MONITORING AND EVALUATION OF THE CHELAN COUNTY PUD HATCHERY PROGRAMS

2009 Annual Report

June 1, 2010

BioAnalysts, Inc.-

CHELAN COUNTY

Prepared by:
T. Hillman
M. Miller

BioAnalysts, Inc.
Boise, ID
J. Miller

Chelan PUD
Wenatchee, WA
M. Tonseth
T. Miller
A. Murdoch

WA Dept of Fish and Wildlife
Wenatchee, WA

Prepared for:
HCP Hatchery Committee
Wenatchee, WA

TABLE OF CONTENTS

SECTION 1: INTRODUCTION 1
SECTION 2: SUMMARY OF METHODS 5
2.1 Broodstock Sampling 5
2.2 Within Hatchery Monitoring 6
2.3 Juvenile Sampling 8
2.4 Spawning/Carcass Surveys 10
SECTION 3: WENATCHEE STEELHEAD 17
3.1 Broodstock Sampling 17
3.2 Hatchery Rearing 21
3.3 Disease Monitoring 28
3.4 Natural Juvenile Productivity 28
3.5 Spawning Surveys. 34
3.6 Life History Monitoring 39
3.7 ESA/HCP Compliance 49
SECTION 4: WENATCHEE SOCKEYE SALMON 53
4.1 Broodstock Sampling 53
4.2 Hatchery Rearing 58
4.3 Disease Monitoring 63
4.4 Natural Juvenile Productivity 63
4.5 Spawning Surveys. 66
4.6 Carcass Surveys 69
4.7 Life History Monitoring 73
4.8 ESA/HCP Compliance 84
SECTION 5: WENATCHEE (CHIWAWA) SPRING CHINOOK 85
5.1 Broodstock Sampling 85
5.2 Hatchery Rearing 90
5.3 Disease Monitoring 96
5.4 Natural Juvenile Productivity 96
5.5 Spawning Surveys. 108
5.6 Carcass Surveys 113
5.7 Life History Monitoring 119
5.8 ESA/HCP Compliance 132
SECTION 6: WENATCHEE SUMMER CHINOOK 137
6.1 Broodstock Sampling 137
6.2 Hatchery Rearing 142
6.3 Disease Monitoring. 146
6.4 Natural Juvenile Productivity 147
6.5 Spawning Surveys. 148
6.6 Carcass Surveys 152
6.7 Life History Monitoring 156
6.8 ESA/HCP Compliance 165
SECTION 7: METHOW SUMMER CHINOOK 167
7.1 Broodstock Sampling 167
7.2 Hatchery Rearing 172
7.3 Disease Monitoring 177
7.4 Spawning Surveys. 177
7.5 Carcass Surveys 181
7.6 Life History Monitoring 185
7.7 ESA/HCP Compliance 194
SECTION 8: OKANOGAN/SIMILKAMEEN SUMMER CHINOOK 197
8.1 Broodstock Sampling 197
8.2 Hatchery Rearing 197
8.3 Disease Monitoring 201
8.4 Spawning Surveys. 202
8.5 Carcass Surveys 205
8.6 Life History Monitoring 209
8.7 ESA/HCP Compliance 217
SECTION 9: TURTLE ROCK SUMMER CHINOOK 219
9.1 Broodstock Sampling 219
9.2 Hatchery Rearing 219
9.3 Life History Monitoring 225
9.4 ESA/HCP Compliance 232
SECTION 10: REFERENCES 235
SECTION 11: APPENDICES 237

PREFACE

This annual report is the result of coordinated field efforts conducted by Washington Department of Fish and Wildlife (WDFW), the Confederated Tribes and Bands of the Yakama Nation (Yakama Nation), Chelan County Public Utility District (Chelan PUD), and BioAnalysts, Inc. An extensive amount of work was conducted in 2006 through 2009 to collect the data needed to monitor the effects of the Chelan County PUD Hatchery Programs. This work was directed and coordinated by the Habitat Conservation Plan (HCP) Hatchery Committee, consisting of the following members: Bill Gale, U.S. Fish and Wildlife Service (USFWS); Jeff Korth, WDFW; Joe Miller, Chelan County PUD; Kristine Petersen, National Marine Fisheries Service (NMFS); Tom Scribner, the Yakama Nation; and Kirk Truscott, Confederated Tribes of the Colville Reservation (Colville Tribes).

The approach to monitoring the hatchery programs was guided by the "Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Programs" written by Andrew Murdoch and Chuck Peven. Technical aspects of the monitoring and evaluation program were developed by the Hatchery Evaluation Technical Team (HETT), which consists of the following scientists: Matt Cooper, USFWS; Steve Hays, Chelan PUD; Tracy Hillman, BioAnalysts; Tom Kahler, Douglas PUD; Russell Langshaw, Grant PUD; Greg Mackey, Douglas PUD; Joe Miller, Chelan PUD; Andrew Murdoch, WDFW; Keely Murdoch, Yakama Nation; Todd Pearsons, Grant PUD; Kristine Petersen, NMFS; and Ali Wick, Anchor Environmental. The HETT developed an "Analytical Framework for Monitoring and Evaluating PUD Hatchery Programs" (Hays et al. 2006), which directs the analyses of hypotheses developed under the conceptual approach. Most of the analyses outlined in the Analytical Framework paper will be conducted after the fifth year of monitoring.

Most of the work reported in this paper was funded by Chelan PUD. Bonneville Power Administration purchased the Passive Integrated Transponder (PIT) tags that were used to mark juvenile Chinook and steelhead captured in tributaries. This is the fourth annual report written under the direction of the HCP.
"I often say that when you can measure something and express it in numbers, you know something about it. When you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind. It may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of science, whatever it may be."

Lord Kelvin

SECTION 1: INTRODUCTION

Chelan PUD implements hatchery programs as part of two Habitat Conservation Plan (HCP) agreements related to the operation of Rocky Reach and Rock Island dams. The HCPs define the goal of achieving no net impact to spring Chinook, summer/fall Chinook, sockeye salmon, steelhead, and coho salmon affected by the operation of these dams. The two HCPs identify general program objectives as "contributing to the rebuilding and recovery of naturally reproducing populations in their native habitats, while maintaining genetic and ecologic integrity, and supporting harvest." The fish resource management agencies initially developed the following general goal statements for each hatchery program, which were adopted by the Hatchery Committee:
(1) Support the recovery of ESA listed species by increasing the abundance of natural adult population, while ensuring appropriate spatial distribution, genetic stock integrity, and adult spawner productivity.

Includes the Wenatchee spring Chinook, Wenatchee summer steelhead, and Methow spring Chinook programs.
(2) Increase the abundance of the natural adult population of unlisted plan species, while ensuring appropriate spatial distribution, genetic stock integrity, and adult spawner productivity. In addition, provide harvest opportunities in years when spawning escapement is sufficient to support harvest.

Includes the Wenatchee sockeye, Wenatchee summer/fall Chinook, Methow summer/fall Chinook, Okanogan summer/fall Chinook, and Okanogan sockeye programs.
(3) Provide salmon for harvest and increase harvest opportunities, while segregating returning adults from natural tributary spawning populations.

Includes the Turtle Rock summer/fall Chinook program.
Thus, there are two different types of artificial propagation strategies that address the different goals of the program: supplementation and harvest augmentation. The supplementation programs primarily focus on increasing the natural production of fish in tributaries. A fundamental assumption of this strategy is that hatchery fish returning to the spawning grounds are "reproductively similar" to naturally produced fish. The second program type, harvest augmentation, focuses on increasing harvest opportunities. This is accomplished by releasing hatchery fish directly into the Columbia River with the intent that returning adults remain segregated from the naturally spawning populations in tributaries.
Monitoring is needed to determine if the programs are performing properly. The HCP Hatchery Committee adopted a monitoring and evaluation (M\&E) approach that will guide the assessment of the hatchery programs. The approach, developed by Murdoch and Peven (2005), identified the following objectives:
(1) Determine if supplementation programs have increased the number of naturally spawning and naturally produced adults of the target population relative to a nonsupplemented population (i.e., reference stream) and the changes in the natural replacement rate (NRR) of the supplemented population is similar to that of the nonsupplemented population.
(2) Determine if the run timing, spawn timing, and spawning distribution of both the natural and hatchery components of the target population are similar.
(3) Determine if genetic diversity, population structure, and effective population size have changed in natural spawning populations as a result of the hatchery program. Additionally, determine if hatchery programs have caused changes in phenotypic characteristics of natural populations.
(4) Determine if the hatchery adult-to-adult survival (i.e., hatchery replacement rate or HRR) is greater than the natural adult-to-adult survival (i.e., natural replacement rate or NRR) and equal to or greater than the program-specific HRR expected value based on estimated survival rates listed in Appendix D in Murdoch and Peven(2005).
(5) Determine if the stray rate of hatchery fish is below the acceptable levels to maintain genetic variation between stocks.
(6) Determine if hatchery fish were released at the programmed size and number.
(7) Determine if the proportion of hatchery fish on the spawning grounds affects the freshwater productivity (i.e., number of juveniles per redd) of supplemented streams when compared to non-supplemented streams.
(8) Determine if harvest opportunities have been provided using hatchery returning adults where appropriate (e.g., Turtle Rock program).
Two additional objectives that were not explicit in the goals specified above but were included in the M\&E approach because they relate to goals and concerns of all artificial production programs include:
(9) Determine whether bacterial kidney disease (BKD) management actions lower the prevalence of disease in hatchery fish and subsequently in the naturally spawning population. In addition, when feasible, assess the transfer of Renibacterium salmoninarum (Rs) infection at various life stages from hatchery fish to naturally produced fish.
(10) Determine if the release of hatchery fish impact non-target taxa of concern (NTTOC) within acceptable limits.
Attending each objective is one or more testable hypotheses (see Murdoch and Peven 2005). Each hypothesis will be tested statistically following the routines identified in Hays et al. (2006). Most of these analytical routines will be conducted at the end of five-year monitoring blocks, as outlined in the M\&E plan (Murdoch and Peven 2005; Hays et al. 2006).
Throughout each five-year monitoring period, annual reports will be generated that describe the M\&E data collected during a specific year. This is the fourth annual report developed under the direction of the M\&E guidance approach (Murdoch and Peven 2005). The purpose of this report is to describe monitoring activities conducted in 2009. Activities included broodstock collection, collection of life-history information, within hatchery spawning and rearing activities, juvenile monitoring within streams, and redd and carcass surveys. Data from reference areas are not included in this annual report, because the process of selecting reference areas is still occurring. To the extent currently possible, we have included information collected before 2009.

