$ for 30 sec .; a final $72^{\circ} \mathrm{C}$ extension and then a $10^{\circ} \mathrm{C}$ hold. PCR products were visualized by electrophoresis on an ABI 3730 automated capillary analyzer (Applied Biosystems). Fragment analysis was completed using GeneMapper 3.7 (Applied Biosystems). Standardization of genetic data to GAPS allele standards was conducted following Seeb et al. (in review).

Genetic data analysis

Assessing within population genetic diversity - Heterozygosity measurements are reported using Nei's (1987) unbiased gene diversity formula (i.e., expected heterozygosity) and Hedrick's (1983) formula for observed heterozygosity. Both tests are implemented using the microsatellite toolkit (Park 2001). We used GENEPOP version 3.4 (Raymond and Rousset 1995) to assess Hardy-Weinberg equilibrium (HWE), where deviations from the neutral expectation of random associations among alleles are calculated using a Markov chain method (5000 iterations in this study) to obtain unbiased estimates of Fisher's exact test. Global estimates of $\mathrm{F}_{\text {IS }}$ according to Weir and Cockerham (1984) were calculated using GENEPOP version 3.4. Genotypic linkage disequilibrium was calculated following Weir (1979) using GENEPOP version 3.4.

Linkage results for population collections are reported as the proportion of pairwise (locus by locus) tests that are significant (alpha $=0.01$). Linkage disequilibrium is considered statistically significant if more than 5% of the pairwise tests based on permutation are significant for a collection.

Within- and among-population genetic differentiation - The temporal stability of allele frequencies within populations, and pairwise differences in allele frequencies among populations were assessed using several different procedures. First, we tested for differences in allele frequencies among populations defined in Table 1 using a randomization chi-square test implemented in GENEPOP version 3.4 (Raymond and Rousset 1995). This procedure tests for differences between pairs of populations where alleles are randomized between the populations (i.e., genic test). The null hypothesis for this test is that the allele frequency distributions between two populations are the same. A low p-value should be interpreted as the allele frequency distributions being compared are unlikely to be samples drawn from the same underlying distribution.

Second, to graphically describe allele frequency differences among populations we conducted a nonmetric multidimensional scaling analysis using allele-sharing distance matrices from two different data sets. Pairwise allele-sharing distances are calculated as 1 - (mean over all loci of the sums of the minima of the relative frequencies of each allele common to a pair of populations). To calculate the allele-sharing distances for each pair of populations we used PowerMarker v3.25 (Liu and Muse 2005). Nonmetric multidimensional scaling is a technique designed to construct an n-dimensional "map" of populations, given a set of pairwise distances between populations (Manly 1986). The output from this analysis is a set of coordinates along n -axes, with the coordinates specific to the number of n-dimensions selected. To simplify our analysis we selected a 2-dimensional analysis to represent the relative positions of each population in a typical bivariate plot. The goodness of fit between the original allele-sharing distances and the pairwise distances between all populations along the 2-dimensional plot is measured by a "stress" statistic. Kruskal (in Rohlf 2002) developed a five-tier guide for evaluating stress levels, ranging from a perfect fit (stress $=0$) to a poor fit (stress=0.40). We
conducted the nonmetric multidimensional scaling analysis for one data set containing Chiwawa natural- and hatchery-origin collections, and another data set containing Chiwawa broodstock and in-river spawner collections. We used the mdscale module in MATLAB R2006b (The Mathworks 2006) to generate the nonmetric multidimensional scaling coordinates.

We examined the geographic and temporal structure of populations in the upper Wenatchee (Chiwawa River, Nason Creek, and White River, only) using a series of analyses of molecular variance (AMOVAs). Here, we defined an AMOVA as an analysis of variance of allele frequencies, as originally designed by Cockerham (1969), but implemented in Arlequin v2.1 (Schneider et al. 2000). These analyses permit populations to be aggregated into groups, and molecular variance is then partitioned into within collections, among collections, but within groups, and among group components. With this approach, we were able to determine how best to group populations, with "best" being defined as that grouping that accounts for the greatest proportion of among group variance. Furthermore, by partitioning molecular variance into three different hierarchical components, we are able to determine what level accounts for the majority of the molecular variance.

Finally, we explored the partitioning of molecular variance between among-individuals and among-populations using a principal component analysis and multi-locus estimates of pairwise $\mathrm{F}_{\text {ST }}$, estimated by a "weighted" analysis of variance (Weir and Cockerham, 1984). Principal component analysis is a data-reduction technique whereby the correlation structure among variables can be used to combine variables into a series of multivariate components, with each original variable receiving a weighted value for each component based on its correlation with that component. Here, we used a program written by Warheit in MATLAB R2006b (The Mathworks 2006) that treats each allele for each locus as a single variable (13 loci $=26$ alleles or variables), and these 26 "variables" were arranged into 26 components, with each component accounting for a decreasing amount of molecular variance. Estimates of $\mathrm{F}_{\text {ST }}$ were calculated using GENETIX version 4.05 (Belkhir et al.1996). To determine if the $\mathrm{F}_{\text {ST }}$ estimates were
statistically different from random (i.e., no structure), 1000 permutations were implemented in GENETIX version 4.05 (Belkhir et al.1996).

Effective population size ($\mathbf{N}_{\mathbf{e}}$) - Estimates of the effective population size were obtained using two methods, a multi-collection temporal method (Waples 1990), and a singlecollection method (Waples 2006) using linkage disequilibrium data. The temporal method assumes that cohorts are used, but we did not decompose the collection year samples into their respective cohorts using age data. Therefore, N_{e} estimates that pertain to individual year classes of breeders are not valid; however the harmonic mean over all samples will estimate the contemporary N_{e}. Comparing samples from years i and j, Waples' (1990) temporal method estimates the effective number of breeders ($\left.\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j}}\right)$ according to:

$$
\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}=\frac{\mathrm{b}}{2\left(\hat{\mathrm{~F}}-1 / \hat{\mathrm{S}}_{\mathrm{i}, \mathrm{j}}\right)}
$$

The standardized variance in allele frequency ($\hat{\mathrm{F}}$) is calculated according to Pollack (1983). The parameter b is calculated analytically from age structure information and the number of years between samples (Tajima 1992). The age-at-maturity information required to calculate b was obtained from Murdoch et al. (2006) for this analysis. They observed for Chiwawa Hatchery Chinook that 8.6% matured at age 2, 4% at age 3, 87% at age 4 , and 0.4% at age 5. For Chiwawa natural Chinook, Murdoch et al. (2006) observed that 1.8% matured at age $3,81.6 \%$ at age 4 , and 16.7% at age 5 . The harmonic mean of sample sizes from years i and j is $\widetilde{\mathrm{S}}_{\mathrm{i}, \mathrm{j}}$. Over all pairwise comparisons the harmonic mean of all $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ is $\widetilde{\mathrm{N}}_{\mathrm{b}}$, the contemporary estimate of the effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$. SALMONNb (Waples et al. 2007) was used to calculate $\widetilde{\mathrm{N}}_{\mathrm{b}}$. As suggested by authors, alleles with a frequency below 0.05 were excluded from the analysis to reduce potential bias.

The method of Waples (2006) uses linkage disequilibrium (i.e., mean squared correlation of allele frequencies at different gene loci) as a means of estimating effective population size $\left(N_{e}\right)$ from a single sample. While this method is biased in some cases where N_{e} / N
ratio is less the 0.1 and the sample size is less than the true N_{e}, it has been shown to produce comparable results to the temporal method. Burrows' delta method is used to estimate LD, and a bias corrected estimate of N_{e} is calculated after eliminating alleles with frequency less than 0.05 . This test was implemented using $\operatorname{LDN}_{\mathrm{e}}(\mathrm{Do}$ and Waples unpublished). In age-structured species, N_{e} estimates based on LD are best interpreted as the effective number of breeders $\left(\mathrm{N}_{\mathrm{b}}\right)$ that produced the sample (Waples 2006). N_{b} should be multiplied by the mean generation length (i.e., 4 in this case) to obtain an overall estimate of N_{e} based on an N_{b} estimate. We analyzed collections categorized by spawning location (i.e., hatchery broodstock or in-river) and did not analyze collections categorized by origin (i.e., hatchery or natural). Waples' (2006) method estimates N_{e} from observed LD, therefore the corresponding N_{e} estimates for the hatchery collections would be low and the estimates for the natural collections would be high. Yet, since the supplementation program is integrated, and hatchery fish can spawn naturally, we feel it inappropriate to analyze the hatchery and natural samples as if they were separate, which would essentially partition all the LD into the hatchery samples.

Each collection has an N_{b} estimate and an associated confidence interval. If the confidence interval includes infinity, it means that sampling error accounts for all the LD observed (i.e., empirical LD is less than expected LD). The usual interpretation is that there is no evidence for any disequilibrium caused by genetic drift in a finite number of parents. Since the LD method estimates the number of breeders that contributed to the sample being analyzed, in order to calculate an $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio, the appropriate census size must be used. The census size used to derive a ratio was the estimate four years prior to the collection analyzed using LD, which assumed a strict four-year-old lifecycle, although the observed proportion of four-year-olds was approximately 85% each year. The census numbers (Table 2) used to calculate the ratios for Chiwawa broodstock and in-river spawners were combined NOS (natural-origin spawners) and HOS (hatcheryorigin spawners) census estimates.

Individual assignment - A population baseline file was constructed containing all 1704 individual Chinook from 34 population collections (Table 1; Chiwawa origin data set
plus all samples from other populations). All individuals in the baseline had geneotypes that included nine or more loci. Individual Chinook were assigned to their most likely population of origin based on the partial Bayesian criteria of Rannala and Mountain (1997), using a "jack-knife" procedure, where each individual to be assigned was removed from the baseline prior to the calculation of population likelihoods. This procedure was implemented in a program written by Warheit in MATLAB R2006b (The Mathworks 2006). Two assignment criteria were used, 1) the population with the largest posterior probability for an individual was the "most-likely" population of origin (i.e., all individuals assigned to a collection), and 2) an assignment was consider valid only if the posterior probability was greater than or equal to 0.9 . Please note that while the analysis used 34 population collections to assign Rannala and Mountain likelihoods for each individual, these likelihoods were aggregated based on "population" (i.e., Chiwawa, Nason, White, and so on) and posterior probabilities were calculated for population location, rather than individual collections.

Results and Discussion

In this section we combine our presentation and interpretations of the genetic analyses. Additionally, this section will be organized based on the task list presented in the study plan. Overall conclusions are provided following this section.

Task 1: Determine trend in census size for Chiwawa River spring Chinook.

Census data from 1989 - 2005 are provided in Table 2 for the Chiwawa Hatchery broodstock and spring Chinook present in the Chiwawa River. The demographic data for naturally spawning Chinook are based on redd sampling and carcass surveys, while broodstock data are based on Chiwawa hatchery records. As the supplementation program is integrated by design, we also present the proportion of natural-origin broodstock (pNOB) incorporated into the hatchery, in addition to the number of naturalorigin (NOS) and hatchery-origin (HOS) spawners present in Chiwawa River. The
census size fluctuated yearly, and a general reduction in census size was observed in the mid to late 1990's. This trend was apparent in both the broodstock and in the river. The arithmetic mean census size from 1989-2005 for the Chiwawa Hatchery (i.e., broodstock) was $\mathrm{N}=87.5$ per year. The arithmetic mean census size from 1989 - 2005 for the Chiwawa River (i.e., NOS and HOS combined) was N=961.9 per year. For collection years when adult Chiwawa hatchery-origin fish would have been absent in the Chiwawa River (1989 - 1992), the arithmetic mean of natural Chiwawa Chinook census size is $\mathrm{N}=962.7$. We will use this number as the baseline census size to assess if census size has changed. We used two different values for the contemporary census size in the Chiwawa River, NOS only and NOS + HOS. Additionally, we used collection years 2002-2005 for the contemporary NOS and HOS estimates, as these are the most recent data and the number of years included for estimation is the same as the pre-hatchery estimate above (i.e., four years). For NOS only, the arithmetic mean census size from 2002-2005 was $\mathrm{N}=536.0$. For total census size (i.e., NOS and HOS combined), the arithmetic mean census size from 2002 - 2005 was $\mathrm{N}=1324.0$. For the demographic data presented here, the contemporary census size is larger than the census estimate derived from the years prior to hatchery operation.

Task 2: Document the observed genetic diversity.

Genetic Diversity Categorized By Origin

For Chiwawa River collections categorized by origin (Table 1A), substantial genetic diversity was observed, with heterozygosity estimates over all loci, having a mean of 0.80. Genetic diversity was consistent with expected Hardy-Weinberg random mating genotypic proportions for ten of the eighteen collections. Eight of the nine Chiwawa natural collections were consistent with HWE, and two of nine Chiwawa Hatchery collections were consistent with HWE. $\mathrm{F}_{\text {IS }}$ is observed to be slight for all Chiwawa population collections, suggesting individuals within collections do not show excessive homozygosity.

The deviations from HWE observed were generally associated with hatchery collections. The two smolt collections (i.e., 1993 and 1994) showed significant deviations from HWE, which may be a function of non-random hatchery practices involving the contributing natural-origin parental broodstocks (i.e., 1991 and 1992 cohort). Deviations from HWE in the remaining hatchery collections may be the result of few individuals being represented in the broodstock (see below).

Additionally, linkage disequilibrium (LD) was also common for Chiwawa hatcheryorigin collections and minimal for Chiwawa natural-origin collections. The random association of alleles between loci (i.e., linkage equilibrium) is expected under ideal conditions. LD is observed when particular genotypes are encountered more than expected by chance. Laboratory artifacts (e.g. null alleles) or physical linkage of loci on the same chromosome can cause LD, but the LD we observed was not associated with certain locus combinations, which you would expect if either artifacts or physical linkage were the cause of LD. LD was observed for seven of the nine hatchery-origin collections. As with the deviations from HWE, the high LD in the 1993 and 1994 hatchery-origin collections may be a result of non-random hatchery practices. The substantial LD observed in the hatchery-origin adult collections (collection years 2000, 2001, 2004, and 2006) might be the result of small parental broodstock sizes contributing to those returning adults. During the mid 1990's, the Chiwawa broodstock size was low, with zero individuals collected in 1995 and 1999; so fewer individuals would be contributing to the hatchery adult returns than the natural. This idea is corroborated by the lower LD observed for the 2005 hatchery-origin collection, which had a contributing parental broodstock size in 2001 (i.e., the major contributing parental generation) approximately eight times as large as the previous few collection years (Table 2). LD reappears in the 2006 Chiwawa hatchery-origin collection, which had a contributing parental broodstock size (i.e., for the most-part, the 2002 hatchery brood year) five times lower (Table 2) than that of the 2005 collection.

While seven of nine hatchery-origin collections showed significant LD, only one natural origin collection showed LD, and for this collection, only 10% of the loci-pairs were in
disequilibrium (Table 1). The fact that LD predominated in the hatchery samples, suggests that variance in reproductive success (i.e., overrepresentation of particular parents) is higher in the hatchery-origin than in natural-origin collections.