This report is divided into several sections, each representing a different species or stock (i.e., steelhead, sockeye salmon, spring Chinook, and summer Chinook). For all species we provide broodstock information; hatchery rearing history, release data, and survival estimates; disease information; juvenile migration and productivity estimates; redd counts, distribution, and spawn timing; spawning escapements; and life-history characteristics. For salmon species, we also provide information on carcasses.

Finally, we end each section by addressing compliance issues with ESA/HCP mandates. For each Chelan PUD Hatchery Program, WDFW and the PUD are authorized annual take of ESA-listed spring Chinook and steelhead through Section 10 of the Endangered Species Act (ESA), including:

1. ESA Section 10(a)(1)(A) Permit No. 1395, which authorizes the annual take of adult and juvenile endangered upper Columbia River (UCR) spring Chinook and endangered UCR steelhead associated with implementing artificial propagation programs for the enhancement of UCR steelhead. The authorization includes takes associated with adult broodstock collection, hatchery operations, juvenile fish releases, monitoring and evaluation activities, and management of adult returns related to UCR steelhead artificial propagation programs in the UCR region (NMFS 2003a).
2. ESA Section 10(a)(1)(A) Permit No. 1196, which authorizes the annual take of adult and juvenile endangered UCR spring Chinook and endangered UCR steelhead associated with implementing artificial propagation programs for the enhancement of UCR spring Chinook. The authorization includes takes associated with adult broodstock collection, hatchery operations, juvenile fish releases, and monitoring and evaluation activities supporting UCR spring Chinook artificial propagation programs in the UCR region (NMFS 2004).
3. ESA Section 10(a)(1)(A) Permit No. 1347, which authorizes the annual incidental take of adult and juvenile endangered UCR spring Chinook and endangered UCR steelhead through actions associated with implementing artificial propagation programs for the enhancement of non-listed anadromous fish populations in the UCR. The authorization includes incidental takes associated with adult broodstock collection, hatchery operations, juvenile fish releases, and monitoring and evaluation activities associated with non-listed summer Chinook, fall Chinook, and sockeye salmon artificial propagation programs in the UCR region (NMFS 2003b).

SECTION 2: SUMMARY OF METHODS

Sampling in 2009 followed the methods and protocols described in Murdoch and Peven (2005). In this section we only briefly review the methods and protocols. More detailed information can be found in Murdoch and Peven (2005).

2.1 Broodstock Sampling

Methods for collecting broodstock during 2009 are described in Appendix A in WDFW (2008). Methods for sampling broodstock are described in Appendices A and B in Murdoch and Peven (2005). Generally, broodstock were collected over the migration period (to the extent allowed in ESA-permit provisions) in proportion to their temporal occurrence at collection sites, with in-season adjustments dictated by 2009 run timing and trapping success relative to achieving weekly and annual collection objectives. Pre-season weekly collection objectives are shown in Table 2.1 and assumptions associated with broodstock trapping are provided in Table 2.2.
Table 2.1. Weekly collection objectives for steelhead, sockeye, and Chinook in 2009.

Collection week beginning day	Chiwawa Spring Chinook ${ }^{\text {a }}$		Wild Wenatchee Summer Chinook	Wild ME/OK Summer Chinook	Wenatchee Steelhead		Wild Wenatchee Sockeye ${ }^{\text {b }}$	
	Hatchery	Wild			Hatchery	Wild	Male	Female
1-30 May	3							
31 May	4	7						
7 June	11	16						
14 June	16	23						
21 Jun	22	33						
28 Jun	27	39	126	87	1	1		
5 Jul	26	46	98	83	1	1		
12 Jul	17	37	82	83	1	1	20	20
19 Jul	11	16	63	73	1	1	40	40
26 Jul	9	10	44	59	1	1	25	25
2 Aug			29	44	4	4	20	20
9 Aug			21	40	7	7	16	16
16 Aug			16	26	8	8	9	9
23 Aug			13	24	7	7		
30 Aug				23	6	6		
6 Sep				14	6	6		
13 Sep					8	8		
20 Sep					9	9		
27 Sep					17	17		
4 Oct					15	15		
11 Oct					8	8		
18 Oct					4	4		
Total	147	232	492	556	104	104	130	130

${ }^{\text {a }}$ Collection quota based on 1999-2008 average cumulative Tumwater Dam spring Chinook passage (WDFW unpublished data) and pre-season broodstock collection objectives.
${ }^{\mathrm{b}}$ Collection targeted equal numbers of males and females.
Table 2.2. Biological and trapping assumptions associated with collecting broodstock for the Chelan PUD Hatchery Programs (from Appendix A in Murdoch and Peven 2005).

Assumptions	Wenatchee Steelhead	Wenatchee Sockeye	Chiwawa Spring Chinook	Wenatchee Summer Chinook	ME/OK Summer Chinook
Production level	400,000 yearling smolts	$\begin{gathered} \text { 200,000 } \\ \text { subyearlings } \end{gathered}$	672,000 yearling smolts	864,000 yearling smolts	976,000 yearling smolts
Broodstock required	208 adults (not to exceed 33% of population)	260 adults (not to exceed 33% of population)	379 adults (not to exceed 33% of population)	492 adults (not to exceed 33% of the population)	556 adults (not to exceed 33% of the population)
Trapping period	7 July - 12 Nov	7 July - 28 Aug	1 May - 12 Sep	7 Jul - 12 Sep	7 Jul - 15 Sep
\# days/week	5	3	4	5	3
\# hours/day	24	16	24	24	16
Broodstock composition	50\% wild; 50\% WxW and/or HxW	100\% wild	Sliding scale; minimum 33\% wild (depends on the number of wild fish)	100\% wild	100\% wild
Trapping site	Dryden Dam (Tumwater will be used if weekly quota not achieved at Dryden Dam)	Tumwater Dam	Tumwater Dam (hatchery fish only) and the Chiwawa Weir (both hatchery and wild fish)	Dryden Dam (Tumwater will be used if weekly quota not achieved at Dryden Dam)	Wells Dam east ladder

Several biological parameters were measured during broodstock collection at adult collection sites. Those parameters included the date and start and stop time of trapping; number of each species collected for broodstock; origin, size, and sex of trapped fish; age from scale analysis; and prespawn mortality. For each species, trap efficiency, extraction rate, and trap operation effectiveness were estimated following procedures in Appendix B in Murdoch and Peven (2006). In addition, a representative sample of most species trapped but not taken for broodstock were sampled for origin, sex, age, and size (stock assessment). All steelhead trapped were sampled.

2.2 Within Hatchery Monitoring

Methods for monitoring hatchery activities are described in Appendix C in Murdoch and Peven (2005). Biological information collected from all spawned adult fish included age at maturity, length at maturity, spawn timing, and fecundity of females. In addition, all fish were checked for tags and females were sampled for disease.

Throughout the rearing period in the hatchery, fish were sampled for growth, health, and survival. Each month, lengths and weights were collected from a sample of fish and rearing density indices were calculated. In addition, fish were examined monthly for health problems following standard fish health monitoring practices for hatcheries. Various life-stage survivals were estimated for each
hatchery stock. These estimates were then compared to the "standard" survival rates identified in Table 2.3 to provide insight as to how well the hatchery operations were performing. Failure to achieve a survival standard could indicate a problem with some part of the hatchery program. However, failure to meet a standard may not be indicative of the overall success of the program to meet the goals identified in Section 1.

Table 2.3. Standard life-stage survival rates for fish reared within the Chelan PUD hatchery programs (from Appendix C in Murdoch and Peven 2005).

Life stage	Standard survival rate (\%)
Collection-to-spawning (females)	90
Collection-to-spawning (males)	85
Unfertilized egg-to-eyed	92
Unfertilized egg-to-ponding	98
30 d after ponding	97
100 d after ponding	93
Ponding-to-release	90
Transport-to-release	95
Unfertilized egg-to-release	81

Nearly all hatchery fish from each stock were marked (adipose fin clip) or tagged (coded-wire tag or elastomer tag). Different combinations of marks and tags were used depending on the stock. In addition, about 10,000 juvenile hatchery fish from spring Chinook and each stock of steelhead (HxW-early production, HxW-late production, and WxW production) were PIT tagged during June, September, or October to aid in estimating survival rates (e.g., smolt-to-adult) outside the hatchery. About 15,000 juvenile sockeye were PIT tagged in June and about 10,000 Turtle Rock yearling summer Chinook were PIT tagged from each of two treatment groups (circular-reuse rearing pond and standard raceway) in September. Finally, about 5,700 Okanogan summer Chinook were PIT tagged within each of two groups (IHOT high density group and HCP low density group).

Lastly, the size and number of fish released were assessed and compared to programmed production levels. The goal of the program is that numbers released and their sizes should fall within 10% of the programmed targets identified in Table 2.4. However, because of constraints due to run size and proportions of wild and hatchery adults, production levels may not be met every year.

Table 2.4. Targets for fish released from the Chelan PUD hatchery programs; CV = coefficient of variation (from Appendix C in Murdoch and Peven 2005).

Hatchery stock	Release targets	Size targets		
		Fork length (CV)	Weight (g)	Fish/pound
Wenatchee Summer Chinook	864,000	$176(9.0)$	45.4	10
Okanogan Summer Chinook	576,000	$176(9.0)$	45.4	10
Methow Summer Chinook	400,000	$176(9.0)$	45.4	10
Turtle Rock Summer Chinook (yearlings)	200,000	$176(9.0)$	45.4	10
Turtle Rock Summer Chinook (subyearlings)	$1,620,000$	$112(9.0)$	11.4	40
Chiwawa Spring Chinook	672,000	$176(9.0)$	37.8	12

Hatchery stock		Size targets			
Release targets					
			Weight (g)	Fish/pound	
Wenatchee Sockeye	200,000		$133(9.0)$	22.7	20
Wenatchee Steelhead	400,000	$198(9.0)$	75.6	6	

2.3 Juvenile Sampling

Juvenile sampling within streams included operation of rotary smolt traps, snorkel observations, and PIT tagging. Methods for sampling juvenile fish are described in Appendix E in Murdoch and Peven (2005).

Smolt traps were located on the Wenatchee River at river km 9.6 at the West Monitor Bridge (Lower Wenatchee Trap) and about 0.5 km downstream from the mouth of Lake Wenatchee (Upper Wenatchee Trap), and in the Chiwawa River about 1 km upstream from the mouth (Chiwawa Trap). All traps operated throughout the smolt migration period. The Chiwawa Trap operated throughout most of the year (March through November), but not during icing or extreme high flow conditions. The following data were collected at each trap site: water temperature, discharge, number and identification of all species captured, degree of smoltification for anadromous fish, presence of marks and tags, size (fork lengths and weights), and scales from steelhead and sockeye salmon smolts. Trap efficiencies at each trap site were estimated by using mark-recapture trials conducted over a wide range of discharges. Linear regression models relating discharge and trap efficiencies were developed to estimate daily trap efficiencies during periods when no mark-recapture trials were conducted. The total number of fish migrating past the trap each day was estimated as the quotient of the daily number of fish captured and the estimated daily trap efficiency. Summing the daily totals resulted in the total emigration estimate.

Snorkel observations were used to estimate the number of juvenile spring Chinook salmon, juvenile rainbow/steelhead, and bull trout within the Chiwawa River Basin. The focus of the study was on juvenile spring Chinook salmon. Sampling followed a stratified random design with proportional allocation of sites among strata. Strata were identified based on unique combinations of geology, land type, valley bottom type, stream state condition, and habitat types. A total of 197 randomly selected sites were surveyed during August (Table 2.5). Counts of fish within each sampling site were adjusted based on detection efficiencies, which were related to water temperature. That is, nonlinear models that described relationships between water temperatures and detection efficiencies (Hillman et al. 1992) were used to estimate total numbers of fish within sampling sites. These numbers were then converted to densities by dividing total fish numbers by the wetted surface area and water volume of sample sites. Total numbers within a stratum were estimated as the product of fish densities times the total wetted surface or water volume for the stratum. The sum of fish numbers across strata resulted in the total number of fish within the basin. The calculation of total numbers, densities, and degrees of certainty are fully explained in Hillman and Miller (2004).

Working in collaboration with the Integrated Status and Effectiveness Monitoring Program (ISEMP) funded by NOAA Fisheries and Bonneville Power Administration (BPA), crews PIT tagged juvenile wild Chinook, wild and hatchery steelhead, and wild sockeye salmon throughout the Wenatchee basin. Tags were injected into juvenile fish collected at the Chiwawa Trap, Upper Wenatchee Trap, and the Lower Wenatchee Trap. In addition, fish were collected and tagged in the Chiwawa River
upstream from the trap, in Nason Creek, and in the Wenatchee River. The proposed number of wild spring Chinook and steelhead to be tagged at each location is provided in Table 2.6. The goal of this work was to better understand the life-history characteristics of fish in the Wenatchee Basin and to estimate SARs. This in turn improves the ability to detect potential effects of the hatchery program on wild fish.

Table 2.5. Location of strata and numbers of randomly sampled sites within each strata that were sampled in the Chiwawa River Basin in 2009.

Reach/stratum	River kilometers (RKm)	Number of randomly selected sites
Chiwawa River		
1	0.0-6.1	11
2	6.1-8.9	5
3	8.9-12.7	7
4	12.7-14.3	6
5	14.3-17.4	4
6	17.4-19.0	6
7	19.0-32.2	32
8	32.2-40.9	24
9	40.9-46.4	11
10	46.4-50.1	10
Phelps Creek		
1	0.0-0.6	3
Chikamin Creek (includes Minnow Creek)		
1	0.0-1.5	15
Rock Creek		
1	0.0-1.2	11
Peven Creek (unnamed stream on USGS map)		
1	0.0-0.1	1
Big Meadow Creek		
1	0.0-1.6	10
Alder Creek		
1	0.0-0.1	2
Brush Creek		
1	0.0-0.1	8
Y Creek		
1	0.0-0.1	1

Table 2.6. Number of wild spring Chinook and steelhead proposed for tagging at different locations within the Wenatchee Basin, 2009.

Sampling location		Target sample size	
		Wild steelhead	
Chiwawa Trap	$2,500-8,000$	$500-2,000$	
Chiwawa River	$500-2,000$	$500-2,000$	
Upper Wenatchee Trap	$500-1,000$	$50-250$	
Wenatchee River	$500-2,000$	$500-2,000$	
Nason Creek	$500-2,000$	$500-2,000$	
Lower Wenatchee Trap	$1,000-2,000$	$500-2,500$	
Total	$\mathbf{5 , 5 0 0 - 1 7 , 0 0 0}$	$\mathbf{2 , 5 5 0 - 1 0 , 7 5 0}$	

Survival rates for various juvenile life-stages were calculated based on estimates of seeding levels (total egg deposition), numbers of parr, numbers of emigrants, and numbers of smolts. Total egg deposition was estimated as the product of the number of redds counted in the basin times the mean fecundity of female spawners. Fecundity was estimated from females collected for broodstock using an electronic egg counter. Numbers of emigrants and smolts were estimated at trapping sites and numbers of parr were estimated using snorkel observations only in the Chiwawa Basin. Survival estimates could not be calculated for some stocks (e.g., summer Chinook) because specific life-stage abundance estimates were lacking.

2.4 Spawning/Carcass Surveys

Methods for conducting carcass and spawning ground surveys are detailed in Appendix F in Murdoch and Peven (2005). Information collected during spawning surveys included spawn timing, redd distribution, and redd abundance. Data collected during carcass surveys included sex, size (fork length and postorbital-to-hypural length), scales for aging ${ }^{1}$, degree of egg voidance, DNA samples, and identification of marks or tags. The sampling goal for carcasses was 20% of the spawning population. Crews also conducted snorkel surveys to assess the incidence of precocial fish spawning naturally in streams.

Both redd and carcass surveys were conducted in reaches that encompassed the spawning distribution of most populations. Steelhead surveys were the exception. These surveys were conducted within major spawning areas in the basin and therefore may not capture the entire spawning distribution of the population. Steelhead surveys were conducted during March through June in reaches and index areas described in Table 2.7. Total redd counts were estimated by expanding counts within non-index areas by expansion factors developed within index areas.

[^0]Table 2.7. Description of reaches and index areas surveyed for steelhead redds in the Wenatchee Basin.

Stream	Code	Reach	Index/reference area
Wenatchee River	W2	Sleepy Hollow Br to L. Cashmere Br	Monitor Boat Rmp to Cashmere Boat Rmp
	W6	Leavenworth Br to Icicle Rd Br	Leavenworth Boat Ramp to Icicle Ck
	W8	Tumwater Dam to Tumwater Br	Swift Boat Ramp to Tumwater Br
	W9	Tumwater Br to Chiwawa R	Tumwater Br to Plain
	W10	Chiwawa R to Lk Wenatchee	Chiwawa Pump St. to Lk Wenatchee
Peshastin Creek	P1	Mouth to Camas Cr	Kings Br to Camas Cr
	P2A	Camas Cr to Mouth of Scotty Cr	Ingalls Cr to Ruby Cr
	P2	Camas Cr to Mouth of Scotty Cr	FR7620 to Shaser Cr
Ingalls Creek	D1	Mouth to Trailhead RM 1	Mouth to Trailhead RM 1
	D2	Trailhead to Wilderness Bd RM 1.5	Trailhead to Wilderness Bd RM 1.5
Chiwawa River	C1	Mouth to Grouse Cr	Mouth to Rd 62 Br RM 6.4
	C2	Grouse Cr to Rock Cr	Chikamin Cr to Log Jam
Clear Creek	V1	Mouth to Hwy 22	Mouth to Hwy 22
	V2	Hwy 22 to Lower Culvert RM 2	Hwy 22 to Lower Culvert
Nason Creek	N1	Mouth to Kahler Cr Br	Mouth to Swamp Cr
	N3	Hwy 2 Br to Lower RR Br	Hwy 2 Br to Merrit Br
	N4	Lower RR Br to Whitepine Cr	Rayrock to Church Camp
Icicle River	I1	Mouth to Hatchery	Mouth to Boulder Block
Little Wenatchee	L2	Mouth to Lost Cr	Old Fish Weir to Lost Cr
	L3	Lost Cr to Rainy Cr Br	Lost Cr to Rainy Cr Br
White River	H2	Sears Cr Br to Napeequa R	Riprap Bank to Napeequa R
	H3	Napeequa R to Mouth of Panther Cr	Napeequa R to Grasshopper Meadows
Napeequa River	Q1	Mouth to RM 1	Mouth to RM1

Spring Chinook redd and carcass surveys were conducted during August through September in the Chiwawa River (including Rock and Chikamin creeks), Nason Creek, Icicle Creek, Peshastin Creek (including Ingalls Creek), upper Wenatchee River, Little Wenatchee River, and the White River (including the Napeequa River and Panther Creek). Survey reaches for spring Chinook are described in Table 2.8.

Table 2.8. Description of reaches surveyed for spring Chinook redds and carcasses in the Wenatchee Basin.