Genetic Diversity Categorized By Spawning Location

For upper Wenatchee River collections categorized by spawning location (Table 1B), substantial genetic diversity was observed, with heterozygosity estimates over all loci, having a mean of 0.79 and ranging from a low of 0.69 (1993 White River) to 0.85 (1993 Little Wenatchee). Genetic diversity was consistent with HWE for nineteen of twentynine population collections. For the collections that departed from HWE, seven were from the Chiwawa River, one was from Leavenworth Hatchery, one was the Wenatchee mainstem collection of hatchery-origin - naturally spawning fish, and one was from the White River. $\mathrm{F}_{\text {IS }}$ is observed to be slight for all population collections except the 1993 White River collection (10% heterozygote deficit) (Table 1B). Collections deviating with HWE generally correlated with collections having high LD. Twelve population collections showed a proportion of pairwise linkage disequilibrium tests (across all loci) greater than 5% (Table 1B), eight of which were Chiwawa collections.

Starting in 1996, spawning location collections are composed of both natural- and hatchery-origin samples. The LD seen in the later spawning location collections may be caused by an admixing effect (i.e., mixing two populations), where random mating has not had the chance to freely associate alleles into genotypes. Interestingly, there appears to be a trend of reducing LD through time within the broodstock collections (Table 1B), which suggests that a "homogenizing" effect is taking place within the Chiwawa River. This observation is discussed more fully in Task 3 below.

Task 3: Test for population differentiation among collections within the Chiwawa River and associated supplementation program.

Introduction

Task 3 was designed to address two hypotheses listed as part of Objective 3 in Murdoch and Peven (2005):

- Ho: Allele frequency Hatchery $=$ Allele frequency ${ }_{\text {Naturally produced }}=$ Allele frequency Donor pop. .
- Ho: Genetic distance between subpopulations Year $^{x}=$ Genetic distance between subpopulations $_{\text {Year } y}$

Murdoch and Peven (2005) proposed these two hypotheses to help evaluate the Chiwawa supplementation program through the "Conceptual Process" (Figure 5 in Murdoch and Peven 2005; repeated here as Figure 1). There are two components to the first hypothesis, which must be considered separately. The first component involves comparisons between natural-origin populations in the Chiwawa to determine if there have been changes in allele frequencies or genetic distances, through time starting with the donor population. Documenting a change does not necessarily indicate that the supplementation program has directly affected the natural origin fish, as additional tests would be necessary to support that hypothesis. The intent of the second component is to determine if the hatchery produced populations have the same genetic composition as the naturally produced populations.

Although on the surface these two components and their associated comparisons may appear simple, from a hypothesis-testing perspective the analyses are complicated by the fact that natural-origin fish may have had hatchery-origin parents, and hatchery-origin fish may have had natural-origin parents. As such, we organized the Chiwawa genetic data into three data sets: (1) fish origin (hatchery versus natural), (2) spawning location (hatchery broodstock versus in-river (natural) spawners), and (3) four "treatment" groups (1. hatchery-origin hatchery broodstock, 2 . hatchery-origin natural spawner, 3. naturalorigin natural spawner, and 4. natural-origin hatchery broodstock). We conducted separate analyses using each of the three data sets, with each analysis touching on some aspect of the components necessary to move through the Conceptual Process (Figure 1).

Hatchery- Versus Natural-Origin

We address the following questions with the origin data set:

1. Are there changes in allele frequencies and allele sharing distances in the naturalorigin collections from pre-supplementation to today?
2. Are there changes in allele frequencies and allele sharing distances in the hatchery-origin collections from early supplementation to today?
3. Are there significant differences in allele frequencies and large allele sharing distances between hatchery- and natural-origin adults from a collection year, and has this pattern changed through time?

Genic Differentiation Tests - We explicitly tested the hypothesis of no significant differentiation within natural- or hatchery-origin collections from the Chiwawa River using a randomization chi-square test. We show the results for the pairwise comparisons among natural-origin collections from the Chiwawa River populations in the first block of the second page of Table 3. Ten of the 36 (28\%) pairwise comparisons have highly significant allele frequency differences, while only 12 of the 36 comparisons (33%) showed no significant differences. Eight of these 12 comparisons involved the 1996 collection, which included only eight samples and therefore provided little power to differentiate allele frequencies. If we exclude the 1996 collection, only 14% of the pairwise comparisons showed no significant differences, and here all but one of these comparisons involved the 1989 collection. The 1989 collection appeared to be the least differentiated collection in the natural-origin data set in that all pairwise comparisons were either not significant, or only mildly significant at the nominal critical value. No comparisons involving the 1989 collection were significant using a Bonferroni-corrected critical value, and 1989 is the only natural-origin collection in our data set that can be classified as "pre-supplementation."

We can interpret these results to indicate that although there appears to be significant year-to-year differences in allele frequencies among post-supplementation collections, the allele frequencies between each post-supplementation collection and the 1989 presupplementation collection are not greatly different. However, the level of differentiation
does increase from the early post-supplementation years to the more recent years (2001, 2004-2006), although the statistical level of this significance never exceeds the Bonferroni-corrected critical value. Finally, sample sizes were also small for the 1989 collection ($\mathrm{n}=36$) and we cannot eliminate a reduction in power as a contributing factor for the lack of significance for these tests.

As with the hatchery-origin collections, most pairwise comparisons of allele frequencies between hatchery-origin samples were significant (Table 3, first page, upper block). Out of the 36 pairwise comparisons, all but three are significant at some level, and most comparisons are highly significant. Similar to the natural-origin analysis, the nonsignificant results were limited to comparisons involving the 1996, which included only eight samples.

As a result of this analysis we reject the hypothesis that there was no significant differentiation among natural- or hatchery-origin collections from the Chiwawa River. Furthermore, the allele frequencies of the hatchery-origin collections are significantly different from those of natural-origin collections (Table 3, first page, second block). For those fish collected in the same year, allele frequencies are significantly different between hatchery- and natural-origin collections, although in 2005 the level of significance was below the Bonferroni critical value (Table 3). The next step is to examine the pattern of allelic differentiation to discover first if there is a trend among the data, and second, if this trend suggests that the allele frequency differences among Chiwawa River natural-origin fish collections has been affected by the hatchery-origin fish.

Allele-sharing and Nonmetric Multidimensional Scaling - We constructed a pairwise allele-sharing distance matrix for all hatchery- and natural-origin collections from the Chiwawa River and subjected this matrix to a nonmetric multidimensional scaling analysis, restricting the analysis to two dimensions (Figure 2). The stress statistic for this analysis is 0.09 , a value Kruskal (in Rohlf 2002) listed as a good to excellent fit between the actual allele-sharing distances and the Euclidean (straight-line) distances in the plot.

In other words, Figure 2 is a good visual representation of the allele sharing distance matrix; collections with a high percentage of alleles shared will be closer to each other than collections with a lower percentage of alleles shared.

With the exception of the two outlier years (1996 and 1998) the Chiwawa natural-origin collections form a tight cluster indicating an overall common set of shared alleles among these collections. Even if we ignore the 1996 and 1998 hatchery-origin collections, there appears to be a greater variance in shared alleles among the Chiwawa hatchery-origin collections than the natural-origin collections (Figure 2). In fact, the median percentage of alleles shared among the Chiwawa natural-origin collections is 76% compared with 69% alleles shared among the Chiwawa hatchery-origin collections.

Also, there appears to be a convergence in allele sharing distances (i.e., a decrease in allele frequency differences) between the hatchery- and natural-origin fish from the late 1980s/early 1990s to 2006. The series of red arrows in Figure 2 represent the progression of change in hatchery-origin allele sharing distances from 1996 (first adult hatchery origin fish in our analysis) to 2006 and this progression is decidedly in the direction of the natural-origin cluster. However, the most recent natural-origin collections (2001, 2004-2006) appear to have pulled closer to the hatchery-origin collections, compared with the 1989 natural-origin collection (note the close proximity of the 2000 and 1989 natural-origin collections). Nevertheless, the cluster of natural-origin collections adjacent to the hatchery-origin collections in Figure 2 also includes the 1993 natural-origin collection. Qualitatively, it appears that the initial hatchery-origin and natural-origin collections were more different from each other in terms of the percentage of shared alleles than are the most recent hatchery- and natural-origin collections. This may have been a result of a non-random sample of natural-origin fish that was used as broodstock in the initial years of the supplementation program (see discussion in Task 2 concerning deviations from HWE and linkage disequilibrium).

That being said, we do need to emphasize that Figure 2 is dominated by five outlier collections (two each from the 1996 and 1998 collections, and the 1994 smolt collection).

The 1996 and 1998 collections are characterized by small samples sizes, and the 1994 smolt collection has nearly all pairs of loci in linkage disequilibrium (Table 1). If we eliminate these five outlier groups, both the hatchery- and natural-origin collections form a relatively tight cluster. Excluding the five outliers, the median percentage of shared alleles among all pairwise combinations of Chiwawa hatchery versus Chiwawa natural collections is 76%. This compares with a median pairwise percentage of 79% among only Chiwawa natural-origin collections. That is, there are nearly as many alleles shared between the hatchery-origin and natural-origin collections as there are among the naturalorigin collections themselves. There is also a narrowing of differences between naturaland hatchery-origin fish from the same collection years from 1993 (76% shared alleles) through 2006 (83% shared alleles).

If allelic differentiation among collections is a function of genetic drift, we would expect a positive correlation between the number of years between two collections and the allele sharing distance. That is, if genetic drift is the primary cause of allele frequency differences between two collections, the greater the number of years between the two collections the larger the allele-sharing distance. For both the natural- and hatcheryorigin collections we examined the relationship between the number of years between a pair of collections and the collections' allele-sharing distance (Figure 3). Although the relationship between time interval and allele distance appears to be a positive function in the natural collections, the slope of the regression line is 0.0017 , and is not significantly different from zero. Furthermore, the correlation coefficient $\left(\mathrm{r}^{2}\right)$ equals 0.1068 , which means that the time interval between collections accounts for only 10% of the pairwise differences in allelic distance. The hatchery-origin collections do show a significantly positive slope ($0.0037 ; \mathrm{p}=0.0254$) and a regression coefficient nearly three times greater than that for the natural-origin collections. However, the correlation coefficient is still relatively small ($r^{2}=0.3290$), indicating that the time interval between collections accounts for one-third of the pairwise differences in allelic distance. The results suggest that if genetic drift is a factor in allelic differentiation between collections, it is only a minor factor, and appears to have affected the hatchery-origin collections more than the natural-origin collections.

If four-year-old fish dominate each collection year, we would expect a closer relationship among collections that are spaced at intervals of four years. The average percentage of alleles shared between two natural-origin collections that are separated by four years or a multiple of four years is 81%, compared with 78% for natural-origin collections separated by years that are not divisible by four. Likewise, for hatchery-origin collections the average percentage of alleles shared is 80% and 75% for collections separated by years divisible and not divisible by four, respectively. Although the percent differences described above are relatively small, they are consistent with the idea that allelic differences between collections are a function of year-to-year variability among different cohorts of four year-old fish.

Summary - The allele frequencies within and between natural- and hatchery-origin collections are significantly different, but there does not appear to be a robust signal indicating that the recent natural-origin collections have diverged greatly from the pre- or early post-supplementation collections. Genetic drift will occur in all populations, but does not appear to be a major factor with the Chiwawa collections. We propose that the differences among collections are a function of differences in allele frequencies among cohorts of the four year-old fish that dominate each collection.

Hatchery Broodstock Versus Natural (In-River) Spawners

We address the following questions with the spawner data set:

1. Are there changes in allele frequencies and allele sharing distances in the natural spawning collections from pre-supplementation to today?
2. Are there changes in allele frequencies and allele sharing distances in the hatchery broodstock collections from early supplementation to today?
3. Are there significant differences in allele frequencies and large allele sharing distances between hatchery and natural spawning adults from a collection year, and has this pattern changed through time?

Genic Differentiation Tests - For the most part there are significant differences in allele frequencies among collections for both the hatchery broodstock and natural spawners (Table 4), and these differences are consistent with the origin data set (Table 3). There are four collection years with paired samples (2001, 2004-2006) where we can compare allele frequency differences between the hatchery broodstock and natural spawners, within the same year. The 2001 hatchery broodstock and natural spawner collections have significantly different allele frequencies, but the level of significance decreased from 2001 to 2004, and become non-significant in 2005 and 2006 (Table 4). This indicates that by 2005, the hatchery broodstock and natural spawners collections were effectively sampling from the same population of fish. Additionally, the percentage of alleles shared between the hatchery broodstock and the natural spawners increased from 76% in 2001 to 86% in 2006 (allele sharing distance matrix, not shown). From this analysis, we conclude that although there are year-to-year differences in allele frequencies within the natural and hatchery spawner collections, there appears to be a convergence of allele frequencies within collection-year, between the natural and hatchery spawner populations.

Linkage Disequilibrium - Linkage disequilibrium is the correlation of alleles between two loci, and can occur for several reasons. If two loci are physically linked on the same chromosome, than alleles from each of these loci should be correlated. However, linkage between two loci can occur as a result of population bottlenecks, small population sizes, and natural selection. If any of these conditions had occurred or were occurring within the Chiwawa River system, we would expect to find substantial linkage disequilibrium in many or perhaps all Chiwawa collections. However, many Chiwawa collections, especially the natural-origin collections, do not show linkage disequilibrium (Table 1), and it would appear that the linkage disequilibrium within certain Chiwawa collections is not a function of the processes listed above. Linkage disequilibrium can also result if the collection is composed of an admixture. That is, if two or more reproductively isolated populations are combined into a single collection, the collection will show linkage disequilibrium. Each broodstock and natural spawning collection is composed of naturaland hatchery-origin fish. If these hatchery- and natural-origin fish are drawn from the
same population, the spawning collections should not show substantial linkage disequilibrium. However, if the hatchery- and natural-origin fish are from different populations (i.e., full hatchery - natural integration has not been achieved), the spawning collections should show substantial linkage disequilibrium.

There are only three Chiwawa spawning collections that are not composed of both hatchery- and natural-origin samples: 1989 (natural-origin, natural spawner), 1993 (natural-origin, hatchery broodstock), and 2001 (natural-origin, natural spawner). Of the 10 spawning collections with both hatchery- and natural-origin fish, seven show significant linkage disequilibrium. Two of the three collections that did not show linkage disequilibrium are the 1996 and 1998 hatchery broodstock collections, which are composed of only seven natural- and six hatchery-origin fish, and two natural- and 19 hatchery-origin fish, respectively. Within the hatchery broodstock collections with linkage disequilibrium, the percent of loci pairs showing linkage decreased from 32% in 2000 to 13% in 2001 and 2004, to only 1% and 5% in 2005 and 2006, respectively (Table 1). If the homogenization of allele frequencies of natural- and hatchery-origin fish was increasing from 2000 to 2006, we would expect a decrease in linkage disequilibrium among the broodstock collections. This is what occurred within the hatchery broodstock collections, but did not occur within the natural spawner collections, where the percent of loci pairs showing linkage was 18% in 2004, 6% in 2005, and 10% in 2006 (Table 1). Furthermore, the 2001 natural spawner collection, with no hatchery-origin component showed linkage disequilibrium with 9% of loci pairs.