Stream	Code	Reach	River mile (RM)
Chiwawa River	C1	Mouth to Grouse Creek	0.0-11.7
	C2	Grouse Creek to Rock Creek	11.7-19.3
	C3	Rock Creek to Schaefer Creek	19.3-22.4
	C4	Schaefer Creek to Atkinson Flats	22.4-25.6
	C5	Atkinson Flats to Maple Creek	25.6-27.0
	C6	Maple Creek to Trinity	27.0-30.3
Rock Creek	R1	Mouth to End	0.0-0.5
Chikamin Creek	K1	Mouth to End	0.0-0.5
Nason Creek	N1	Mouth to Kahler Creek Bridge	0.0-3.9
	N2	Kahler Creek Bridge to Hwy 2 Bridge	3.9-8.3
	N3	Hwy 2 Bridge to Lower RR Bridge	8.3-13.2
	N4	Lower RR Bridge to Whitepine Creek	13.2-15.4
Little Wenatchee River	L2	Old Fish Weir to Lost Creek	2.7-5.2
	L3	Lost Creek to Rainy Creek	5.2-9.2
	L4	Rainy Creek to Falls	9.2-Falls
White River	H2	Sears Creek Bridge to Napeequa River	6.4-11.0
	H3	Napeequa River to Grasshopper Meadows	11.0-12.9
Napeequa River	Q1	Mouth to End	0.0-1.0
Panther Creek	T1	Mouth to End	0.0-0.7
Wenatchee River	W8	Tumwater Dam to Tumwater Bridge	30.9-35.6
	W9	Tumwater Bridge to Chiwawa River	35.6-48.4
	W10	Chiwawa River to Lake Wenatchee	48.4-54.2
Icicle Creek	I1	Mouth to Boulder Block	0.0-4.0
Peshastin Creek	P1	Mouth to Camas Creek	0.0-5.9
	P2	Camas Creek to Mouth of Scotty Creek	5.9-16.3
Ingalls Creek	D1	Mouth to Trailhead	0.0-1.0

Surveys for live sockeye and carcass were conducted during August through October in the White, Napeequa, and Little Wenatchee rivers. No sockeye redds were counted in 2009. Live fish counts were used to estimate spawning escapements using the area-under-the-curve (AUC) method.

Table 2.9. Description of reaches surveyed for sockeye salmon carcasses and live fish in the Wenatchee Basin.

Stream	Code	Reach	River mile (RM)
Little Wenatchee River	L1	Mouth to Old Fish Weir	$0.0-2.7$
	L2	Old Fish Weir to Lost Creek	$2.7-5.2$
	L3	Lost Creek to Rainy Creek	$5.2-9.2$
White River	H1	Mouth to Sears Creek Bridge	$0.0-6.4$
	H2	Sears Creek Bridge to Napeequa River	$6.4-11.0$
	H3	Napeequa River to Grasshopper Meadows	$11.0-12.9$
Napeequa River	Q1	Mouth to End	$0.0-1.0$

Wenatchee summer Chinook redd and carcass surveys were conducted during September through November within ten reaches on the Wenatchee River (Table 2.10). Peak redd counts, map redd counts, and naïve counts were estimated in the Wenatchee River. Map redd counts and naïve counts were only conducted within index areas, not throughout the entire river. Two different methods were used to estimate total redd counts for the entire river. The first method used map counts to expand peak counts. The second relied on naïve counts to expand redd numbers in reaches that did not have map counts. These two approaches are described in Appendix F in Murdoch and Peven (2005).
Table 2.10. Description of reaches and index areas surveyed for summer Chinook redds in the Wenatchee Basin.

Code	Reach	River mile	Index/reference area (RM)
W1	Mouth to Sleepy Hollow Br	$0.0-3.3$	River Bend to Sleepy Hollow $\mathrm{Br}(1.7-3.3)$
W 2	Sleepy Hollow Br to L. Cashmere Br	$3.3-9.5$	L. Cashmere Br to Old Monitor Br (7.1-9.5)
W 3	L. Cashmere Br to Dryden Dam	$9.5-17.8$	Williams Canyon to Dryden Dam (15.5-17.8)
W 4	Dryden Dam to Peshastin Br	$17.8-20.0$	Dryden Dam to Peshastin Br (17.8-20.0)
W5	Peshastin Br to Leavenworth Br	$20.0-23.9$	Irrigation Flume to Leavenworth Br (22.8-23.9)
W6	Leavenworth Br to Icicle Rd Br	$23.9-26.4$	Icicle to Boat Takeout (24.5-25.6)
W7	Icicle Rd Br to Tumwater Dam	$26.4-30.9$	Icicle Br to Penstock Br (26.4-28.7)
W8	Tumwater Dam to Tumwater Br	$30.9-35.6$	Swiftwater Campgd to Tumwater Br (33.5-35.6)
W9	Tumwater Br to Chiwawa River	$35.6-47.9$	Swing Pool to Railroad Tunnel (36.7-39.3)
W10	Chiwawa River to Lake Wenatchee	$47.9-54.2$	Swamp to Bridge (52.7-53.6)

Summer Chinook redd and carcass surveys were also conducted in the Methow, Okanogan, Similkameen, and Chelan rivers during September through November. Total (map) redd counts were conducted in these rivers. Table 2.11 describes the survey reaches in these rivers.

Table 2.11. Description of reaches surveyed for summer Chinook redds and carcasses on the Methow, Okanogan, and Similkameen rivers.

Stream	Code	Reach	River mile (RM)
Methow River	M1	Mouth to Methow Bridge	$0.0-14.8$
	M2	Methow Bridge to Carlton Bridge	$14.8-27.2$
	M3	Carlton Bridge to Twisp Bridge	$27.2-39.6$
	M4	Twisp Bridge to MVID	$39.6-44.9$
	M5	MVID to Winthrop Bridge	$44.9-49.8$
	M6	Winthrop Bridge to Hatchery Dam	$49.8-51.6$
Okanogan River	O1	Mouth to Mallot Bridge	$0.0-16.9$
	O2	Mallot Bridge to Okanogan Bridge	$16.9-26.1$
	O3	Okanogan Bridge to Omak Bridge	$26.1-30.7$
	O4	Omak Bridge to Riverside Bridge	$30.7-40.7$
	O5	Riverside Bridge to Tonasket Bridge	$40.7-56.8$
	O6	Tonasket Bridge to Zosel Dam	$56.8-77.4$
Similkameen River	S1	Driscoll Channel to Oroville Bridge	$0.0-1.8$
	S2	Oroville Bridge to Enloe Dam	$1.8-5.7$

Except for sockeye, total spawning escapements for each population were estimated as the product of total number of redds times the ratio of fish per redd for a specific stock. Fish per redd ratios were estimated as the ratio of males to females sampled at broodstock collection sites. Total spawning escapement for sockeye salmon was estimated using the AUC approach (where escapement = [AUC/redd residence time] x observer efficiency). This method relied on weekly counts of live sockeye and assumed a redd residence time of 11 days (from Hyatt et al. 2006) and an observer efficiency of $100 \%{ }^{2}$
During carcass surveys for summer Chinook in 2009, crews collected tissue samples for genetic analysis. Tissue was collected from the operculum of wild and hatchery carcasses (target of 144 wild and 144 hatchery fish). Sampling within a population was proportional to the distribution of carcasses across survey reaches. That is, samples were collected in all reaches but the number collected within a given reach was proportional to the density of carcasses within that reach. In addition, tissue samples were collected from Wenatchee spring Chinook as part of the spring Chinook reproductive study. Methods for analyzing samples are described in Appendix H in Murdoch and Peven (2005).

Derived metrics calculated from carcass surveys, broodstock sampling, stock assessments, and harvest records included proportion of hatchery spawners, stray rates, age-at-maturity, length-atage, smolt-to-adult survival (SAR), hatchery replacement rates (HRR), exploitation rates, harvest rates, and natural replacement rates (NRR). The expected SARs and HRRs for different stocks raised in the Chelan PUD hatchery programs are provided in Table 2.12. Methods for calculating these

[^1]variables are described in Appendices D, F, and G in Murdoch and Peven (2005) and in "White Papers" developed by the Hatchery Evaluation Technical Team (HETT).
Table 2.12. Expected smolt-to-adult (SAR) and hatchery replacement rates (HRR) for stocks raised in the Chelan PUD Hatchery Programs (from Table 6 in Appendix D in Murdoch and Peven 2005).

Program	Number of broodstock	Smolts released	SAR	Adult equivalents	Number of smolts/adult	HRR
Chiwawa Spring Chinook	379	672,000	0.003	2,016	333	5.3
Wenatchee Summer Chinook	492	864,000	0.003	2,592	333	5.3
Similkameen Summer Chinook	328	576,000	0.003	1,728	333	5.3
Methow Summer Chinook	228	400,000	0.003	1,200	333	5.3
Wenatchee Sockeye	260	200,000	0.007	1,400	143	5.4
Wenatchee Steelhead	208	400,000	0.010	4,000	100	19.2

Derived data that rely on CWTs (e.g., HRR, SAR, stray rates, etc.) are five or more years behind release information because of the lag time for returning adult fish to enter the fishery and the processing of tags. Consequently, complete information on rates and ratios based on CWTs is generally only available for years prior to 2003. In addition, some methods for calculating derived variables are still being developed by the HETT. Therefore, estimates of derived data in this report are subject to change after the HETT and Hatchery Committee decide on standard methods for calculating derived data.

SECTION 3: WENATCHEE STEELHEAD

3.1 Broodstock Sampling

This section focuses on results from sampling 2008 and 2009 brood years of Wenatchee steelhead, which were collected at Dryden and Tumwater dams. The 2008 brood begins the tracking of the life cycle of steelhead released in 2009. The 2009 brood is included because juveniles from this brood are still maintained within the hatchery.

Origin of Broodstock

A total of 211 Wenatchee steelhead from the 2007 return (2008 brood) were collected at Dryden and Tumwater dams (Table 3.1). About 49\% of these were natural origin (adipose fin present, no CWT, and no elastomer tags) fish and the remaining 51% were hatchery origin (pink right, orange right, or green left elastomer tagged) adults. Origin was determined by analyzing scales and/or otoliths. The total number of steelhead spawned from the 2008 brood was 131 adults (59\% natural origin and 41\% hatchery origin).

A total of 208 steelhead were collected from the 2008 return (2009 brood) at Dryden and Tumwater dams; 101 natural origin (adipose fin present, no CWT and no elastomer tags) and 107 hatchery origin (pink right, orange right, or green left elastomer tagged) adults. A total of 159 steelhead were spawned; 54% were natural origin fish and 46% were hatchery fish (Table 3.1). Origins were confirmed by sampling scales and/or otoliths.
Table 3.1. Numbers of wild and hatchery steelhead collected for broodstock, numbers that died before spawning, and numbers of steelhead spawned, 1998-2009. Unknown origin fish (i.e., undetermined by scale analysis, no elastomer, CWT, or fin clips, and no additional hatchery marks) were considered naturally produced. Mortality includes fish that died of natural causes typically near the end of spawning and were not needed for the program or were immature fish killed at spawning.

$\begin{array}{c}\text { Brood } \\ \text { year }\end{array}$	$\begin{array}{c}\text { Number } \\ \text { collected }\end{array}$					$\begin{array}{c}\text { Prespawn } \\ \text { loss }\end{array}$	Mortality	$\begin{array}{c}\text { Number } \\ \text { spawne } \\ \text { d }\end{array}$	$\begin{array}{c}\text { Number } \\ \text { released }\end{array}$	$\begin{array}{c}\text { Number } \\ \text { collected }\end{array}$	$\begin{array}{c}\text { Prespawn } \\ \text { loss }\end{array}$
	35	0	0	35	0	43	4	2	37	0	72
1999	58	5	1	52	0	67	1	2	64	0	116
2000	39	2	1	36	0	101	9	12	$\begin{array}{c}\text { Mortality } \\ \text { Number } \\ \text { spawned }\end{array}$	$\begin{array}{c}\text { Number } \\ \text { released }\end{array}$	
spawned											

Age/Length Data

Broodstock ages were determined from examination of scales and/or otoliths. For the 2008 return, both natural-origin and hatchery steelhead consisted primarily of 1-salt adults (Table 3.2). A small proportion (0.9%) of the 2008 return, natural-origin steelhead were 3 -salt adults. For the 2009 return, both hatchery and natural origin steelhead consisted primarily of 2-salt adults (Table 3.2).
Table 3.2. Percent of hatchery and wild steelhead of different ages (saltwater ages) collected from broodstock, 1998-2009.

Return year	Origin	Saltwater age		
		1	2	3
1998	Wild	39.4	60.6	0.0
	Hatchery	20.9	79.1	0.0
1999	Wild	50.0	48.3	1.7
	Hatchery	81.8	18.2	0.0
2000	Wild	56.4	43.6	0.0
	Hatchery	67.9	32.1	0.0
2001	Wild	51.7	48.3	0.0
	Hatchery	14.9	85.1	0.0
2002	Wild	55.6	44.4	0.0
	Hatchery	94.6	5.4	0.0
2003	Wild	13.1	85.3	1.6
	Hatchery	29.4	70.6	0.0
2004	Wild	94.8	5.2	0.0
	Hatchery	95.2	4.8	0.0
2005	Wild	22.1	77.9	0.0
	Hatchery	20.5	79.5	0.0
2006	Wild	28.7	71.3	0.0
	Hatchery	60.3	39.7	0.0
2007	Wild	40.3	59.3	0.0
	Hatchery	62.1	37.9	0.0
2008	Wild	65.4	33.7	0.9
	Hatchery	88.8	11.2	0.0
2009	Wild	39.8	57.8	2.4
	Hatchery	23.4	76.6	0.0
Average	Wild	46.4	53.0	0.6
	Hatchery	55.0	45.0	0.0

There was little difference between mean lengths of hatchery and natural origin steelhead for both the 2008 and 2009 return years (Table 3.3). Natural origin fish were on average <1 to 3 cm larger than hatchery origin fish of the same age.

Table 3.3. Mean fork length (cm) at age (saltwater ages) of hatchery and wild steelhead collected from broodstock, 1998-2009; $\mathrm{N}=$ sample size and $\mathrm{SD}=1$ standard deviation.

Return year	Origin	Steelhead fork length (cm)								
		1-Salt			2-Salt			3-Salt		
		Mean	N	SD	Mean	N	SD	Mean	N	SD
1998	Wild	63	15	4	79	20	5	-	0	-
	Hatchery	61	9	4	73	34	4	-	0	-
1999	Wild	65	29	5	74	28	5	77	1	-
	Hatchery	62	54	4	73	12	4	-	0	-
2000	Wild	64	22	3	74	17	5	-	0	-
	Hatchery	60	57	3	71	27	4	-	0	-
2001	Wild	61	33	6	77	31	5	-	0	-
	Hatchery	62	17	4	72	97	4	-	0	-
2002	Wild	64	55	4	77	44	4	-	0	-
	Hatchery	63	106	4	73	6	4	-	0	-
2003	Wild	69	8	6	77	52	5	91	1	-
	Hatchery	66	27	4	75	65	4	-	0	-
2004	Wild	63	73	6	78	4	2	-	0	-
	Hatchery	61	59	3	73	3	1	-	0	-
2005	Wild	59	21	4	74	74	5	-	0	-
	Hatchery	59	23	4	72	89	4	-	0	-
2006	Wild	63	27	5	75	67	6	-	0	-
	Hatchery	61	41	4	72	27	5	-	0	-
2007	Wild	64	31	6	76	46	5	-	0	-
	Hatchery	60	60	4	71	36	5	-	0	-
2008	Wild	64	68	4	77	35	4	80	1	-
	Hatchery	60	95	4	72	12	2	-	0	-
2009	Wild	65	33	5	76	48	6	81	2	0
	Hatchery	63	18	4	75	59	5	-	-	-

Sex Ratios

Male steelhead in the 2008 return made up about 61% of the adults collected, resulting in an overall male to female ratio of 1.57:1.00 (Table 3.4). For the 2009 return, males made up about 47% of the adults collected, resulting in an overall male to female ratio of 0.89:1.00. On average (1998-2009), the sex ratio is slightly less than the 1:1 ratio assumed in the broodstock protocol (Table 3.4).

Table 3.4. Numbers of male and female wild and hatchery steelhead collected for broodstock, 1998-2009. Ratios of males to females are also provided.

Return year	Number of wild steelhead			Number of hatchery steelhead			Total M/F ratio
	Males (M)	Females (F)	\mathbf{M} / \mathbf{F}	Males (M)	Females (F)	\mathbf{M} / \mathbf{F}	
$0.54: 1.00$	$0.56: 1.00$						
1998	13	22	$0.59: 1.00$	15	32	$1.09: 1.00$	$0.84: 1.00$
1999	22	36	$0.61: 1.00$	35	41	$1.46: 1.00$	$1.26: 1.00$
2000	18	21	$0.86: 1.00$	60	74	$0.54: 1.00$	$0.78: 1.00$
2001	38	26	$1.46: 1.00$	40	32	$2.53: 1.00$	$1.14: 1.00$
2002	32	67	$0.48: 1.00$	81	48	$0.92: 1.00$	$0.68: 1.0$
2003	19	44	$0.43: 1.00$	44	48	$2.14: 1.00$	$1.58: 1.00$
2004	43	42	$1.02: 1.00$	90	42	68	$0.68: 1.00$
2005	36	59	$0.61: 1.00$	46	$0.65: 1.00$		
2006	38	63	$0.60: 1.00$	47	51	$0.92: 1.00$	$0.75: 1.00$
2007	36	43	$0.84: 1.00$	49	48	$1.02: 1.00$	$0.93: 1.00$
2008	61	43	$1.42: 1.00$	68	39	$1.74: 1.00$	$1.57: 1.00$
2009	44	57	$0.77: 1.00$	54	53	$1.02: 1.00$	$0.89: 1.00$
Total	400	523	$\mathbf{0 . 7 6 : 1 . 0 0}$	$\mathbf{6 2 9}$	556	$\mathbf{1 . 1 1 : 1 . 0 0}$	$\mathbf{0 . 9 5 : 1 . 0 0}$

Fecundity

Fecundities for Wenatchee steelhead returning in 2008 and 2009 averaged 5,443 and 6,408 eggs per female, respectively, which were not greatly different than the overall average (Table 3.5). Mean fecundities for the 2008 and 2009 returns were at or greater than the 5,400 eggs per female assumed in the broodstock protocol.
Table 3.5. Mean fecundity of wild, hatchery, and all female steelhead collected for broodstock, 1998-2009.

Return year	Mean fecundity		
	Wild	Hatchery	Total
1998	6,202	5,558	5,924
1999	5,691	5,186	5,424
2000	5,858	5,729	5,781
2001	5,951	6,359	6,270
2002	5,776	5,262	5,626
2003	6,561	6,666	6,621
2004	5,118	5,353	5,238
2005	5,545	6,061	5,832
2006	5,688	5,251	5,492
2007	5,840	5,485	5,660
2008	5,693	5,153	5,433
2009	6,199	6,586	6,408
Average	5,844	5,721	5,809

3.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of 493,827 eggs are required to meet the program release goal of 400,000 smolts. Between 1998 and 2009, the egg take goal was reached 50% of the time (Table 3.6).
Table 3.6. Numbers of eggs taken from steelhead broodstock, 1998-2009.

Brood year	Number of eggs taken
1998	224,315
1999	303,083
2000	280,872
2001	549,464
2002	503,030
2003	532,708
2004	408,538
2005	672,667
2006	546,382
2007	462,662
2008	439,980
2009	633,229
Average	463,078

Number of acclimation days

Juvenile steelhead were transferred from Chelan FH to Turtle Rock FH in December 2008 and from Eastbank FH to Turtle Rock FH in January 2009. At Turtle Rock FH, juvenile steelhead were reared on Columbia River water (range, 114-153 d) before being trucked and released into the Wenatchee River and tributaries. In March 2009, a small group of early HxW steelhead were transferred to Black Bird Pond near Leavenworth for acclimation on Wenatchee River water. Fish were acclimated for 28 d before a volitional release was initiated on 24 April.

Acclimation of Wenatchee juvenile steelhead has occurred on occasion in the Chiwawa Ponds when space is available. At Chiwawa Ponds, steelhead were reared under the same water source as spring Chinook (Chiwawa and Wenatchee River water). Typically, Wenatchee steelhead are reared on Columbia River water from January through April before being trucked and released into the Wenatchee Basin (Table 3.7).

Table 3.7. Water source and mean acclimation period for Wenatchee steelhead, brood years 1998-2008.