There is no correlation between percent of loci pairs showing linkage disequilibrium and percent of broodstock composed of hatchery-origin fish $\left(r^{2}=0.0045\right)$. Furthermore, the natural spawner and hatchery broodstock collections were each composed of roughly the same average percentage of hatchery-origin fish (57% and 53%, respectively). If the decrease in linkage disequilibrium among the hatchery broodstock collections from 2000 to 2006 was a result of a homogenization of allele frequencies of natural- and hatcheryorigin fish in the broodstock, the same degree of homogenization did not occur within the
natural spawner collections. This would occur if natural- and hatchery-origin fish spawning within the river remain segregated, either by habitat or by fish behavior.

Summary - As with the origin data set, there are significant allele frequency differences within and between hatchery broodstock and natural spawner collections. However, in recent years the allele frequency differences between the hatchery broodstock and natural spawner collections has declined. Furthermore, based on linkage disequilibrium, there is a genetic signal that is consistent with increasing homogenization of allele frequencies within hatchery broodstock collections, but a similar homogenization within the natural spawner collection is not apparent. These data suggest that there exists consistent year-to-year variation in allele frequencies among hatchery and natural spawning collections, but there is a trend toward homogenization of the allele frequencies of the natural- and hatchery-origin fish that compose the hatchery broodstock.

Four Treatment Groups

Analyses of genetic differences between hatchery (broodstock) and natural spawner collections is confounded by the fact that each these two groups are composed of fish of natural- and hatchery-origin. To understand the effects of hatchery supplementation on natural-origin fish that spawn naturally, we needed to divide the Chiwawa data set into four mutually exclusive groups: (1) hatchery-origin hatchery broodstock, (2) hatcheryorigin natural spawner, (3) natural-origin hatchery broodstock, and (4) natural-origin natural spawner, with each group consisting of multiple collection years, for a total of 25 different groups.

Allele-sharing and Nonmetric Multidimensional Scaling -As with previous analyses discussed above, we constructed a pairwise allele-sharing distance matrix for all collections from each of these treatment groups and subjected this matrix to a nonmetric multidimensional scaling analysis, restricting the analysis to two dimensions. Figure 4 shows that five outlier groups dominate the allele-sharing distances within this data set. These outlier groups are also present in Figure 2, as discussed above, and Figure 2 and 4 resemble each other because the same fish are included in each analysis. The difference
between Figures 2 and 4 is that in Figure 4 the fish are grouped into collection year and the four treatment groups, rather than collection year and two treatment groups (hatcheryversus natural-origin).

Figure 4 does not provide useful resolution of the groups within the polygon, because the outlier groups dominate the allele sharing distances. We removed the five outlier groups from Figure 4, recalculated the allele sharing distances and subjected this new matrix to a multidimensional scaling analysis (Figure 5). Figure 5 shows separation among the 2001, 2004-2006 collections, but this separation does not necessarily indicate that within-year collections are more similar to each other than any collection is to a collection from another year. For example, the 2006 natural-origin natural spawner and the 2005 naturalorigin hatchery broodstock collections share 81% alleles, while the 2006 natural-origin natural spawner and 2006 hatchery-origin hatchery broodstock collections share 75% alleles. There does not appear to be any discernable pattern of change in allele-sharing distance among the collections relevant to pre- or post-supplementation. Although the 1989 pre-supplementation natural-origin collection appears distinct (Figure 5), the 1993 natural-origin hatchery broodstock collection appears quite similar to the 2005 and 2006 natural-origin collections (Figure 5). The 1993 natural-origin hatchery broodstock collection, although not technically pre-supplementation, is composed of fish whose ancestry cannot be traced to any Chiwawa hatchery fish. Therefore, there is no clear pattern of allele sharing change from pre-supplementation to recent collections.

There does appear to be some change in the average percentage of alleles shared within the 2001 to 2006 collections, with an increase from 74% in 2001 and 2004 to 78% and 79% in 2005 and 2006, respectively. The results provided by this analysis are consistent with the results presented in the origin and spawner data sets. That is, there are allele frequency and allele sharing differences among the collections, but analyses do not strongly suggest that these differences are a function of the supplementation program. Furthermore, there is also a weak signal that the hatchery and natural collections within the most recent years are more similar to each other than in the previous years.

Overall Genetic Variance - Although there are signals of allelic differentiation among Chiwawa River collections, there are no robust signs that these collections are substantially different from each other. We used two different analyses to measure the degree of genetic variation that exists among individuals and collections within the Chiwawa River. First, we conducted a principal component analysis using all Chiwawa samples with complete genotypes (i.e., no missing alleles from any locus). Although the first two principal component axes account for only 10.5% of the total molecular variance, a substantially greater portion of that variance is among individual fish, regardless of their identity, rather than among hatchery and natural collections (Figure 6). The variances in principal component scores among individuals are 11 and 13 times greater than the variance in scores among collections, along the first and second axes, respectively.

Second, we conducted a series of analyses of molecular variance (AMOVA) to ascertain the percentage of molecular variance that could be attributed to differences among collections. We organized these analyses to test also for differences in the hierarchical structure of the data. That is, we tested for differences among collections using the following framework:

- No organizational structure - all 25 origin-spawner collections considered separately
- Origin-spawner collections organized into 10 collection year groups
- Origin-spawner collections organized into 2 breeding location groups (hatchery versus natural)
- Origin-spawner collections organized into 2 origin groups (hatchery versus natural)
- Origin-spawner collections organized into the 4 origin-spawner groups

It is clear from this analysis that nearly all molecular variation, no matter how the data are organized, resides within a collection (Table 5). The percentage of total molecular variance occurring within collections ranged from 99.68% to 99.74%. The among group variance component was limited to less than 0.26% and in all organizational structures,
except "no structure," the among group percentage was not significantly greater than zero. Furthermore, none of the organizational structures provided better resolution than "no structure" in terms of accounting for molecular variance within the data set. These results indicate that if there are significant differences among collections of Chiwawa fish, these differences account for less than one percent of the total molecular variance, and these differences cannot be attributed to fish origin or spawning location.

Summary and Conclusions

We reject the null hypothesis that the allele frequencies of the hatchery collections equal the allele frequencies of the natural collections, which equals the allele frequency of the donor population. Furthermore, because the allele-sharing distances are not consistent within and among collections years, we also reject the second stated hypothesis discussed above. However, there is an extremely small amount of genetic variance that can be attributed to among collection differences. The allelic differentiation that does exist among collections does not appear to be a function of fish origin, spawning location, genetic drift, or collection year. Figure 5 and related statistics does suggest that hatchery and natural collections in 2005 and 2006 are more similar to each other than previous years' collections, and this would be expected in a successful integrated hatchery supplementation program.

Since each of these collection years are generally composed of four-year-old fish, the differentiation among these collections for the most part is differentiation among specific cohorts. The slightly greater percentage of alleles shared among collections that are separated in time by multiples of four years, compared with collections that are not separated in time as such, suggests that cohort differences may be the most important factor accounting for differences in allele frequencies among collections.

Task 4: Develop a model of genetic drift.

See Task 3

Task 5: Analyze spring Chinook population samples from the Chiwawa River and Chiwawa Hatchery from multiple generations.

See Task 3

Task 6: Analyze among population differences for upper Wenatchee spring Chinook.

Supplementation of the Chiwawa River spring Chinook population may affect populations within the Wenatchee River watershed other than the Chiwawa River stock. If the stray rate for Chiwawa hatchery-origin fish is greater than that for natural-origin fish, an increase in gene flow from the Chiwawa population into other populations may result. If this gene flow is high enough, Chiwawa River fish may alter the genetic structure of these other populations. Records from field observations indicate that hatchery-origin fish are present in all major spawning aggregates (A.R Murdoch, unpublished data), and these fish are successfully reproducing (Blankenship et al 2006). The intent of this task is to investigate if there have been changes to the genetic structure of the spring Chinook stocks within upper Wenatchee tributaries during the past 15-20 years, and if changes have occurred, are they a function of the Chiwawa River Supplementation Program? Therefore, we ask the following two questions:

1. Are allele frequencies within populations in the upper Wenatchee stable through time? That is, is there significant allelic differentiation among collections within upper Wenatchee populations?
2. Are the recent collections from the upper Wenatchee populations more similar to the Chiwawa population than earlier collections from the same populations?

For this task we analyzed natural spawning collections from the White River (naturalorigin), Little Wenatchee River (natural-origin), Nason Creek (natural-origin), and

Wenatchee mainstem (hatchery-origin), and hatchery collections from Leavenworth NFH and Entiat River NFH (Table 1). We also included in the analysis the natural- and hatchery-origin collections from the Chiwawa River. There are no repeated collections from Leavenworth, Entiat, Little Wenatchee, and Wenatchee mainstem (Table 1), so for many of the analyses we have limited our discussion to the Chiwawa River, White River, and Nason Creek collections. Furthermore, genetic structure of the Little Wenatchee collection, which consisted of only 19 samples, was unexpectedly quite different from the other collections. For example, the $\mathrm{F}_{\text {ST }}$ statistic measures the percent of total molecular variation that can be attributed to differences between populations. The median $\mathrm{F}_{\text {ST }}$ for all pairwise combinations of collections from all populations, except Little Wenatchee (33 populations, 528 individual $\mathrm{F}_{\text {ST }}$ statistics) equals 0.010 (1%), with a range of 0.000 to 0.037 (Table 6). The median $\mathrm{F}_{\text {ST }}$ for the Little Wenatchee paired with all other collections (33 individual $\mathrm{F}_{\text {ST }}$ statistics) equals 0.106 (10.6%), with a range of 0.074 to 0.121 . The ten-fold increase in the $\mathrm{F}_{\text {ST }}$ statistic indicates that either the Little Wenatchee spring Chinook is unique among the upper Wenatchee River stocks, or this 1993 collection is somehow aberrant. Therefore, we exclude the Little Wenatchee collection from many other analyses.

Population Differentiation - Table 3 provides the levels of significance for all pairwise genic differentiation tests. Most between-collection comparisons are highly significant, with no pattern of increasing or decreasing differentiation with time, and no differences when comparisons are made with Chiwawa hatchery- versus Chiwawa natural-origin fish. For example, excluding the outlier 1996 and 1998 Chiwawa hatchery- and naturalorigin collections, Nason Creek showed highly significant allele frequency differences between the Chiwawa hatchery- and natural-origin collections at 100% and 86% of the comparisons, respectively. The same comparisons with the White River produced 100% and 93% highly significant allele frequency comparisons, respectively. Allele frequencies between Nason Creek and White River were likewise differentiated from each other.

The collection allele frequencies within the upper Wenatchee system are significantly different, and these differences do not appear to change as a function of time (Table 3). Nason Creek shows greater within-population year-to-year variation in allele frequencies than does the White River, with 47\% of the pairwise comparisons showing highly significant differences, compared with only 13% for the White River. However, the 2005 and 2006 collections from the White River appear to be somewhat more differentiated from not only each other, but from the earlier collections from the White River.

Despite the high degree of temporal and spatial structure suggested by the genic differentiation tests, as described above for within-Chiwawa analysis (Task 3), most of the genetic variation within this data set occurs within populations, rather than between populations (Table 6). The $\mathrm{F}_{\text {ST }}$ values for most population comparisons are between 0.01 and 0.02 , indicating 1% to 2% among-population variance, with the remaining 98% to 99\% variance occurring within populations. The White River shows the highest median F_{ST} among the natural-origin collections, equal to 0.014 , compared with 0.009 for both the Nason Creek and Chiwawa natural-origin collections. The median $\mathrm{F}_{\text {ST }}$ for the Chiwawa hatchery-origin collections (0.012) was higher than that for the Chiwawa natural-origin collections.

Table 7 summarizes the information from the $\mathrm{F}_{\text {ST }}$ analyses, under five different temporal and spatial scenarios. Under all scenarios, over 99% of the molecular variance is within populations. There is significantly greater spatial structure among populations ("Origin") in 2005 and 2006 than from 1989 to 1996. That is, there appears to be more spatial structure among the Chiwawa hatchery-origin, Chiwawa natural-origin, White River, and Nason Creek now, than in 1989 to 1996, despite the potential homogenizing and cumulative effect of hatchery strays. However, we stress that the amount of molecular variance associated with the among population differences, despite being significantly greater than 0.00%, is limited to only 0.43%.

Allele-sharing and Nonmetric Multidimensional Scaling - As in the Chiwawa River data discussed above, we constructed an allele-sharing distance matrix and then subjected
that matrix to a multidimensional scaling analysis (Figure 7). Consistent with all previously discussed multidimensional scaling analyses, the 1996 and 1998 adult, and the 1994 smolt collections are outliers. There is clear separation between the White River collections and all other natural-origin and Chiwawa hatchery-origin collections, indicating that there are more alleles shared among the Nason Creek and Chiwawa collections, than with the White River collections. Furthermore, there is a slight separation between the Chiwawa natural-origin natural spawner collections and Nason Creek collections, suggesting different groups of shared alleles between these populations. There is more variation in the allele-sharing distances among collections involved with the Chiwawa hatchery (origin or broodstock) than any of the natural-origin collections, even if we exclude the 1994, 1996, and 1998 collections. This suggests that there is more year-to-year variation in the composition of hatchery-origin and hatchery broodstock than within natural-origin populations throughout the upper Wenatchee. All Wenatchee mainstem fish are hatchery-origin, and if these fish are from the Chiwawa Supplementation Program (rather than from Leavenworth), it is not unexpected that this collection would be plotted within the Chiwawa polygon (Figure 7).

Assignment of Individual to Populations - Finally, we conducted individual assignment tests whereby we assigned each individual fish to a population, based on a procedure developed by Rannala and Mountain (1997) (Table 8 and 9). Individual fish may be correctly assigned to the population from which they were collected, or incorrectly assigned to a different population. Incorrect assignments may occur if the fish is an actual migrant (i.e., source population different from population where collected), or because the genotype for that fish matches more closely with a population different from its source. If there are many individuals from a population incorrectly assigned to populations other than its source population, that original population is either unreal (i.e., an admixture), or there is considerable gene flow between that population and other populations. Furthermore, in assigning individuals to populations, we can either accept the assignment with the highest probability, regardless of how low that probability may be, or we can establish a more stringent criterion, such as to not accept an assignment unless the posterior probability is equal to or greater than 0.90 . This value is roughly
equal to having the likelihood of the most-likely population equal to 10 times that of the second most-likely population.