Brood year	Release year	Parental origin	Water source	Number of Days
1998	1999	H x H	Wenatchee/Chiwawa	36
		H x W	Wenatchee/Chiwawa	36
		W x W	Wenatchee/Chiwawa	36
1999	2000	H x H	Wenatchee/Chiwawa	138
		H x W	Wenatchee/Chiwawa	138
		W x W	Wenatchee/Chiwawa	138
		H x W	Eastbank	0
		W x W	Eastbank	0
2000	2001	Hx H	Wenatchee/Chiwawa	122
		H x W	Wenatchee/Chiwawa	122
		H x W	Wenatchee/Chiwawa	122
		W x W	Wenatchee/Chiwawa	122
2001	2002	H x H	Columbia	92
		H x H	Wenatchee/Chiwawa	63
		H x W	Columbia	92
		H x W	Wenatchee/Chiwawa	63
		W x W	Columbia	153
2002	2003	Hx H	Columbia	98
		H x W	Columbia	98
		W x W	Columbia	117
2003	2004	H x H	Columbia	88
		H x W	Wenatchee/Chiwawa	84
		W x W	Columbia	148
2004	2005	H x H	Columbia	160
		H x W	Columbia	160
		W x W	Columbia	160
2005	2006	H x H	Columbia	116
		H x W	Columbia	113
		W x W	Columbia	141
2006	2007	Early H x W	Columbia	111
		Late H x W	Columbia	112
		W x W	Columbia	148
2007	2008	Early H x W	Columbia	94-95
		Late H x W	Columbia	91-93
		W x W	Columbia	138

Brood year	Release year	Parental origin	Water source	Number of Days
2008	2009	Early H x W	Columbia	120-121
		Early Hx W	Columbia/Wenatchee	120-121/28-95
		Late H x W	Columbia	114-115
		W x W	Columbia	152-153

Release Information

Numbers released

The release of 2008 brood Wenatchee steelhead achieved 82% of the 400,000 target goal with about 327,143 fish released into the Wenatchee and Chiwawa rivers and Nason Creek (Table 3.8). Distribution of juvenile steelhead released in each of the three basins was determined by the mean proportion of steelhead redds in each basin. About 31.2% and 15.8% of the steelhead were released in Nason Creek and the Chiwawa River, respectively. The balance of the program was split between the Wenatchee River downstream from Tumwater Dam (15.2\%) and the Wenatchee River upstream from the dam (37.8\%).

Table 3.8. Numbers of steelhead smolts released from the hatchery, brood years 1998-2008. The release target for steelhead is 400,000 smolts.

Brood year	Release year	Number of smolts
1998	1999	172,078
1999	2000	175,701
2000	2001	184,639
2001	2002	335,933
2002	2003	302,060
2003	2004	374,867
2004	2005	294,114
2005	2006	452,184
2006	2007	299,937
2007	2008	306,690
2008	2009	327,143
Average		

Numbers elastomer tagged

Wenatchee hatchery steelhead from the 2008 brood were marked with elastomer tags in the clear tissue posterior of the eye to denote parental origin. About 46% of the juveniles released were also adipose fin clipped (Table 9).

Table 3.9. Release location and marking scheme for the 1998-2008 brood Wenatchee steelhead.

Brood year	Release location	Parental origin	Proportion Ad-clip	$\begin{gathered} \text { VIE } \\ \text { color/side } \end{gathered}$	Tag rate	Number released
1998	Chiwawa River	H x H	0.000	Red Left	0.994	52,765
	Chiwawa River	H x W	0.000	Green Left	0.990	37,013
	Chiwawa River	W x W	0.000	Orange Left	0.827	82,300
1999	Wenatchee River	H x H	0.000	Green Left	0.911	45,347
	Wenatchee River	H x W	0.000	Orange Left	0.927	30,713
	Chiwawa River	H x H	0.000	Red Right	0.936	25,622
	Chiwawa River	Hx W	0.000	Green Right	0.936	43,379
	Chiwawa River	W x W	0.000	Orange Right	0.936	30,600
2000	Chiwawa River	H x H	0.000	Red Left	0.963	33,417
	Chiwawa River	Hx W	0.000	Green Left	0.963	57,716
	Chiwawa River	H x W	0.000	Green Right	0.949	48,029
	Chiwawa River	W x W	0.000	Orange Right	0.949	45,477
2001	Nason Creek	H x W	0.000	Green Right	0.934	75,276
	Nason Creek	W x W	0.000	Orange Right	0.934	48,115
	Chiwawa River	H x W	0.000	Green Left	0.895	92,487
	Chiwawa River	H x H	0.000	Red Left	0.895	120,055
2002	Chiwawa River	Hx H	0.000	Red Left	0.920	156,145
	Chiwawa River	H x W	0.000	Green Left	0.928	33,528
	Nason Creek	W x W	0.000	Orange Right	0.928	112,387
2003	Wenatchee River	H x H	0.000	Red Left	0.968	117,663
	Chiwawa River	H x W	0.000	Green Left	0.927	191,796
	Nason Creek	W x W	0.000	Orange Right	0.962	65,408
2004	Wenatchee River	$\mathrm{H} \times \mathrm{H}$	0.500	Red Left	0.804	39,636
	Chiwawa River	H x W	0.000	Green Left	0.977	153,959
	Nason Creek	W x W	0.000	Pink Right	0.940	100,519
2005	Wenatchee River	Hx H	1.000	Red Left	0.983	104,552
	Wenatchee River	H x W	0.616	Green Left	0.979	190,319
	Chiwawa River	H x W	0.616	Green Left	0.979	18,634
	Chiwawa River	W x W	0.000	Pink Right	0.969	14,124
	Nason Creek	W x W	0.000	Pink Right	0.969	124,555
2006	Wenatchee River	H x W (early)	1.000	Green Right	0.918	66,022
	Wenatchee River	H x W (late)	0.671	Green Left	0.935	92,176

Brood year	Release location	Parental origin	Proportion Ad-clip	VIE color/side	Tag rate	Number released
	Chiwawa River	H x W (late)	0.671	Green Left	0.935	41,240
	Chiwawa River	W x W	0.000	Pink Right	0.945	7,500
	Nason Creek	W x W	0.000	Pink Right	0.945	92,999
2007	Wenatchee River	H x W (early)	0.967	Green Right	0.950	64,310
	Wenatchee River	H x W (late)	0.586	Green Left	0.951	97,549
	Chiwawa River	H x W (late)	0.586	Green Left	0.951	43,011
	Chiwawa River	W x W	0.000	Pink Right	0.952	7,026
	Nason Creek	W x W	0.000	Pink Right	0.952	94,794
2008	Blackbird Pond	HxW (early)	0.917	Green Right	0.910	49,878
	Wenatchee River	H x W (early)	0.917	Green Right	0.910	48,624
	Wenatchee River	H x W (late)	0.595	Green Left	0.908	74,848
	Chiwawa River	H x W (late)	0.595	Green Left	0.908	25,835
	Chiwawa River	W x W	0.000	Pink Right	0.904	25,778
	Nason Creek	W x W	0.000	Pink Right	0.904	102,170

Numbers PIT tagged

Table 3.10 summarizes the number of hatchery steelhead of different parental origins that have been PIT-tagged and released into the Wenatchee Basin.
Table 3.10. Summary of PIT-tagging activities for Wenatchee hatchery steelhead, brood years 2006-2008.

Brood year	Release location	Parental origin	Number of fish tagged	Number of tagged fish that died	Number of tags shed	Number of tagged fish released
2006	Wenatchee River	H x W (early)	10,035	479	24	9,533
	Wenatchee/Chiwawa rivers	H x W (late)	10,031	922	20	9,089
	Chiwawa River/Nason Creek	W x W	10,019	152	352	9,515
2007	Wenatchee River	H x W (early)	10,052	22	10	9,820
	Wenatchee/Chiwawa rivers	H x W (late)	10,063	73	78	9,912
	Chiwawa River/Nason Creek	W x W	10,051	55	1	9,982
2008	Wenatchee River	H x W (early)	10,101	59	15	10,027
	Wenatchee/Chiwawa rivers	H x W (late)	10,104	106	17	9,981
	Chiwawa River/Nason Creek	W x W	10,101	159	80	9,862

2009 Brood Wenatchee Summer Steelhead (WxW)—A total of 10,101 WxW steelhead were PIT tagged at the Chelan Hatchery during 19-21 October 2009. These fish were not fed during tagging or for two-three days before or after tagging. These fish averaged 119 mm in length and 19.0 g at time of tagging.

At the end of January 2010, a total of 28 WxW steelhead have died and 3 others have shed their tags, leaving 10,070 tagged steelhead alive at the end of the month. These fish were transferred to the Turtle Rock Hatchery and will rear there until they are released in the spring.
2009 Brood Wenatchee Summer Steelhead (HxW-early production)—A total of 10,114 HxW early-spawn steelhead were PIT tagged at Eastbank Hatchery during 8-10 September 2009. Fish were not fed during tagging or for two days before or after tagging. Early-spawn steelhead averaged 80 mm in length and 6.0 g .
At the end of January 2010, a total of 21 HxW early-spawn tagged steelhead have died and 11 others have shed their tags, leaving 10,082 tagged steelhead alive at the end of the month. These fish will be transported to the Turtle Rock Hatchery in early 2010.

2009 Brood Wenatchee Summer Steelhead (HxW-late production)—A total of 10,115 HxW latespawn steelhead were PIT tagged at Eastbank Hatchery during 21-23 September 2009. Fish were not fed during tagging or for two days before or after tagging. Late-spawn steelhead averaged 86 mm in length and 7.0 g .

At the end of January 2010, a total of 53 HxW late-spawn tagged steelhead have died and 11 others have shed their tags, leaving 10,051 tagged steelhead alive at the end of the month. These fish will be transported to the Turtle Rock Hatchery in early 2010.
2009 Brood Wenatchee Summer Steelhead (Chiwawa Pilot)—A total of 10,107 Wenatchee summer steelhead were tagged at Eastbank Hatchery during 24-26 August 2009. Fish were not fed during tagging or for two-three days before and after tagging. Fish averaged 75 mm in length and 5.0 g at time of tagging.
At the end of January 2010, a total of 126 tagged steelhead have died and 97 others have shed their tags, leaving 9,884 tagged steelhead alive at the end of the month. These fish are currently rearing at the Chiwawa facility and will be released in spring 2010.

Fish size and condition at release

With the exception of the Blackbird Pond release, all 2008 brood steelhead were trucked and released as yearling smolts in May of 2009. The Blackbird Pond group was released volitionally beginning 24 April. All three parental groups exceeded length and weight targets. Only the late $\mathrm{H} x$ W group met the fish per pound release target. All three groups exceeded the target for coefficient of variation for fork length (Table 3.11).