We provide a summary of the assignments in Tables 8 and 9. On average, nearly 50% of the fish are assigned incorrectly if we accept all assignments (Table 8), but the incorrect assignment rate drops to roughly 10% when we accept only those assignments with probabilities greater than 0.90 . However, with this more stringent criterion, nearly 64% of the fish go unassigned. These results indicate that the allele frequency distributions for these populations are very similar, and it would be very difficult to assign an individual fish of unknown origin to the correct population. If all fish are assigned, there is a 50% chance, overall, of a correct assignment. If you accept only those assignment with the 0.90 criterion, nearly two-thirds of the fish would be unassigned, but there is a 90% chance of correctly assigning those fish that are indeed assigned.

Of all the populations in the data set, there are fewer errors associated with assigning fish to the White River. If all fish are assigned (Table 8), 72% of those fish assigned to the White River, are actually from the White River (115 fish out of a total of 159 fish assigned to the White River). This compares to a rate of only 52% and 53% for Nason Creek and Chiwawa natural-origin, respectively, and 60% for the Chiwawa hatcheryorigin collections. With the 0.90 criterion (Table 9), 89% of the fish assigned to the White River, are actually from the White River, compared with 70% and 65% for Nason Creek and Chiwawa natural origin, respectively, and 81% for the Chiwawa hatchery origin.

When all fish are assigned, most of the incorrectly assigned fish from Nason Creek and White River are assigned to Chiwawa River, at roughly equal frequencies to the hatcheryand natural-origin populations. Incorrectly assigned fish to other populations occur at a slightly higher rate in Nason Creek than in the White River. However, when only those fish meeting the 0.90 criterion are assigned (Table 9), incorrectly assigned fish from Nason Creek are distributed among White and Chiwawa Rivers, as well as Leavenworth NFH, and the Entiat NFH. Mis-assignment to the Chiwawa hatchery-origin was the
highest among the Nason Creek collections, equal to nearly 14%. This contrasts with the White River where mis-assignments do not exceed 7% anywhere, and there is a roughly even distribution of mis-assignments among Nason Creek and Chiwawa River collections.

Summary and Conclusions - There is little geographic or temporal structure among populations within the upper Wenatchee systems. Among population molecular variance is limited to 1% or less. The little variance that can be attributed to among populations indicates that the White River is more differentiated from the Chiwawa and Nason populations than these populations are from each other. Furthermore, although we cannot rule out a hatchery effect on the Nason Creek and White River populations, there is no indication there has been any temporal changes in allele frequencies within these populations that can be attributed directly to the Chiwawa River Supplementation Program. In fact, Table 7 weakly suggests that there is more differentiation among these populations now, than there was before or at the early stages of Chiwawa supplementation.

Therefore, returning to our two original questions, there are significant differences in allele frequencies among collections within populations, and among populations within the upper Wenatchee spring Chinook stocks. However, these differences account for a very small portion of the overall molecular variance, and these populations overall are very similar to each other. There is no evidence that the Chiwawa River Supplementation Program has changed the allele frequencies in the Nason Creek and White River populations, despite the presence of hatchery-origin fish in both these systems. Finally, of all the populations within the Wenatchee River, the White River appears to be the most distinct. Yet, this distinction is more a matter of detail than of large significance, as the median F_{ST} between White River collections and all other collections (except the Little Wenatchee) is less than 1.5% among population variance.

Task 7: Calculate the inbreeding effective population size using demographic data for each sample year, and document the ratio of census to effective size.

This analysis was completed by Williamson et al. (submitted).

Task 8: Calculate LD \mathbf{N}_{b} using genetic data for each sample year, and document the ratio of census to effective size.

We report N_{e} estimated for the Chiwawa River collections based on the bias correction method of Waples (2006) implemented in LDNe (Do and Waples unpublished). N_{e} estimates based on LD are best interpreted as the effective number of breeders $\left(\mathrm{N}_{\mathrm{b}}\right)$ that produced the sample (Waples 2006).

For collections categorized by spawning location (i.e., hatchery broodstock or natural), estimates of N_{b} are shown in Table 10. Considering the hatchery broodstock, N_{b} estimates range from 30.4 (1996) to 274.3 (2005). To obtain $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratios, the N_{b} estimate is multiplied by four (i.e., mean generation length) and divided by the total in river (i.e., NOS [natural-origin spawners] plus HOS [hatchery-origin spawners]) census data from four years prior (i.e., major cohort; see Table 2). The observed $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratios for the broodstock collections range from 11% to 54% of the census estimate, excluding the 2000 collection which is 106%. A ratio greater than one is possible under special circumstances, and certain artificial mating schemes within hatcheries can inflate N_{e} above N ; yet, it is unknown if this is the case for this collection. While no direct comparisons are possible, the N_{b} estimates reported by Williamson et al. (submitted) for Chiwawa broodstock collections from 2000-2003 are similar in magnitude to our estimates. For Chiwawa natural spawner collections, the N_{b} estimates range from 5.2 (1989) to 231.5 (2005), with observed $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratios of $22 \%-48 \%$ of the census estimate.

Task 9: Calculate N_{b} using the temporal method for multiple samples from the same location.

Estimates of effective number of breeders $\left(\mathrm{N}_{\mathrm{b}}\right)$ derived from Waples' (1990) temporal method are shown in Tables 11-13. Eight collection years were used for the Chiwawa broodstock collections (Table 11). The harmonic mean of all pairwise estimates of N_{b} ($\widetilde{\mathrm{N}}_{\mathrm{b}}$) was 269.4. This estimate is the contemporary N_{e} for Chiwawa broodstock collections. For the five collection years of Chiwawa in-river spawners (Table 12), the estimated $\widetilde{\mathrm{N}}_{\mathrm{b}}=224.2$. This estimate is the contemporary N_{e} for Chiwawa River natural spawner collections. Since the Chiwawa Supplementation Program is integrated by design, we also performed another estimation of N_{e} using composite hatchery and natural samples. There are paired samples from 2004-2006. We combined genetic data for hatchery (HOS) and natural (NOS) origin fish from 2004-2006 to create a single Chiwawa River natural spawner sample for each year. The three composite samples from 2004 - 2006 were then analyzed using the temporal method (Table 13), resulting in a $\widetilde{\mathrm{N}}_{\mathrm{b}}$ $=386.8$. This estimate is the contemporary N_{e} for Chiwawa River.

Williamson et al. (submitted) estimated N_{e} using Waples' (1990) temporal method for Chinook captured in 2004 and 2005, and used age data to decompose brood years into consecutive cohorts from 2000 - 2003. They report for Chiwawa broodstock a $\widetilde{\mathrm{N}}_{\mathrm{b}}=$ 50.4. This estimate is not similar to our Chiwawa broodstock estimate. However, if we analyze the hatchery-origin Chinook only, our estimate is $\widetilde{\mathrm{N}}_{\mathrm{b}}=80.1$ for collection years 1989 - 2006 (data not shown). Williamson et al. (submitted) report for Chiwawa naturally spawning Chinook a $\widetilde{\mathrm{N}}_{\mathrm{b}}=242.7$, which is slightly higher than our estimate for in-river spawners from 1989 - 2006, but lower than our estimate from combined NOS and HOS Chinook from 2004-2006 collection years.

Task 10: Use available data and the Ryman-Laikre and Wang-Ryman models to determine the expected change of N_{e} for natural spring Chinook salmon in the Wenatchee River due to hatchery operation.

N_{e} is generally thought to be between 0.10 and 0.33 of the estimated census size (Bartley et al. 1992; RS Waples pers. comm.). We used this range to generate an estimate of N_{e} for Chiwawa natural spawners prior to hatchery operation. For brood years 1989 - 1992, the arithmetic mean census size was $\mathrm{N}=962.7$ (Table 2), resulting in an estimated N_{e} ranging from $96.3-317.7$. The contemporary estimate of N_{e} calculated using genetic data for the Chiwawa in-river spawners is $\mathrm{N}_{\mathrm{e}}=224.2$ (Table 12), falling in the middle of the pre-hatchery range. The $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio calculated using 224.2 and the arithmetic census of NOS Chinook from 1989 - 2005 is 0.42 . A more appropriate contemporary N_{e} to compare with the pre-hatchery estimate (i.e., $96.3-317.7$) is the combined NOS and HOS estimate from natural spawners, since the supplementation program is integrated. As discussed above, the contemporary estimate of N_{e} calculated using genetic data for Chiwawa NOS and HOS Chinook is $\mathrm{N}_{\mathrm{e}}=386.8$ (Table 13), which is slightly larger than the pre-hatchery range, suggesting the N_{e} has not declined during the period of hatchery operation. The $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio calculated using 386.8 and the arithmetic census of NOS and HOS Chinook from 1989 - 2005 is 0.40 . These results suggest the Chiwawa Hatchery Supplementation Program has not resulted in a smaller N_{e} for the natural spawners from the Chiwawa River.

Williamson et al. (submitted) argued that since their combined (i.e., broodstock and natural) N_{e} estimate was lower than the naturally spawning estimate, the supplementation program likely had a negative impact on the Chiwawa River N_{e}. We disagree with this interpretation of these data. Since the natural spawning component is mixed hatchery and natural ancestry, the N_{e} estimates from natural spawning data are the results that bear on possible hatchery impacts. The census data show the population declined in the mid 1990's and rebounded by 2000 (Table 2). This trend is reflected in the N_{e} results, as shown above, and Williamson et al. (submitted) clearly show in their Table 4 the N_{e} was lower in $2000\left(\mathrm{~N}_{\mathrm{e}}=989\right)$ than it was in $1992\left(\mathrm{~N}_{\mathrm{e}}=2683\right)$. Yet, the important comparison
they make in our view was the natural spawning N_{e} versus the natural only component N_{e} (i.e., hypothetically excluding hatchery program). Williamson et al. (submitted) report the 1989 - $1992 \mathrm{~N}_{\mathrm{e}}$ estimated from naturally spawning Chinook (i.e., NOS and HOS integrated) was essentially the same as the natural only component estimate, 2683 and 2776, respectively. This result is not surprising since no HOS fish were present between 1989 - 1992. They also report that the $1997-2000 \mathrm{~N}_{\mathrm{e}}$ estimated from naturally spawning Chinook (i.e., NOS and HOS integrated) was $\mathrm{N}_{\mathrm{e}}=989$, while the natural-origin estimate of N_{e} in $1997-2000$ was $\mathrm{N}_{\mathrm{e}}=629$. Since the natural-origin estimate of 629 is lower than 989 , the N_{e} estimate from all in-river spawners, we argue that their analysis of demographic data show the N_{e} estimated from naturally spawning Chinook (i.e., NOS and HOS integrated) is larger only if the hatchery Chinook in the river are ignored.

Task 11: Use individual assignment methods to determine the power of self-assignment for upper Wenatchee River tributaries.

See "Assignment of Individual to Populations" in Task 6

Conclusions

Has the Chiwawa Hatchery Supplementation Program succeeded at increasing the census size of the target population while leaving genetic integrity intact? This is an important question, as hatcheries can impact natural populations by reducing overall genetic diversity (Ryman and Laikre 1991), reducing the fitness of the natural populations through relaxation of selection or inadvertent positive selection of traits advantageous in the hatchery (Ford 2002; Lynch and O’Hely 2001), and by reducing the reproductive success of natural populations (McLean et al. 2003). The census data presented here show that the current natural spawning census size is similar to the pre-supplementation census size. Despite large numbers of hatchery-origin fish on the Chiwawa River spawning grounds, the genetic diversity of the natural-origin collections appear unaffected by the supplementation program; heterozygosities are high, and contemporary N_{e} is similar (perhaps slightly higher) than pre-supplementation N_{e}. We did find
significant year-to-year differences in allele frequencies in both the origin and spawner datasets, but these differences do not appear to be related to fish origin, spawning area, or genetic drift. However, we do suggest that cohort differences may be the most important factor accounting for differences in allele frequencies among collections.

The main objective of this study was to determine the potential impacts of the hatchery program on natural spring Chinook in the upper Wenatchee system. We did this by analyzing temporally replicated collections from the Chiwawa River, and by comparing genetic diversity prior to the presumed effect of the Chiwawa Hatchery Supplementation Program, with contemporary collections. We report that the genetic diversity present in the Chiwawa River is unchanged (allowing for differences among cohorts) from 1989 2006, and the contemporary estimate of the effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$ using genetic data is approximately the same as the N_{e} estimate extrapolated from 1989-1992 census data (i.e., pre-hatchery collection years). We observed substantial genetic diversity, with heterozygosities $\sim 80 \%$ over thirteen microsatellite markers. Yet, temporal variation in allele frequencies was the norm among temporal collections from the same populations (i.e., location). The genetic differentiation of replicated collections from the same population is likely the result of salmon life history in this area, as four-year-old Chinook comprise a majority of returns each year. The genetic tests are detecting the differences of contributing parents for each cohort. An important point related to the temporal variation, is that the hatchery broodstock is composed in part of the natural origin Chinook from the Chiwawa River. When we compared the genetic data (within a collection year) for Chinook brought into the hatchery as broodstock with the Chinook that remained in the river (years 2001, 2004 - 2006), there was a trend of decreasing statistical differences in allele frequencies from 2001 to 2004, and no differences were detected for 2005 and 2006. While the replicated collections may have detectable differences in allele frequencies, those differences reflect actual differences in cohorts, not the result of hatchery operations, and the hatchery broodstock collection method captures the differences in returning Chiwawa River spring adults each year. We conclude from these results that the genetic diversity of natural spring Chiwawa Chinook has been maintained during the Chiwawa Hatchery Supplementation Program.

We observe slight, but statistically significant population differentiation between Chiwawa River, White River, and Nason Creek collections. Murdoch et al (2006) and Williamson et al. (submitted) also observed population differentiation between Chiwawa River, White River, and Nason Creek collections. Yet, 99.3% of the genetic variation observed was within samples, very little variance could be attributed to population differences (i.e., population structure). The AMOVA analysis and poor individual assignment results suggest the occurrence of gene flow among Wenatchee River locations or a very recent divergence of these groups. While Murdoch et al. 2006 did not perform an AMOVA analysis, their $\mathrm{F}_{\text {ST }}$ results provide comparable data to our amongpopulation results. Murdoch et al. 2006 report $\mathrm{F}_{\text {ST }}$ ranging from $2 \%-3 \%$ for pairwise comparisons between of Chiwawa, White, and Nason River collections. Since F_{ST} is an estimate of among-sample variance, these results also imply a majority of the genetic variance (i.e., $97 \%-98 \%$) resides within collections. To provide further context for the magnitude of these variance estimates, we present the among-group data from Murdoch et al. 2006 comparing summer-run and spring-run Chinook from the Wenatchee River. They report that approximately 91% of observed genetic variance is within-collection for comparisons between collections of summer- and spring-run Chinook. Ultimately, the information provided by this and other reports will be incorporated into the management process for Wenatchee River Chinook. However, we would like to emphasize that the application of these genetic data to management is more about the goals related to the distribution of genetic diversity in the future than specific data values reported. If Chinook are collected at Tumwater Dam instead of within the upper Wenatchee River tributaries, a vast majority of the genetic variation present in the basin would be captured, although any differences among tributaries would be mixed. Alternatively, management policies could be crafted to promote and maintain the among-group genetic diversity that genetic studies consistently observe to be non-zero within the Wenatchee River.

We agree with Murdoch et al. (2006) that it appears hatchery Chinook are not contributing to reproduction in proportion to their abundance. Additionally, if the total census size (i.e., NOS and HOS combined) within the Chiwawa River does not continue
to increase, genetic diversity may decline within this system, given the smaller N_{e} within the hatchery-origin collections compared with the natural-origin collections.

Acknowledgements

We would like to thank Denise Hawkins, Craig Busack, and Cheryl Dean for helpful comments regarding this project. This project was funded by Chelan County PUD and the Washington State General Fund.

Literature Cited

Araki H, Waples RS, Ardren WR, Cooper B, Blouin MS (2007) Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Molecular Ecology, 16:953966.

Arden WR and Kapuscinski AR (2003) Demographic and genetic estimates of effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$ reveals genetic compensation in steelhead trout. Molecular Ecology 12: 35-49

Banks MA, Blouin MS, Baldwin BA, Rashbrook VK, Fitzgerald HA, Blankenship SM, Hedgecock D (1999) Isolation and inheritance of novel microsatellites in chinook salmon (Oncorhynchus tschawytscha). Journal of Heredity, 90:281-288.

Banks MA, Rashbrook VK, Calavetta MJ et al (2000) Analysis of microsatellite DNA resolves genetic structure and diversity of chinook salmon (Oncorhynchus tshawytscha) in California's Central Valley. Canadian Journal of Fisheries and Aquatic Sciences 57:915-927.

Bartley D, Bentley B, Brodziak J, Gomulkiewicz R, Mangel M, and Gall GAE (1992) Geographic variation in population genetic structure of chinook salmon from California and Oregon. Fish. Bull., U.S. 90:77-100.

Blankenship SM, Von Bargen J, and Truscott KD (2006) Genetic analysis of White River juveniles retained for captive brood at AquaSeed to assess the hatchery status of contributing parents. Developed for Grant County PUD.

Blankenship SM and Murdoch AR (2006) Study Plan For Assessing the Genetic Diversity of Natural Chiwawa River Spring Chinook Salmon And Evaluating The Effectiveness Of Its Supportive Hatchery Supplementation Program. Developed for Chelan County PUD and the Habitat Conservation Plan's Hatchery Committee.

Bugert R (1998) Mechanics of supplementation in the Columbia River. Fisheries 23:1120.

Cairney M, Taggart JB, Hoyheim B (2000) Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol Ecol, 9:2175-2178.

Campton DE (1987) Natural hybridisation and introgression in fishes: methods of detection and genetic interpretations. In: Population genetics and fisheries management. (Eds. Ryman, N. and Utter, F.), pp. 161-192. Washington Sea Grant Program, University of Washington Press, Seattle, USA.

Chapman D, Giorgi A, Hillman T, Deppert D, Erho M, Hays S, Peven C, Suzumoto B, and Klinge R (1994) Status of summer/fall chinook salmon in the mid-Columbia region. Report for Chelan, Douglas, and Grant County PUDs. 412 p. + app. (Available from Don Chapman Consultants, 3653 Rickenbacker, Ste. 200, Boise, ID 83705.)

Chapman D, Peven C, Giorgi A, Hillman T, and Utter F (1995) Status of spring chinook salmon in the mid-Columbia River. Don Chapman Consultants, Inc., 477 p. (Available from Don Chapman Consultants, 3653 Rickenbacker, Ste. 200, Boise, ID 83705.)

Cockerham CC (1969) Variance of gene frequencies. Evolution 23:72-83.
Craig JA, and Suomela (1941) Time of appearance of the runs of salmon and steelhead trout native to the Wenatchee, Entiat, Methow, and Okanogan rivers. U.S. Fish Wildl. Serv.

Fish FF, and Hanavan MG (1948) A report on the Grand Coulee Fish Maintenance. Project 1939-1947. U.S. Fish Wildl. Serv. Spec. Sci. Rep 55.

Ford MJ (2002) Selection in captivity during supportive breeding may reduce fitness in the wild. Conservation Biology 16(3):815-825

Frankham R, Ballou JD, Briscoe DA (2002). Introduction to Conservation Genetics, Cambridge University Press, Cambridge, UK.

Greig C, Jacobson DP, Banks MA (2003) New tetranucleotide microsatellites for finescale discrimination among endangered chinook salmon (Oncorhynchus tshawytscha). Mol Ecol Notes, 3:376-379.

Heath DD, Busch C, Kelly J, and Atagi DY (2002) Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Molecular Ecology 11:197-214

Hedrick P, Hedgecock D (1994) Effective population size in winter-run chinook salmon. Conservation Biology, 8:890-892.

Hill WG (1981) Estimation of effective size from data on linkage disequilibrium. Genetical Research 38: 209-216.

Jensen LF, Hansen MM, Carlsson J et al (2005) Spatial and temporal genetic differentiation and effective population size of brown trout (Salmo trutta, L.) in small Danish rivers. Conservation Genetics 6:615-621.

Liu, K and Muse SV (2005) PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics 21:2128-2129.

Lynch M and O'Hely M (2001) Captive breeding and the genetic fitness of natural populations. Conservation Genetics 2:363-378

Manly, BFJ. (1986) Multivariate Statistical Methods. A Primer. Chapman and Hall. London.. 159 + x pp.

McLean JE, Bentzen P, Quinn TP (2003) Differential reproductive success of sympatric, naturally spawning hatchery and wild steelhead trout (Oncorhynchus mykiss) through the adult stage. Can. J. Fish. Aquat. Sci., 60:433-440.

Mullan, JW (1987) Status and propagation of chinook salmon in the mid-Columbia River through 1985. U.S. Fish Wildl. Serv. Biol. Rep. 87:111.

Murdoch AR and Peven C (2005) Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Hatchery Programs, Final Report.

Murdoch AR, Pearsons TN, Maitland TW, Ford M, and Williamson K (2006) Monitoring the reproductive success of naturally spawning hatchery and natural spring Chinook salmon in the Wenatchee River. BPA Project No. 2003-039-00, Contract No. 00021391. pp. 96

Nelson WR, and Bodle J (1990) Ninety years of salmon culture at the Little White Salmon National Fish Hatchery. U.S. Fish Wildl. Serv. Biol. Rep. 90:22.

Palm S, Laikre L, Jorde PE, et al (2003) Effective population size and temporal genetic change in stream resident brown trout (Salmo trutta, L.). Conservation Genetics 4:249-264.

Olsen JB, Bentzen P, Seeb JS (1998) Characterization of seven microsatellite loci derived from pink salmon. Molecular Ecology, 7:1087-1089

Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences 94:9197-9201.

Rexroad CE, Coleman RL, Martin AM, Hershberger WK, Killefer J (2001) Thirty-five polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Animal Genetics, 32:317-319.

Rohlf, F. J. (2002) NTSYSpc: Numerical Taxonomy System, ver. 2.1. Exeter Publishing, Ltd.

Ryman N, Laikre L (1991) Effects of supportive breeding on the genetically effective population size. Conservation Biology, 5:325-329.

Seeb L, et al. (in review) Development of a Standardized DNA Database for Chinook Salmon. Fisheries

Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.000: A software for population genetic data analysis. Genetics and Biometry Laboratory. University of Geneva, Switzerland.

The Mathworks (2006) MatLab Release R2006b. Massachusetts.
Utter FM, Chapman DW, and Marshall AR (1995) Genetic population structure and history of chinook salmon of the Upper Columbia River. Am. Fish. Soc. Symp. 17:149-165.

Wang J (2005) Estimation of effective size from data on genetic markers. Trans. Royal. Phil. Soc. B 360: 1395-1409.

Wang J, and Ryman N (2001) Genetic effects of multiple generations of supportive breeding. Conservation Biology 15: 1615-1631.

Wang J, Whitlock MC (2003) Estimating Effective Population Size and Migration Rates From Genetic Samples Over Space and Time. Genetics 163:429-446

Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121:379-391.

Waples RS (1990) Conservation genetics of Pacific salmon. III. Estimating effective population size. J. Hered. 81: 277-289.

Waples RS (1991) Genetic interactions between hatchery and wild salmonids: Lessons from the Pacific Northwest. Can. J. Fish. Aquat. Sci. 48(Suppl. 1):124-133.

Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology, 14:3335-3352

Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics 7:167-184

Washington Department of Fisheries (WDF). 1934. Forty-second and forty-fifth inclusive annual reports of the State Department of Fisheries for the period from April 1, 1931-March 31, 1935, fiscal years of 1931 to 1934 inclusive. Wash. Dep. Fish., pp. 78

Williamson K, Cordes J, May B (2002) Characterization of microsatellite loci in chinook salmon (Oncorhynchus tshawytscha) and cross-species amplification in other salmonids. Molecular Ecology Notes, 2:17-19.

Williamson KS, Murdoch AR, and Ford MJ (submitted) Influence of supportive breeding on genetic diversity of hatchery and natural Wenatchee River spring Chinook salmon.

Figure 1. Conceptual process for evaluating potential changes in genetic variation in the Chiwawa naturally produced populations as a result of the supplementation hatchery programs (From Murdoch and Peven 2005).

Figure 2. Multidimensional scaling plot from an allele-sharing distance matrix calculated from the Chiwawa data set organized by fish origin (i.e., hatchery versus natural). The red arrows connect consecutive hatchery-origin collections starting with the first adult collection (1996) and ending with the 2006 collection (see Table 1 for collection years).

Figure 3. Relationships between the time interval in years and allele sharing distances, with each circle representing the pairwise relationship between two Chiwawa collections. Separate regression lines for the natural- and hatchery-origin collections. The slope for the natural-origin collection is not significantly different from zero ($\mathrm{p}=0.1483$), while the slope for hatchery-origin collection is significantly greater than zero ($\mathrm{p}=0.0254$) indicating a positive relationship between time interval and allele sharing distance.

Figure 4. Multidimensional scaling plot from an allele-sharing distance matrix calculated from the Chiwawa data set organized by four treatment groups, as discussed in the text. Each circle represents a single collection within each of the four treatment groups, and the polygon encloses all groups that are not outliers. Each outlier group is specifically labeled.

Figure 5. As in Figure 4, but allele-sharing distance matrix recalculated without the five outlier groups shown in Figure 4. Polygons group together treatment groups from the same collection year. Dates associated with symbols also refer to collection year. Collection years 2004-2006 included all four treatment groups, while collection year 2001 did not include a hatchery-origin natural spawner group. Legend is read as follows: Open circles refer to hatchery-origin hatchery spawner group, while filled box refers to natural-origin hatchery spawner group, and so on.

Figure 6. Principal component (PC) analysis of individual fish from the Chiwawa River. Only fish with complete microsatellite genotypes were included in the analysis $(\mathrm{n}=757)$. Open circles are the PC scores for individual fish, and the filled circles are the centroids (bivariate means) for each of the 25 groups discussed in the text. PC axes 1 and 2 account for only 10.5% of the total molecular variance.

Figure 7. Multidimensional scaling plot from an allele-sharing distance matrix calculated from the Chiwawa origin data set and all other non-Chiwawa collections, except Little Wenatchee River. Legend is read with abbreviations beginning with origin and then spawning location. $\mathrm{H}=$ hatchery, $\mathrm{N}=$ natural, and $\mathrm{S}=$ smolts. Polygons with solid lines enclose the naturalorigin natural spawner collections from each population (i.e., river). The polygon with the dotted lines enclose all Chiwawa collections, except for the five outlier collections, as discussed in text.

Table 1 Summary of within population genetic data. Chiwawa collection data are summarized in A) by origin of the sample (i.e., clipped vs. non-clipped). All collection data are summarized in B) by spawning location (i.e., hatchery broodstock or on spawning grounds). Hz is heterozygosity, HWE is the statistical significance of deviations from Hardy-Weinberg expectations ($*=0.05, * *=0.01$, and ${ }^{* * *}=0.001$), LD is the proportion of pairwise locus tests (across all populations) exhibiting linkage disequilibrium (bolded values are statistically significant), and the last column is mean number of alleles per locus.

	Sample size	Gene Diversity	Observed Hz	HWE	F $_{\text {IS }}$	LD	Mean \# Alleles

A) Origin

1993 Chiwawa Hatchery	95	0.77	0.79	$* * *$	-0.02	$\mathbf{0 . 8 6}$	14.00
1994 Chiwawa Hatchery	95	0.76	0.77	$* * *$	-0.01	$\mathbf{0 . 9 1}$	11.38
1996 Chiwawa Hatchery	8	0.75	0.81	-	-0.01	0.00	8.23
1998 Chiwawa Hatchery	27	0.81	0.82	-	0.00	0.04	12.62
2000 Chiwawa Hatchery	43	0.75	0.78	$* * *$	-0.01	$\mathbf{0 . 1 9}$	12.46
2001 Chiwawa Hatchery	69	0.77	0.80	$* * *$	-0.02	$\mathbf{0 . 1 4}$	15.31
2004 Chiwawa Hatchery	72	0.77	0.77	$* * *$	0.01	$\mathbf{0 . 4 5}$	15.92
2005 Chiwawa Hatchery	91	0.79	0.82	$*$	-0.03	$\mathbf{0 . 0 5}$	16.15
2006 Chiwawa Hatchery	95	0.80	0.84	$* * *$	-0.05	$\mathbf{0 . 4 9}$	15.85
1989 Chiwawa Natural	36	0.76	0.78	-	0.01	0.00	12.77
1993 Chiwawa Natural	62	0.78	0.81	-	-0.02	0.04	15.85
1996 Chiwawa Natural	8	0.72	0.78	-	-0.02	0.00	7.54
1998 Chiwawa Natural	10	0.78	0.84	-	0.00	0.00	8.23
2000 Chiwawa Natural	39	0.78	0.79	$* * *$	0.00	$\mathbf{0 . 1 0}$	14.00
2001 Chiwawa Natural	75	0.78	0.80	-	-0.03	0.03	15.31
2004 Chiwawa Natural	85	0.78	0.77	-	0.02	0.01	15.77
2005 Chiwawa Natural	90	0.79	0.79	-	0.01	0.01	16.15
2006 Chiwawa Natural	96	0.80	0.81	-	-0.01	0.01	16.46

Table 1 Within population genetic data analysis summary continued.