Table 3.11. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of steelhead smolts released from the hatchery, brood years 1998-2008. Size targets are provided in the last row of the table.

Brood year	Release year	Parental origin	Fork length (mm)		Mean weight	
			Mean	CV	Grams (g)	Fish/pound
1998	1999	H x H	201	11.1	92.3	5

Brood year	Release year	Parental origin	Fork length (mm)		Mean weight	
			Mean	CV	Grams (g)	Fish/pound
		H x W	190	12.8	76.9	6
		W x W	173	12.0	55.3	8
1999	2000	HxH	181	8.9	70.6	6
		H x W	187	7.2	75.3	6
		W x W	184	11.3	71.5	6
2000	2001	H x H	218	15.2	122.4	4
		H x W	209	10.6	107.5	4
		W x W	205	10.7	100.9	5
2001	2002	H x H	179	17.4	67.0	7
		H x W	192	15.6	82.8	6
		W x W	206	11.6	102.6	4
2002	2003	H x H	194	13.1	83.0	6
		H x W	191	13.0	77.4	6
		W x W	180	19.1	70.3	7
2003	2004	H x H	191	14.4	73.1	6
		H x W	199	12.9	83.9	5
		W x W	200	11.1	90.1	5
2004	2005	H x H	204	11.3	87.2	6
		H x W	202	13.5	71.9	5
		W x W	198	12.4	76.6	6
2005	2006	H x H	215	12.6	116.6	4
		H x W	198	11.8	86.3	5
		W x W	189	15.4	55.3	6
2006	2007	H x H (early)	213	12.1	109.6	4
		H x W (late)	186	11.8	68.3	7
		W x W	178	11.1	58.6	8
2007	2008	H x W (early)	192	17.4	77.1	6
		H x W (late)	179	19.3	63.8	7
		W x W	183	12.3	62.8	7
2008	2009	H x W (early)	184	11.6	68.0	7
		H x W (late)	186	11.6	73.5	6
		W x W	181	13.0	59.7	8
Targets			198	9.0	75.6	6

Survival Estimates

Overall survival of Wenatchee steelhead from green (unfertilized) egg to release was well below the standard set for the program, primarily because of poor green egg-to-eyed egg and eyed egg-toponding survival (Table 3.12). The Wenatchee steelhead program, from its inception, has experienced highly variable fertilization rates. It is unknown at this time what mechanisms may be influencing stock performance at these stages.
Table 3.12. Hatchery life-stage survival rates (\%) for steelhead, brood years 1998-2008. Survival standards or targets are provided in the last row of the table.

$*$ Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0 ~ d}$ after ponding	$\mathbf{1 0 0} \mathbf{d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	92.0	100.0		91.7	99.2	98.8	97.8	99.9	76.7
1999	91.2	100.0	66.9	93.0	95.9	94.9	93.1	99.7	58.0
2000	83.9	96.2	77.6	86.7	99.3	98.9	97.7	99.5	65.7
2001	90.0	100.0	73.0	91.8	99.1	97.8	91.3	99.7	61.1
2002	99.0	100.0	69.2	93.1	95.9	94.4	89.6	89.6	60.0
2003	87.0	96.8	86.3	83.8	97.2	94.8	97.6	85.3	70.4
2004	97.6	98.5	83.4	93.7	97.8	94.1	92.2	99.9	72.0
2005	91.3	95.1	81.3	92.1	95.6	91.8	89.7	99.6	67.2
2006	99.1	95.3	73.2	85.4	95.4	94.6	87.8	98.5	54.9
2007	100.0	100.0	80.3	92.0	95.7	92.7	89.8	99.1	66.3
2008	100.0	100.0	87.1	88.4	99.0	97.4	96.6	99.5	74.4
Standard	$\mathbf{9 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{9 2 . 0}$	$\mathbf{9 8 . 0}$	$\mathbf{9 7 . 0}$	$\mathbf{9 3 . 0}$			

3.3 Disease Monitoring

Rearing of the 2008 brood Wenatchee summer steelhead was typical to previous years with fish being held on Chelan spring water, Eastbank well water, and Columbia River water before being released directly into Nason Creek and the Chiwawa and Wenatchee rivers. No significant diseaserelated mortality events occurred in the 2008 brood steelhead.

3.4 Natural Juvenile Productivity

During 2009, juvenile steelhead were sampled at the Upper Wenatchee, Lower Wenatchee, and Chiwawa traps and counted during snorkel surveys within the Chiwawa Basin. Because the snorkel surveys targeted juvenile Chinook salmon, the entire distribution of juvenile steelhead in the Chiwawa Basin was not surveyed. Therefore, the parr numbers presented below represent a minimum estimate.

Parr Estimates

A total of $17,179(\pm 9.0 \%)$ subyearling ($<100 \mathrm{~mm}$) and 5,629 ($\pm 18.0 \%$) yearling ($100-200 \mathrm{~mm})^{3}$ steelhead/rainbow were estimated in the Chiwawa Basin in August 2009 (Table 3.13 and 3.14). During the survey period 1992-2009, numbers of subyearling and yearling steelhead/rainbow have ranged from 1,410 to 45,727 and 2,533 to 22,128, respectively, in the Chiwawa Basin (Table 3.13 and 3.14; Figure 3.1). Numbers of all fish counted in the Chiwawa Basin are reported in Appendix A.

Juvenile steelhead/rainbow were distributed primarily throughout the lower seven reaches of the Chiwawa River (downstream from Rock Creek). Their densities were highest in the lower portions of the river and in tributaries. Subyearling steelhead/rainbow most often used riffle and multiple channel habitats in the Chiwawa River, although they also associated with woody debris in pool and glide habitat. In tributaries they were generally most abundant in small pools. Those that were observed in riffles selected stations in quiet water behind small and large boulders or occupied stations in quiet water along the stream margin. In pool and multiple-channel habitats, subyearling steelhead/rainbow used the same kinds of habitat as subyearling Chinook.
Yearling steelhead/rainbow most often used pool, riffle, and multiple-channel habitats. Those that used pools were usually in deeper water than subyearling steelhead/rainbow and Chinook. Like subyearling steelhead/rainbow, yearling steelhead/rainbow selected stations in quiet water behind boulders in riffles, but the two age groups rarely occurred together. Yearling steelhead/rainbow appeared to use deeper and faster water than did subyearling steelhead/rainbow.
Table 3.13. Total numbers of subyearling steelhead/rainbow trout estimated in different steams in the Chiwawa Basin during snorkel surveys in August 1992-2009; NS = not sampled.

Sample Year	Chiwawa River	Phelps Creek	Chikamin Creek	Rock Creek	Peven Creek	Big Meadow Creek	Alder Creek	Brush Creek	Clear Creek	Total
1992	4,927	NS	$\mathbf{4 , 9 2 7}$							
1993	3,463	0	356	185	NS	NS	NS	NS	NS	$\mathbf{4 , 0 0 4}$
1994	953	0	256	24	0	177	0	0	0	$\mathbf{1 , 4 1 0}$
1995	6,005	0	744	90	0	371	40	107	0	$\mathbf{7 , 3 5 7}$
1996	3,244	0	71	40	0	763	127	0	0	$\mathbf{4 , 2 4 5}$
1997	6,959	224	84	324	0	1,124	58	50	0	$\mathbf{8 , 8 2 3}$
1998	2,972	22	280	96	113	397	18	22	0	$\mathbf{3 , 9 2 1}$
1999	5,060	20	253	189	0	255	34	27	0	$\mathbf{5 , 8 3 8}$
2000	NS	NS	NS	NS	$N S$	$N S$	NS	NS	NS	NS
2001	35,759	192	1,449	1,826	0	6,345	156	0	0	$\mathbf{4 5 , 7 2 7}$
2002	12,137	0	2,252	889	0	4,948	277	18	0	$\mathbf{2 0 , 5 2 1}$
2003	9,911	296	996	1,166	96	5,366	73	116	0	$\mathbf{1 8 , 0 2 0}$
2004	8,464	110	583	113	40	957	35	78	0	$\mathbf{1 0 , 3 8 0}$
2005	4,852	120	2,931	477	45	2,973	65	0	0	$\mathbf{1 1 , 4 6 3}$
2006	10,669	21	858	872	34	3,647	73	71	0	$\mathbf{1 6 , 2 4 5}$
2007	8,442	53	2,137	348	11	2,955	65	28	34	$\mathbf{1 4 , 0 7 3}$
2008	9,863	0	2,260	859	0	1,987	57	168	36	$\mathbf{1 5 , 2 3 0}$

[^2]| Sample
 Year | Chiwawa
 River | Phelps
 Creek | Chikamin
 Creek | Rock
 Creek | Peven
 Creek | Big
 Meadow
 Creek | Alder
 Creek | Brush
 Creek | Clear
 Creek | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2009 | 13,231 | 0 | 1,183 | 449 | 0 | 2,062 | 170 | 67 | 17 | $\mathbf{1 7 , 1 7 9}$ |
| Average | 8,642 | 66 | 1,043 | 497 | 23 | 2,288 | 83 | 50 | 6 | 12,315 |

Table 3.14. Total numbers of yearling steelhead/rainbow trout estimated in different steams in the Chiwawa Basin during snorkel surveys in August 1992-2009; NS = not sampled.

Sample Year	Chiwawa River	Phelps Creek	Chikamin Creek	Rock Creek	Peven Creek	Big Meadow Creek	Alder Creek	Brush Creek	Clear Creek	Total
1992	2,533	NS	2,533							
1993	2,530	0	228	102	NS	NS	NS	NS	NS	2,860
1994	4,972	0	476	296	5	107	0	0	0	5,856
1995	8,769	0	494	71	0	183	0	0	0	9,517
1996	11,381	0	6	27	0	435	0	0	0	11,849
1997	6,574	160	0	105	0	66	0	0	0	6,905
1998	10,403	0	133	49	0	0	0	0	0	10,585
1999	21,779	0	68	201	0	82	0	0	0	22,130
2000	NS									
2001	9,368	16	186	407	0	646	0	0	0	10,623
2002	7,200	0	199	165	0	1,526	0	0	0	9,090
2003	4,745	362	426	599	0	47	0	0	0	6,179
2004	7,700	107	209	0	0	174	0	0	0	8,190
2005	4,624	63	957	257	0	287	0	0	0	6,188
2006	7,538	76	748	1,186	0	985	0	0	0	10,533
2007	6,976	0	945	96	0	431	0	0	0	8,448
2008	8,317	0	1,168	298	0	793	0	0	0	10,576
2009	4,998	16	320	102	0	167	21	0	5	5,629
Average	7,671	50	410	248	0	395	1	0	0	8,688

Figure 3.1. Numbers of subyearling and yearling steelhead/rainbow trout within the Chiwawa River Basin in August 1992-2009; ND = no data.