	Sample size	Gene Diversity	Observed Hz	HW	$\mathrm{F}_{\text {IS }}$	LD	Mean \# Alleles
Collection							
B) Spawning Location							
1993 Chiwawa Broodstock	62	0.78	0.81	-	-0.02	0.00	15.85
1996 Chiwawa Broodstock	16	0.75	0.79	-	-0.02	0.00	10.92
1998 Chiwawa Broodstock	37	0.82	0.83	-	0.00	0.01	14.38
2000 Chiwawa Broodstock	82	0.78	0.78	$* * *$	0.00	$\mathbf{0 . 3 2}$	15.62
2001 Chiwawa Broodstock	89	0.78	0.80	$*$	-0.02	$\mathbf{0 . 1 3}$	15.77
2004 Chiwawa Broodstock	61	0.77	0.76	$*$	0.02	$\mathbf{0 . 1 3}$	14.92
2005 Chiwawa Broodstock	75	0.79	0.78	$*$	0.02	0.01	15.85
2006 Chiwawa Broodstock	89	0.80	0.83	-	-0.03	$\mathbf{0 . 0 5}$	16.46
1989 Chiwawa River	36	0.76	0.78	-	0.01	0.00	12.77
2001 Chiwawa River	55	0.78	0.80	-	-0.02	$\mathbf{0 . 0 9}$	14.00
2004 Chiwawa River	96	0.78	0.78	$*$	0.01	$\mathbf{0 . 1 8}$	17.23
2005 Chiwawa River	106	0.79	0.82	$*$	-0.02	$\mathbf{0 . 0 6}$	16.69
2006 Chiwawa River	102	0.80	0.83	$* * *$	-0.03	$\mathbf{0 . 1 0}$	16.77
1989 White River	48	0.75	0.75	-	0.01	0.01	12.85
1991 White River	19	0.76	0.76	-	0.03	0.00	10.92
1992 White River	22	0.75	0.79	-	-0.02	0.01	11.00
1993 White River	21	0.75	0.69	$*$	0.10	0.00	10.15
2005 White River	29	0.75	0.77	-	-0.01	0.03	12.23
2006 White River	40	0.76	0.76	-	0.01	0.04	13.38

Table 1 Within population genetic data analysis summary continued.

Collection	Sample size	Gene Diversity	Observed Hz	HW	$\mathrm{F}_{\text {IS }}$	LD	Mean \# Alleles
1993 Little Wenatchee R.	19	0.84	0.85	-	0.02	0.00	11.23
1993 Nason Creek	45	0.78	0.80	-	-0.01	0.01	13.77
2000 Nason Creek	51	0.76	0.78	-	-0.02	$\mathbf{0 . 1 3}$	13.92
2001 Nason Creek	41	0.79	0.81	-	-0.01	$\mathbf{0 . 0 8}$	14.23
2004 Nason Creek	38	0.76	0.76	-	0.02	0.03	13.23
2005 Nason Creek	45	0.78	0.82	-	-0.04	0.03	14.92
2006 Nason Creek	48	0.80	0.82	-	-0.01	0.00	15.77
2001 Wenatchee River	32	0.79	0.80	$*$	0.00	0.04	12.85
2000 Leavenworth NFH	73	0.80	0.82	$*$	-0.02	$\mathbf{0 . 1 5}$	16.23
1997 Entiat NFH	37	0.81	0.83	-	-0.01	$\mathbf{0 . 0 6}$	14.38

Table 2 Demographic data for Chiwawa Hatchery and Chiwawa natural spring Chinook salmon. BS is census size of hatchery broodstock, pNOB is the proportion of hatchery broodstock of natural origin, NOS is the census size of natural-origin spawners present in Chiwawa River, HOS is the census size of hatchery-origin spawners present in Chiwawa River, Total is NOS and HOS combined, and pNOS is the proportion of spawners present in Chiwawa River of natural origin.

Brood Year	Hatchery		In River			
	BS	pNOB	NOS	HOS	Total	pNOS
1989	28	1	1392	0	1392	1.00
1990	18	1	775	0	775	1.00
1991	32	1	585	0	585	1.00
1992	78	1	1099	0	1099	1.00
1993	94	1	677	491	1168	0.58
1994	11	0.64	190	90	280	0.68
1995	0	0	8	50	58	0.14
1996	18	0.44	131	51	182	0.72
1997	111	0.29	210	179	389	0.54
1998	47	0.28	134	45	178	0.75
1999	0	0	119	13	132	0.90
2000	30	0.3	378	310	688	0.55
2001	371	0.3	1280	2850	4130	0.31
2002	71	0.28	694	919	1613	0.43
2003	94	0.44	380	223	603	0.63
2004	215	0.39	820	788	1608	0.51
2005	270	0.33	250	1222	1472	0.17

Table 3 Levels of significance for pairwise tests of genic differentiation among all hatchery- and natural-origin collections used in this analysis. HS = highly significant ($\mathrm{P}<0.000095$; the Bonferroni corrected p -value for an alpha $=0.05$); * $=\mathrm{P}<0.05$ (nominal critical value for most statistical test); - $=\mathrm{P}>0.05$ (not significant). A significant result between pairs of populations indicates that the allele frequencies between the pair are significantly different. Results are read by comparing the collections along the rows to collections along columns. The top block for each section is a symmetric matrix, as it compares collections within the same group.

		Chiwawa - Hatchery Origin								
		1993	1994	1996	1998	2000	2001	2004	2005	2006
	1993		HS	*	HS	HS	HS	HS	HS	HS
	1994	HS		HS						
	1996	*	HS		*	-	*	-	-	*
	1998	HS	HS	*		HS	HS	HS	HS	HS
	2000	HS	HS	-	HS		HS	*	HS	HS
	2001	HS	HS	*	HS	HS		HS	*	HS
	2004	HS	HS	-	HS	*	HS		HS	HS
	2005	HS	HS	-	HS	HS	*	HS		HS
	2006	HS	HS	*	HS	HS	HS	HS	HS	
	1989	HS	HS	-	HS	HS	*	HS	HS	HS
	1993	HS	HS	-	HS	HS	-	HS	*	HS
	1996	*	HS	-	*	-	-	-	-	-
	1998	HS	HS	-	-	HS	*	*	*	-
	2000	HS	HS	-	HS	HS	HS	*	HS	HS
	2001	HS	HS	-	HS	HS	HS	HS	*	HS
	2004	HS	HS	-	HS	HS	HS	HS	HS	HS
	2005	HS	HS	-	HS	HS	*	HS	*	HS
	2006	HS	HS	-	*	HS	HS	HS	HS	HS
$\begin{aligned} & \overline{0} \\ & \text { N} \\ & \text { Z} \end{aligned}$	1996	HS	HS	-	HS	HS	HS	HS	HS	HS
	2000	HS	HS	*	HS	HS	HS	HS	HS	HS
	2001	HS	HS	-	HS	HS	HS	HS	HS	HS
	2004	HS	HS	-	HS	HS	HS	HS	HS	HS
	2005	HS	HS	-	HS	HS	HS	HS	HS	HS
	2006	HS	HS	-	*	HS	HS	HS	HS	HS
$\begin{aligned} & \text { \#! } \\ & \frac{1}{3} \end{aligned}$	1989	HS								
	1991	HS	HS	-	HS	HS	HS	HS	HS	HS
	1992	HS	HS	*	HS	HS	HS	HS	HS	HS
	1993	HS	HS	*	HS	HS	HS	HS	HS	HS
	2005	HS	HS	-	HS	HS	HS	HS	HS	HS
	2006	HS								
$\begin{aligned} & \pm \\ & \stackrel{\text { ¢ }}{0} \end{aligned}$	Wen-M	HS	HS	*	HS	HS	*	*	-	HS
	Leaven	HS	HS	*	HS	HS	HS	HS	HS	HS
	Entiat	HS	HS	*	HS	HS	HS	HS	HS	HS

Table 3 (con't)

		Chiwawa - Natural Origin								
		1989	1993	1996	1998	2000	2001	2004	2005	2006
	1989		-	-	-	-	*	*	*	*
	1993	-		-	*	*	*	HS	*	HS
	1996	-	-		-	-	-	-	-	-
	1998	-	*	-		*	*	HS	*	*
	2000	-	*	-	*		HS	-	HS	HS
	2001	*	*	-	*	HS		HS	*	HS
	2004	*	HS	-	HS	-	HS		HS	HS
	2005	*	*	-	*	HS	*	HS		*
	2006	*	HS	-	*	HS	HS	HS	*	
$\begin{aligned} & \overline{0} \\ & \text { on } \\ & \text { Zn} \end{aligned}$	1996	*	*	-	*	*	HS	HS	HS	HS
	2000	HS								
	2001	HS	*	-	*	HS	HS	HS	HS	HS
	2004	HS	HS	-	HS	HS	HS	HS	HS	HS
	2005	*	*	-	*	HS	HS	HS	HS	HS
	2006	HS	HS	-	-	HS	HS	HS	HS	HS
	1989	HS	HS	*	HS	HS	HS	HS	HS	HS
	1991	HS	HS	*	-	HS	HS	HS	HS	HS
	1992	HS	HS	-	*	HS	HS	HS	HS	HS
	1993	HS	*	-	*	HS	HS	HS	HS	HS
	2005	HS	*	*	*	HS	HS	HS	*	HS
	2006	HS	HS	*	HS	HS	HS	HS	HS	HS
$\begin{aligned} & \text { む } \\ & \stackrel{ \pm}{0} \end{aligned}$	Wen-M	*	-	-	-	*	*	HS	*	*
	Leaven	HS	HS	*	*	HS	HS	HS	HS	HS
	Entiat	HS	HS	*	HS	HS	HS	HS	HS	HS

Table 3 (con't)

		Nason					
		1996	2000	2001	2004	2005	2006
$\begin{aligned} & \overline{0} \\ & \text { Un } \\ & \text { Z} \end{aligned}$	1996		HS	-	HS	-	*
	2000	HS		HS	HS	HS	HS
	2001	-	HS		*	-	*
	2004	HS	HS	*		*	HS
	2005	-	HS	-	*		-
	2006	*	HS	*	HS	-	
	1989	HS	HS	HS	HS	HS	HS
	1991	*	HS	HS	HS	*	*
	1992	HS	HS	HS	HS	HS	HS
	1993	*	HS	HS	HS	HS	HS
	2005	*	HS	HS	HS	HS	HS
	2006	HS	HS	HS	HS	HS	HS
$\begin{aligned} & \text { む } \\ & \stackrel{ \pm}{0} \end{aligned}$	Wen-M	HS	HS	HS	HS	*	HS
	Leaven	HS	HS	HS	HS	HS	HS
	Entiat	HS	HS	HS	HS	HS	HS

Table 3 (con't)

		White						Other		
		1989	1991	1992	1993	2005	2006	$\begin{array}{\|c} \text { Wen-M } \\ 2001 \end{array}$	$\begin{gathered} \text { Leaven } \\ 2000 \end{gathered}$	$\begin{gathered} \text { Entiat } \\ 1997 \end{gathered}$
	1989		-	*	-	HS	HS	HS	HS	HS
	1991	-		-	-	*	*	*	HS	HS
	1992	*	-		-	*	*	HS	HS	HS
	1993	-	-	-		*	*	HS	HS	HS
	2005	HS	*	*	*		*	HS	HS	HS
	2006	HS	*	*	*	*		HS	HS	HS
$\begin{aligned} & \text { む } \\ & \text { ث } \end{aligned}$	Wen-M	HS	*	HS	HS	HS	HS		HS	HS
	Leaven	HS		HS						
	Entiat	HS								

Table 4 Probabilities (above diagonal) and levels of significance (below diagonal) for pairwise tests of genic differentiation among all Chiwawa hatchery broodstock and Chiwawa natural spawner collections used in this analysis. HS $=$ highly significant ($\mathrm{P}<0.000476$; the Bonferroni corrected pvalue for an alpha $=0.05$); * $=\mathrm{P}<0.05$ (nominal critical value for most statistical test); $-=\mathrm{P}>0.05$ (considered not significant). A significant result between pairs of populations indicates that the allele frequencies between the pair are significantly different. Pairwise comparisons between the hatchery broodstock and natural spawner collections from 2001, 2004, 2005, and 2006, respectively, are highlighted.

		Smolt		Hatchery Broodstock								Natural Spawners				
		1993	1994	1993	1996	1998	2000	2001	2004	2005	2006	1989	2001	2004	2005	2006
$\begin{aligned} & \text { \# } \\ & \text { © } \\ & \text { © } \end{aligned}$	1993	HS 0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1994			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1993	HS	HS	0.9155		0.0000	0.0073	0.3647	0.0003	0.0694	0.0000	0.2220	0.0039	0.0008	0.0095	0.0000
	1996	HS	HS			0.0151	0.8388	0.0452	0.4916	0.3189	0.0716	0.5591	0.0759	0.8101	0.2364	0.0786
	1998	HS	HS	HS	*		0.0000	0.0000	0.0000	0.0000	0.0043	0.0000	0.0000	0.0000	0.0000	0.0005
	2000	HS	HS	*	-	HS		0.0000	0.4720	0.0000	0.0000	0.0036	0.0000	0.0712	0.0000	0.0000
	2001	HS	HS	-	*	HS	HS		0.0000	0.0059	0.0000	0.0003	0.0000	0.0000	0.0126	0.0000
	2004	HS	HS	*	-	HS	-	HS		0.0000	0.0000	0.0001	0.0000	0.0012	0.0000	0.0000
	2005	HS	HS	-	-	HS	HS	*	HS		0.0005	0.0024	0.0137	0.0025	0.7782	0.0018
	2006	HS	HS	HS	-	*	HS	HS	HS	*		0.0000	0.0000	0.0000	0.0000	0.5770
s.əumeds ןeınłen	1989	HS	HS	-	-	HS	*	*	HS	*	HS		0.0023	0.0317	0.0000	0.0003
	2001	HS	HS	*	-	HS	HS	HS	HS	*	HS	*		0.0000	0.2641	0.0000
	2004	HS	HS	*	-	HS	-	HS	*	*	HS	*	HS		0.0000	0.0000
	2005	HS	HS	*	-	HS	HS	*	HS	-	HS	HS	-	HS		0.0000
	2006	HS	HS	HS	-	*	HS	HS	HS	*	-	*	HS	HS	HS	

Table 5 Analysis of molecular variance (AMOVA) for the Chiwawa collections, showing the partition of molecular variance into (1) within collections, (2) among collections but within group, and (3) among group components. Each column in the table represents a separate analysis testing for differences under a different spatial or temporal hypothesis. The different analyses are grouped together in a single table for comparisons. The values within the table are percentages and the parenthetical values are P -values, or probabilities, associated with that percentage. P values greater than 0.05 indicate that the percentage is not significantly different from zero. For example, when collections are organized by hatchery- versus natural-origin ("Origin" - fourth column), 0.11% of the molecular variance is attributed to among group (i.e., hatchery- versus natural-origin), which is not significantly different from zero. No collections (first column) indicates no organization or grouping among all collections, and the among-group percentage is equal to the $\mathrm{F}_{\text {ST }}$ for the entire data set.

	No Structure	Collection Year	Spawning Location	Origin	Origin- Spawning Location
Among Groups	0.26	0.20	0.05	0.11	0.11
	(0.00)	(0.43)	(0.48)	(0.15)	(0.06)
Among collections -	-	0.08	0.24	0.21	0.18
Within groups		(0.003)	(0.00)	(0.00)	(0.06)
		99.72	99.71	99.68	99.71
Within collections	99.74	(0.00)	(0.00)	(0.00)	(0.00)

Table $6 \mathrm{~F}_{\text {ST }}$ values for all pairwise combinations of populations. Each $\mathrm{F}_{\text {ST }}$ is the median value for all pairwise combinations of collections within each population (the number of collections within each population is shown parenthetically next to each population name on each row). For example, the $\mathrm{F}_{\text {ST }}$ for the Chiwawa hatchery versus the White River (0.019) is the median value of 54 pairwise comparisons. The bold values along the center diagonal are the median F_{ST} values within each collection. For those populations with only one collection, the diagonal value was set at 0.000 .

	ChiwawaHatchery	ChiwawaNatural	Entiat	Leavenworth	Nason	Wenatcheemain	White	Little Wenatchee
Chiwawa-Hatchery (9)	0.013	0.008	0.016	0.012	0.011	0.005	0.019	0.111
Chiwawa-Natural (9)		0.003	0.012	0.011	0.007	0.003	0.014	0.105
Entiat (1)			0.000	0.005	0.010	0.008	0.019	0.078
Leavenworth (1)				0.000	0.007	0.008	0.014	0.092
Nason (6)					0.006	0.008	0.015	0.099
Wenatchee-main (1)						0.000	0.012	0.098
White (6)							0.005	0.113
Little Wenatchee (1)								0.000

Table 7 As in Table 5, except data includes Chiwawa hatchery- and natural-origin, Nason Creek, and White River collections

	All Years	All Years	$1989-1996$	$2005-2006$	$2005-2006$
	No Structure	Origin	Origin	Origin	Collection Year
Among Groups	0.28	0.33	-0.07	0.43	-0.06
	(0.00)	(0.00)	(0.67)	(0.01)	(0.57)
Among Collections -		0.04	0.22	0.25	0.64
Within groups		(0.00)	(0.00)	(0.00)	(0.00)
Within Collections	99.72	99.63	99.85	99.32	99.41

Table 8 Individual assignment results reported are the numbers of individuals assigned to each population using the partial Bayesian criteria of Rannala and Mountain (1997) and a "jack-knife" procedure (see Methods). The population with the highest posterior probability is considered the stock of origin (i.e., no unassigned individuals). Individuals from each population are assigned to specific populations (along rows). Bold values indicate correct assignment back to population of origin. Individuals assigned to a population are read down columns. For example, of the 595 individuals from Chiwawa hatchery origin, 134 individuals were assigned to Chiwawa natural origin (reading across). Of the 511 individuals assigned to Chiwawa natural origin (reading down), 60 were from Nason Creek.

Population	Total	Unassigned	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
1) Chiwawa Hatchery	595	0	$\mathbf{3 7 1}$	134	2	16	0	45	15	12
2) Chiwawa Natural	501	0	156	$\mathbf{2 6 9}$	4	5	0	42	9	16
3) Entiat	37	0	4	5	$\mathbf{1 3}$	8	0	6	1	0
4) Leavenworth	73	0	9	8	3	33	0	17	0	3
5) Little Wenatchee	19	0	0	0	0	0	$\mathbf{1 9}$	0	0	0
6) Nason	268	0	49	60	5	11	0	$\mathbf{1 3 1}$	1	11
7) Wenatchee Mainstem	32	0	12	9	0	1	0	2	$\mathbf{6}$	2
8) White	179	0	22	26	0	2	0	13	1	$\mathbf{1 1 5}$
TOTAL	1704	0	623	511	27	76	19	256	33	159

Table 9 As in Table 8, except the posterior probability from the partial Bayesian criteria of Rannala and Mountain (1997) must be 0.90 or greater, to be assigned to a population. Those individuals with posterior probabilities less than 0.90 are unassigned.

Aggregate	Total	Unassigned	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
1) Chiwawa Hatchery	595	332	$\mathbf{2 1 4}$	31	1	4	0	10	3	0
2) Chiwawa Natural	501	375	30	$\mathbf{8 2}$	0	1	0	5	2	6
3) Entiat	37	24	1	1	$\mathbf{5}$	4	0	2	0	0
4) Leavenworth	73	51	0	1	1	19	0	1	0	0
5) Little Wenatchee	19	2	0	0	0	0	$\mathbf{1 7}$	0	0	0
6) Nason	268	188	11	6	2	5	0	53	0	3
7) Wenatchee Mainstem	32	23	4	3	0	0	0	0	$\mathbf{2}$	0
8) White	179	92	4	3	0	1	0	5	1	$\mathbf{7 3}$
TOTAL	1704	1087	264	127	9	34	17	76	8	82

Table 10 Estimates of N_{e} based on bias correction method of Waples (2006) implemented in LDNe (Do and Waples unpublished). Collections are categorized by spawning location. Sample size is the harmonic mean of the sample size, $95 \% \mathrm{CI}$ is the confidence interval calculated using Waples' (2006) equation 12, and Major Cohort assumes that each collection is 100% four-year-olds.

	Sample size	Estimated N_{b}	$95 \% \mathrm{CI}$	Major Cohort	Census	$\mathrm{N}_{\mathrm{N} / \mathrm{N}}$
1993 Chiwawa Broodstock	58.4	103.1	$77.0-149.7$	1989	1392	0.30
1996 Chiwawa Broodstock	15.5	30.4	$19.6-58.1$	1992	1099	0.11
1998 Chiwawa Broodstock	33.4	37.7	$29.8-49.7$	1994	280	0.54
2000 Chiwawa Broodstock	77.8	48.4	$41.4-57.2$	1996	182	1.06
2001 Chiwawa Broodstock	80.4	49.6	$42.2-59.2$	1997	389	0.51
2004 Chiwawa Broodstock	56.6	48.1	$39.0-60.9$	2000	688	0.28
2005 Chiwawa Broodstock	73	274.3	$148.9-1131.8$	2001	4130	0.27
2006 Chiwawa Broodstock	88.4	198.3	$136.1-340.5$	2002	1613	0.49
1989 Chiwawa River	26.6	5.2	$3.9-6.3$	1985		
2001 Chiwawa River	46.7	38.6	$31.0-49.3$	1997	389	0.40
2004 Chiwawa River	88.5	82.6	$67.3-104.4$	2000	688	0.48
2005 Chiwawa River	104.2	231.5	$161.8-382.7$	2001	4130	0.22
2006 Chiwawa River	101.1	107.3	$87.2-136$	2002	1613	0.27

Table 11 Summary of output from program SALMONNb and data for eight Chiwawa broodstock collections from Wenatchee River. For each pairwise comparison of samples i and $j, \widetilde{\mathrm{~S}}$ is the harmonic mean sample size, n is the number of independent alleles used in the comparison, $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ are the pairwise estimates of N_{b}, and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right]$ is the variance of $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$. $\widetilde{\mathrm{N}}_{\mathrm{b}}$ is the harmonic mean of the $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$. Alleles with a frequency below 0.05 were excluded from the analysis to reduce potential bias.

Year	1993	1996	1998	2000	2001	2004	2005	2006

Pairwise $\widetilde{\mathrm{S}}$ (above diagonal) and n (below diagonal):

1993	-	24.5	42.5	66.4	67.2	57.2	64.6	70.3
1996	82	-	21.2	25.8	26.0	24.4	25.6	26.4
1998	80	81	-	46.7	47.2	42.0	45.8	48.4
2000	80	82	84	-	78.6	65.2	75.1	82.7
2001	73	77	81	76	-	66.0	76.2	84.2
2004	77	81	75	76	78	-	63.5	69.0
2005	71	75	82	73	73	69	-	80.0
2006	81	80	84	75	74	75	72	-

Pairwise $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ (above diagonal) and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right]$ (below diagonal):

1993	-	-742.7	406.9	1240.8	-5432.0	829.8	808.9	729.0
1996	22491.2	-	110.4	-1786.5	765.9	162.8	824.7	382.7
1998	10910.4	67299.1	-	101.8	237.1	69.6	307.0	140.0
2000	6910.0	742895.8	19122.7	-	490.6	1498.2	706.9	201.6
2001	49318.3	21402.8	9754.2	6126.6	-	307.8	82.0	362.5
2004	8338.4	257267.7	24283.0	145043.4	7095.7	-	269.7	140.1
2005	31511.8	22242.5	10015.8	6596.6	114931.1	8240.4	-	599.6

$\begin{array}{llllllll}2006 & 6223.8 & 43935.2 & 73518.7 & 10152.5 & 5885.3 & 12827.0 & 6370.8\end{array}$

$\widetilde{\mathrm{N}}_{\mathrm{b}}=269.4$

Table 12 Summary of output from program SALMONNb and data for five Chiwawa in-river spawner collections from Wenatchee River. For each pairwise comparison of samples i and $j, \widetilde{\mathrm{~S}}$ is the harmonic mean sample size, n is the number of independent alleles used in the comparison, $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ are the pairwise estimates of N_{b}, and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j}}\right]$ is the variance of $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j}}$. $\widetilde{\mathrm{N}}_{\mathrm{b}}$ is the harmonic mean of the $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$. Alleles with a frequency below 0.05 were excluded from the analysis to reduce potential bias.

Year	1989	2001	2004	2005	2006

Pairwise $\widetilde{\mathrm{S}}$ (above diagonal) and n (below diagonal):

1989	-	33.3	40.2	41.7	42.2
2001	72	-	60.5	63.9	63.3
2004	72	77	-	95.3	94.0
2005	69	72	75	-	102.5
2006	76	76	77	78	-

Pairwise $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ (above diagonal) and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right]$ (below diagonal):

1989	-	118.4	299.0	143.3	165.3
2001	40378.8	-	181.7	-1537.3	153.5
2004	10455.2	7265.5	-	387.1	329.4
2005	20923.6	68660.6	5040.7	-	356.8
2006	16227.2	8886.9	3802.0	4522.8	-

$\widetilde{\mathrm{N}}_{\mathrm{b}}=224.2$

Table 13 Summary of output from program SALMONNb and data for three brood years that combined Chiwawa natural- and hatchery-origin samples from Wenatchee River. For each pairwise comparison of samples i and $j, \widetilde{\mathbf{S}}$ is the harmonic mean sample size, n is the number of independent alleles used in the comparison, $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ are the pairwise estimates of N_{b}, and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right]$ is the variance of $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$. $\widetilde{\mathrm{N}}_{\mathrm{b}}$ is the harmonic mean of the $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$. Alleles with a frequency below 0.05 were excluded from the analysis to reduce potential bias.

| Year 2004 | 2005 | 2006 |
| :--- | :--- | :--- | :--- |

Pairwise $\widetilde{\mathrm{S}}$ (above diagonal) and n (below diagonal):

2004	-	162	164.3
2005	77	-	188.2
2006	76	75	-

Pairwise $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ (above diagonal) and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right]$ (below diagonal):

2004	-	611.3	210.8
2005	9351.5	-	727.5
2006	14965.5	8673.9	-

$\widetilde{\mathrm{N}}_{\mathrm{b}}=386.8$

APPENDIX J

Summer Chinook Spawning Ground Surveys in the Methow and Okanogan Basins, 2007

4725 North Cloverdale Road • Ste 102 • Boise, ID 83713
PHONE: (208) 321-0363 • FAX: (208) 321-0364
February 1, 2008

To: НСР Hatchery Committee

From: Mark Miller

Re: 2007 Spawning Ground Surveys in the Okanogan and Methow Basins
The purpose of this memo is to provide information on the hatchery-supplemented natural spawning population of summer Chinook in the Methow and Okanogan basins. This work is part of a larger effort focused on monitoring and evaluating Chelan PUD's hatchery supplementation program. The tasks and objectives associated with implementing Chelan PUD's hatchery M\&E plan for 2007 are outlined in several documents (Murdoch and Peven 2005; Peven 2006; Hays et al. 2006). Figures and tables are presented at the end of this memo.

METHODS

Spawning ground surveys were conducted by foot, raft, and aircraft beginning the last week of September and ending mid-November. During aerial surveys an observer recorded the location and number of redds on topographic maps. We did not use aerial surveys on the Methow River because past work has demonstrated that ground counts were more accurate than aerial surveys (Miller and Hillman 1997). Because of the depth of redds, aerial surveys were the only census method used for the Columbia River downstream from Wells Dam. Ground surveys were used to provide more accurate counts and a complete census of Chinook redds within their spawning distribution. Observers floated through sampling reaches and recorded the location and numbers of redds each week. Observers recorded the date, water temperature, rivermile, and constructed a drawing of the area where redds were located. A different symbol was used each week to record the number of new and incomplete redds.

To maintain consistency, at least one observer surveyed the same stream reach on successive dates. In areas where numerous salmon spawn, we constructed detailed maps of the river and used the cell-area method (Hamilton and Bergersen 1984) to identify the number of redds within each cell. Cells were bound by noticeable landmarks along the banks (e.g., bridges or trees) or at stream habitat boundaries (e.g., transitions between pools and riffles). The number of redds were then recorded in the corresponding grid on the map. When possible, observers estimated the number of redds in a large disturbed area by counting females that defended their redds. We assumed that the area or territory defended by a female was one redd.

During redd surveys, we sampled carcasses of summer Chinook to describe the spawning population. Biological data included collection of scale samples for age analysis, length measurements (POH and FKL), gender, egg voidance, and a check for tags or marks. These data will be used to assess length-at-age, size-at-age, egg voidance, origin (hatchery or naturally produced), and stray rates. DNA samples were not collected on summer Chinook this year.

RESULTS

Methow

There were 620 summer Chinook redds counted within seven reaches of the Methow River (Table 1). This was the seventh highest redd count observed in the Methow River (Appendix A). Spawning began the first week of October and peaked the second week of October and ended after the first week of November (Table 1; Figure 1). Stream temperatures in the Methow River, when spawning began, varied from $7-10^{\circ} \mathrm{C}$. Peak spawning occurred in most reaches (M2-M5) of the Methow River during the second week of October except the lowest reach (M1), which occurred the following week. Most redds (91\%) were located in reaches (M1-M3) downstream from the town of Twisp and in reach M5 between Methow Valley Irrigation Diversion (MVID) and Winthrop Bridge (Table 1). Few summer Chinook spawned upstream from the Winthrop Bridge in reaches M6 and M7. Estimated escapement based on redd counts and the sex-ratio observed at Wells Dam during broodstock collection suggests that 1,364 summer Chinook (620 redds x 2.2 fish/redd) escaped to the Methow River.

There were 456 summer Chinook salmon carcasses sampled within the different reaches of the Methow River (Table 2). Thirty-three percent of the fish returning to the Methow River were sampled based on the estimated escapement of 1,364 summer Chinook. Females made up 57\% and males 43% of the carcasses examined. Mean percent egg voidance assessed from 262 female carcasses was 96%. Nine females (3\%) died before they spawned (i.e., they retained all their eggs). Ad-clipped hatchery fish made up 41% and naturally produced fish were 59% of the sample collected (Table 2). The distribution of ad-clipped hatchery and naturally produced fish showed that more than half (70%) of the ad-clipped hatchery fish were located in the lower two reaches while naturally produced fish were more evenly distributed (Figure 2).

Okanogan

There were 1,301 summer Chinook redds counted within six reaches of the Okanogan River (Table 1). This was the fifth highest redd count observed in the Okanogan River (Appendix A). Peak aerial redd counts (1,265 redds) were about 97 percent of redds counted from the ground. Spawning began the first week of October and peaked the following two weeks (Figure 1). Spawning was initiated in the Okanogan River when the stream temperature varied from 12$15^{\circ} \mathrm{C}$. Spawning activity ended after the second week of November (Table 1; Figure 1). Peak spawning in the Okanogan River occurred during the second and third week of October. Most redds (85\%) were located in the upper reaches (O5 and O6) between Zosel Dam and the town of Riverside (Table 1). Estimated escapement (1,301 redds x 2.2 fish/redd) to the Okanogan River was 2,862 summer Chinook.

There were 1,030 summer Chinook salmon carcasses sampled within 6 reaches of the Okanogan River (Table 2). Thirty-six percent of the fish returning to the Okanogan River were sampled based on the estimated escapement of 2,862 summer Chinook. Females made up 49% and males 51% of the carcasses examined. Mean percent egg voidance from 502 female carcasses was 99%. Five females (1\%) died before they spawned. Ad-clipped hatchery fish made up 31% and naturally produced fish 69% of the sample collected (Table 2). Most naturally produced and adclipped hatchery fish were collected in the upper reaches (O5 and O6) of the Okanogan River closely following the distribution of redds (Figure 2).

Similkameen

There were 707 summer Chinook redds counted within the two reaches of the Similkameen River (Table 1). This was the second highest redd count recorded in the Similkameen River (Appendix A). The peak aerial count (523 redds) was about 74% of redds counted on the ground. Spawning began the last week of September and peaked two weeks later in the middle of October (Figure 5). Spawning was initiated in the Similkameen River when the temperature varied from $13-15^{\circ} \mathrm{C}$. Spawning activity ended by the first week of November (Table 1). Most (92\%) spawning occurred in the lower reach from the Oroville Bridge downstream to the Driscoll channel on the Similkameen River. Estimated escapement (707 redds x 2.2 fish/redd) to the Similkameen River was 1,555 summer Chinook.

There were 686 summer Chinook salmon carcasses sampled within the two reaches of the Similkameen River (Table 2). Forty-four percent of the fish returning to the Similkameen River were sampled based on the estimated escapement of 1,555 summer Chinook. Females made up 74% and males 26% of the carcasses examined. Mean percent egg voidance was 99% from 508 female carcasses sampled. Five females (1\%) died before they spawned. Ad-clipped hatchery fish made up 30% and naturally produced fish 70% of the sample collected (Table 2).

Chelan and Columbia Rivers

There were 86 and 52 Chinook redds counted in the Chelan River and in the Columbia River downstream from Wells Dam, respectively (Table 1). No redds were observed during aerial surveys in the Columbia River upstream from Wells Dam. Spawning began the first week of October in the Chelan River and two weeks later in the Columbia River. Peak spawning in both rivers occurred the near the end of October. Estimated escapement (86 redds x 2.2 fish/redd) to the Chelan River was 189 summer Chinook.

There were 107 summer Chinook salmon carcasses sampled within the Chelan River (Table 2). Fifty-seven percent of the fish returning to the Chelan River were sampled based on the estimated escapement of 189 summer Chinook. Females made up 77% and males 23% of the carcasses examined. Ad-clipped hatchery fish made up 58% and naturally produced fish 42% of the sample collected (Table 2). In the Chelan River, mean percent egg voidance was 76% from 84 female carcasses examined. Nineteen females (23\%) died before they spawned.

REFERENCES

Hays, S., T. Hillman, T. Kahler, R. Klinge, R. Langshaw, B. Lenz, A. Murdoch, K. Murdoch, C. Peven. 2006. Analytical Framework for Monitoring and Evaluating PUD Hatchery Programs. Prepared for Habitat Conservation Plans Hatchery Committee.

Miller, M. D. and T. W. Hillman. 1997. Summer/fall Chinook salmon spawning ground surveys in the Methow and Okanogan river basins, 1997. Report to Chelan County PUD. Don Chapman Consultants, Inc. Boise, ID.

Murdoch, A. and C. Peven. 2005. Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Hatchery Programs. Prepared for Chelan PUD Habitat Conservation Plan's Hatchery Committee. Chelan PUD, Wenatchee, WA

Hamilton, K. and E. P. Bergersen. 1984. Methods to estimate aquatic habitat variables. Report for Bureau of Reclamation, Division of Planning and Technical Services, Denver, Colorado. Colorado Cooperative Fishery Research Unit, Colorado State University, Fort Collins, Colorado.

Peven, Chuck. 2005. Chelan County PUD Hatchery Implementation Plan 2006. Prepared for Chelan PUD Habitat Conservation Plan's Hatchery Committee, Chelan PUD, Wenatchee, WA.

Figure 1. Number of new redds counted each week from September to mid-November. The figure displays the beginning, peak, and end of spawning for summer Chinook in the Methow, Okanogan, and Similkameen rivers in 2007 compared to a 16-year average (19912006).

Figure 2. Percent distribution of ad-clipped hatchery and naturally produced fish plotted against the percent distribution of redds observed in reaches of the Methow, Okanogan, and Similkameen rivers, 2007.

Table 1. Number of summer Chinook redds observed each week within reaches of the Methow, Okanogan, Similkameen, and Chelan rivers, 2007.

Reach	Location (Rkm)	Sep		Oct			Nov			Total	Percent
		23-29	30-6	7-13	14-20	21-27	28-3	4-10	11-17		
		39	40	41	42	43	44	45	46		
Methow River											
M1	0.0-25.0	0	3	36	27	59	45	0	0	170	27.4
M2	25.0-45.9	0	24	54	19	29	6	0	0	132	21.3
M3	45.9-63.6	0	5	65	63	9	7	6	0	155	25.0
M4	63.6-75.8	0	5	20	18	3	6	0	0	52	8.4
M5	75.8-84.2	0	26	46	32	4	0	0	0	108	17.4
M6	84.2-87.2	0	0	0	1	2	0	0	0	3	0.5
M7	87.2-90.2	0	0	0	0	0	0	0	0	0	0.0
	Total	0	63	221	160	106	64	6	0	620	100
Okanogan River											
O1	0.0-27.2	0	0	0	0	1	0	2	0	3	0.2
O2	27.2-41.9	0	0	0	8	2	2	4	0	16	1.2
O3	41.9-49.4	0	0	15	64	28	7	2	0	116	8.9
O4	49.4-65.4	0	0	0	50	8	2	3	0	63	4.8
O5	65.4-91.4	0	5	256	255	23	10	0	0	549	42.2
O6	91.4-129.6	0	3	269	261	13	8	0	0	554	42.6
	Total	0	8	540	638	75	29	11	0	1301	100
Similkameen River											
S1	0.0-2.9	13	48	296	272	18	5	0	0	652	92.2
S2	2.9-9.1	0	4	17	31	1	2	0	0	55	7.8
	Total	13	52	313	303	19	7	0	0	707	100
Chelan River											
	0.0-1.0	0	1	13	29	33	10	0	0	86	
Columbia River											
	953.3-954.3	0	0	0	8	25	0	19	0	52	

Table 2. Number and percent of hatchery (ad-clipped) and naturally produced (not adclipped) summer Chinook collected within reaches of the Methow, Okanogan, Similkameen, and Chelan rivers, 2007.

Reach	Location (Rkm)	Ad-Clipped Hatchery				Naturally Produced				$\begin{aligned} & \text { Reach } \\ & \text { Total } \\ & \hline \end{aligned}$
		Male	Female	Total	Percent	Male	Female	Total	Percent	
Methow River										
M1	0.0-25.0	27	49	76	40.4	28	31	59	22.0	135
M2	25.0-45.9	22	34	56	29.8	49	26	75	28.0	131
M3	45.9-63.6	12	28	40	21.3	32	36	68	25.4	108
M4	63.6-75.8	3	5	8	4.3	5	14	19	7.1	27
M5	75.8-84.2	1	7	8	4.3	15	32	47	17.5	55
M6	84.2-87.2	0	0	0	0.0	0	0	0	0.0	0
M7	87.2-90.2	0	0	0	0.0	0	0	0	0.0	0
	Total	65	123	188	100	129	139	268	100	456
Okanogan River										
01	0.0-27.2	1	0	1	0.3	0	1	1	0.1	2
02	27.2-41.9	1	0	1	0.3	0	0	0	0.0	1
O3	41.9-49.4	8	10	18	5.6	14	16	30	4.2	48
O4	49.4-65.4	0	0	0	0.0	0	1	1	0.1	1
O5	65.4-91.4	74	66	140	43.2	131	188	319	45.2	459
06	91.4-129.6	125	39	164	50.6	174	181	355	50.3	519
	Total	209	115	324	100	319	387	706	100	1030
Similkameen River										
S1	0.0-2.9	71	128	199	96.6	104	354	458	95.4	657
S2	2.9-9.1	0	7	7	3.4	3	19	22	4.6	29
	Total	71	135	206	100	107	373	480	100	686
Chelan River										
	0.0-1.0	10	52	62	58	15	30	45	42	107

Appendix A. Historical aerial and ground redd counts of summer Chinook in the Methow, Okanogan, and Similkameen rivers, 1957-2007.

	Methow		Okanogan		Similkameen	
Year	Aerial	Ground	Aerial	Ground	Aerial	Ground
1956	109	--	37	--	30	--
1957	451	--	53	--	30	--
1958	335	--	94	--	31	--
1959	130	--	50	--	23	--
1960	194	--	29	--	--	--
1961	120	--	--	--	--	--
1962	678	--	--	--	17	--
1963	298	--	9	--	51	--
1964	795	--	112	--	67	--
1965	562	--	109	--	154	--
1966	1,275	--	389	--	77	--
1967	733	--	149	--	107	--
1968	659	--	232	--	83	--
1969	329	--	103	--	357	--
1970	705	--	656	--	210	--
1971	562	--	310	--	55	--
1972	325	--	182	--	64	--
1973	366	--	138	--	130	--
1974	223	--	112	--	201	--
1975	432	--	273	--	184	--
1976	191	--	107	--	139	--
1977	365	--	276	--	268	--
1978	507	--	195	--	268	--
1979	622	--	173	--	138	--
1980	345	--	118	--	172	--
1981	195	--	55	--	121	--
1982	142	--	23	--	56	--
1983	65	--	36	--	57	--
1984	162	--	235	--	301	--
1985	164	--	138	--	309	--
1986	169	--	197	--	300	--
1987	211	--	201	--	164	--
1988	123	--	113	--	191	--
1989	126	--	134	--	221	370

Appendix A. Concluded.

	Methow		Okanogan		Similkameen	
Year	Aerial	Ground	Aerial	Ground	Aerial	Ground
1990	229	--	88	47	94	147
1991	--	153	55	64	68	91
1992	--	107	35	53	48	57
1993	--	154	144	162	152	288
1994	--	310	372	375	463	777
1995	--	357	260	267	337	616
1996	--	181	100	116	252	419
1997	--	205	149	158	297	486
1998	--	225	75	88	238	276
1999	--	448	222	369	903	1,275
2000	--	500	384	549	549	993
2001	--	675	883	1,108	865	1,540
2002	--	2,013	1,958	2,667	$2,000^{\text {a }}$	3,358
2003	--	1,624	1,099	1,035	103	378
2004	--	973	1,310	1,327	2,127	1,660
2005	--	874	1,084	1,611	1,111	1,423
2006	--	1,353	1,857	2,592	1,337	1,666
2007	--	620	1,265	1,301	523	707

[^0]: ${ }^{1}$ In this report we use two methods of describing age. One is termed the "European Method." This method has two digits, separated by a period. The first digit represents the number of winters the fish spent in freshwater before emigrating to the sea. The second digit indicates the number of winters the fish spent in the ocean. For example, a fish designated as 1.2 spent one winter in freshwater and two in the ocean. A fish designated as 0.3 emigrated to the ocean in its first year and spent three winters in the ocean. The other method describes the total age of the fish (egg-to-spawning adult, i.e., gravel-to-gravel), so fish demarcated as 0.3 or 1.2 are considered 4 -year-olds, from the same brood.

[^1]: 2 Estimates for residence time and observer efficiency are from the literature. These parameters will be estimated in the Wenatchee Basin beginning in 2008.

[^2]: 4 Because of the length of the power outage, hatchery personnel began releasing steelhead into the Columbia River. During the release, power was restored and the release ceased. An underdetermined (assumed small) number of steelhead was released into the Columbia River.

[^3]: 5 A steelhead/rainbow trout larger than 200 mm (8 in) was considered a resident trout.

[^4]: 6 PIT tags were found in otter scat. These tags were removed from the data files.

[^5]: ${ }^{1}$ Unnamed tributary that drains the eastside of Chiwawa Ridge. Its confluence with the Chiwawa River is about 1 mile (1.6 km) downstream from the mouth of Phelps Creek.

[^6]: ${ }^{2}$ The study period 1992-2007 includes only 15 years of sampling because there was no sampling in 2000.
 ${ }^{3}$ If the hatchery juvenile Chinook counted in Big Meadow Creek were included, the estimates would increase by 1,818 (based on fish/ha) or 2,195 (based on fish $/ \mathrm{m}^{3}$). These fish were from the 12,977 high-ELISA spring Chinook planted in Big Meadow Creek on 22 May 2007.

[^7]: ${ }^{4}$ The β parameter in the Gamma model was very close to 0 , which means that this model is nearly identical to the Cushing model. The reason it did not rank higher is because it contains an extra parameter, which means that it has less bias and greater variance than the Cushing model.

[^8]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.
 ${ }^{2}$ An additional 1,818 (based on fish $/ \mathrm{ha}$) or 2,195 (based on fish $/ \mathrm{m}^{3}$) hatchery spring Chinook were counted in Big Meadow Creek in 2007. These were from the 12,977 high-ELISA spring Chinook planted in Big Meadow Creek on 22 May 2007.

[^9]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^10]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^11]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^12]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^13]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^14]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^15]: ${ }^{\text {a }}$ Incomplete brood year

[^16]: ${ }^{1}$ An additional 489 wild subyearling Chinook, 582 wild yearling Chinook, and 1,312 wild steelhead/rainbow were tagged and released by the Yakama Nation at the Nason Creek smolt trap.

[^17]: ${ }^{1}$ The majority of chinook that ascend the mid-Columbia River as adults after July spawn between October and November in the mainstem of the Columbia, Wenatchee, Methow, Similkameen and Okanogan rivers. These fish have been called "summer" and "fall" chinook based on their migration timing past the dams. Their life histories are identical (Mullan 1987), and should be termed "late-run" to separate them from earlier running "spring" chinook which have a different life history. For consistency with previous year's reports, only the earlier segment of the late-run (those that ascend Rock Island Dam between June 24 and September 1; "summers") will be focused on in this report.

[^18]: ${ }^{1}$ Samples taken from scale cards provided by Jeff Fryer (CRITFC)