Emigrant and Smolt Estimates

Numbers of steelhead smolts and emigrants were estimated at the Upper Wenatchee, Chiwawa, and Lower Wenatchee traps in 2009.

Chiwawa Trap

The Chiwawa Trap operated between 5 March and 2 December 2009. During that time period the trap was inoperable for 17 days because of high river flows, debris, snow/ice, or mechanical failure. The trap operated in two different positions depending on stream flow; lower position at flows greater than $12 \mathrm{~m}^{3} / \mathrm{s}$ and an upper position at flows less than $12 \mathrm{~m}^{3} / \mathrm{s}$. Monthly captures of all fish collected at the Chiwawa Trap are reported in Appendix B.
A total of 248 wild steelhead/rainbow smolts, 2,708 hatchery smolts, and 1,709 wild parr were captured at the Chiwawa Trap. Nearly all (98%) of the hatchery smolts were collected in May, while most (67\%) of the wild steelhead smolts were captured during April and May (Figure 3.2). Although steelhead/rainbow parr emigrated throughout the sampling period, most emigrated during May through June and in November (Figure 3.2). No mark-recapture efficiency trials were conducted with steelhead/rainbow at the Chiwawa Trap to estimate total population sizes.

Juvenile Steelhead

Month
Figure 3.2. Monthly captures of wild smolts, wild parr, and hatchery smolt steelhead/rainbow at the Chiwawa Trap, 2009.

Upper Wenatchee Trap

The Upper Wenatchee Trap operated nightly between 26 March and 29 July 2009. During the fourmonth sampling period, a total of 37 wild steelhead/rainbow smolts, 637 hatchery smolts, and 29 wild parr were captured at the Upper Wenatchee Trap. Monthly captures of all fish collected at the Upper Wenatchee Trap are reported in Appendix B.

Lower Wenatchee Trap

The Lower Wenatchee Trap operated nightly between 19 February and 5 August 2009. During that time period, the trap was inoperable for 13 days because of high river flows, debris, snow/ice, or mechanical failure. During the five-month sampling period, a total of 216 wild steelhead/rainbow smolts, 1,949 hatchery smolts, and 48 wild parr were captured at the Lower Wenatchee Trap. Based
on capture efficiencies estimated from the flow model, the total number of wild yearling steelhead/rainbow that emigrated past the Lower Wenatchee Trap was 27,373 ($\pm 7,097$). Most of the wild yearling steelhead/rainbow migrated during April and May. Nearly all (97\%) the hatchery yearling steelhead/rainbow migrated during May. Monthly captures of all fish collected at the Lower Wenatchee Trap are reported in Appendix B.

PIT Tagging Activities

As part of the Integrated Status and Effectiveness Monitoring Program (ISEMP), a total of 3,206 juvenile steelhead/rainbow trout (2,928 wild and 278 hatchery) were PIT tagged and released in 2009 throughout the Wenatchee Basin (Table 3.15a). Most of these were tagged in the Chiwawa Basin, Nason Creek, and Tumwater Canyon. Few were tagged and released at the Upper Wenatchee trap. A total of 228 juvenile steelhead/rainbow trout were tagged and released at the Lower Wenatchee trap. See Appendix C for a complete list of all fish captured, tagged, lost, and released.

Table 3.15a. Numbers of wild and hatchery steelhead/rainbow trout that were captured, tagged, and released at different locations within the Wenatchee Basin, 2009. Numbers of fish that died or shed tags are also given.

Sampling Location	Species and Life Stage	$\begin{array}{c}\text { Number } \\ \text { held }\end{array}$	$\begin{array}{c}\text { Number of } \\ \text { recaptures }\end{array}$	$\begin{array}{c}\text { Number } \\ \text { tagged }\end{array}$	$\begin{array}{c}\text { Number } \\ \text { died }\end{array}$	$\begin{array}{c}\text { Shed } \\ \text { Tags }\end{array}$	$\begin{array}{c}\text { Total } \\ \text { released }\end{array}$
Percent							
mortality							

Sampling Location	Species and Life Stage	$\begin{gathered} \text { Number } \\ \text { held } \end{gathered}$	Number of recaptures	Number tagged	$\begin{gathered} \text { Number } \\ \text { died } \end{gathered}$	Shed Tags	Total released	Percent mortality
	Total	95	2	92	0	0	92	0.00
Lower Wenatchee Trap	Wild Steelhead/Rainbow	238	5	227	0	0	227	0.00
	Hatchery Steelhead/Rainbow	1	0	1	0	0	1	0.00
	Total	239	5	228	0	0	228	0.00
Total:	Wild Steelhead/Rainbow	3,183	67	2,939	11	0	2,928	0.35
	Hatchery Steelhead/Rainbow	287	23	279	1	0	278	0.35
Grand Total:		3,470	90	3,218	12	0	3,206	0.35

Numbers of steelhead/rainbow PIT-tagged and released as part of ISEMP during the period 20062009 are shown in Table 3.15b.

Table 3.15b. Summary of the numbers of wild and hatchery steelhead/rainbow trout that were tagged and released at different locations within the Wenatchee Basin, 2006-2009.

Sampling Location	Species and Life Stage	Numbers of PIT-tagged steelhead/rainbow released			
		2006	2007	2008	2009
Chiwawa Trap	Wild Steelhead/Rainbow	1,366	832	1,431	1,127
	Hatchery Steelhead/Rainbow	0	3	2	1
	Total	1,366	835	1,433	1,128
Chiwawa Remote	Wild Steelhead/Rainbow	33	167	94	35
	Hatchery Steelhead/Rainbow	1	47	35	43
	Total	34	214	129	78
Upper Wenatchee Trap	Wild Steelhead/Rainbow	21	37	24	47
	Hatchery Steelhead/Rainbow	0	0	0	0
	Total	21	37	24	47
Nason Creek Remote ${ }^{\text {a }}$	Wild Steelhead/Rainbow	174	452	255	459
	Hatchery Steelhead/Rainbow	26	75	87	197
	Total	200	527	342	656
Upper Wenatchee Remote	Wild Steelhead/Rainbow	413	1,001	21	7
	Hatchery Steelhead/Rainbow	2	64	26	23
	Total	415	1,065	47	30
Middle Wenatchee Remote	Wild Steelhead/Rainbow	0	0	981	867
	Hatchery Steelhead/Rainbow	0	0	11	5
	Total	0	0	992	872
Lower Wenatchee Remote	Wild Steelhead/Rainbow	0	0	102	69
	Hatchery Steelhead/Rainbow	0	0	10	9
	Total	0	0	112	78
Peshastin Creek Remote	Wild Steelhead/Rainbow	0	0	0	92

Sampling Location	Species and Life Stage	Numbers of PIT-tagged steelhead/rainbow released			
		2006	2007	2008	2009
	Hatchery Steelhead/Rainbow	0	0	0	0
	Total	0	0	0	92
Lower Wenatchee Trap	Wild Steelhead/Rainbow	131	461	285	227
	Hatchery Steelhead/Rainbow	0	0	0	1
	Total	131	461	285	228
Total:	Wild Steelhead/Rainbow	2,138	2,950	3,193	2,928
	Hatchery Steelhead/Rainbow	29	189	171	278
Grand Total:		2,167	3,139	3,364	3,206

3.5 Spawning Surveys

Surveys for steelhead redds were conducted during March through May, 2009, in the Wenatchee River (including Beaver and Chiwaukum creeks), Chiwawa River (including Meadow, Alder, and Clear creeks), Nason Creek (including White Pine, Roaring, and an un-named stream), Icicle Creek, Peshastin Creek (including Mill, Ingalls, Tronsen, Scotty, Shaser, and Schafer creeks), and White River (including the Napeequa River and Panther Creek). Surveys were conducted in both index and non-index areas throughout the Wenatchee Basin (see Appendix D for more details).

Redd Counts

A total of 662 steelhead redds were estimated in the Wenatchee Basin in 2009 (Table 3.16). This is about a 131% increase over the estimate in 2008 (the higher count is partly due to the larger run size in 2009; see Appendix D). Most spawning occurred in the Wenatchee River (49\%), Nason Creek (19\%), and Icicle Creek (15\%) (Table 3.16; Figure 3.3). Peshastin Creek contained 5\% of all redds in the Wenatchee Basin. No redds were observed in the Little Wenatchee or White rivers. The number of redds estimated in the Chiwawa Basin was just above the average for that area.

Table 3.16. Numbers of steelhead redds estimated within different streams/watersheds within the Wenatchee Basin, 2001-2009; NS = not sampled. Redd counts beginning in 2004 have been conducted within the same areas and with the same methods. Therefore, comparing redd numbers before 2004 with estimates since may not be valid.

Survey year	Number of steelhead redds								
	Chiwawa	Nason	Little Wenatchee	White	Wenatchee $^{\text {River }^{\mathbf{a}}}$	Icicle	Peshastin	Total	
2001	25	27	NS	NS	116	19	NS	$\mathbf{1 8 7}$	
2002	80	80	1	0	315	27	NS	$\mathbf{5 0 3}$	
2003	64	121	5	3	248	16	15	$\mathbf{4 7 2}$	
2004	62	127	0	0	151	23	34	$\mathbf{3 9 7}$	
2005	162	412	0	2	459	8	97	$\mathbf{1 , 1 4 0}$	
2006	19	77	NS	0	191	41	67	$\mathbf{3 9 5}$	
2007	11	78	0	1	46	6	17	$\mathbf{1 5 9}$	

Survey year	Number of steelhead redds								
	Chiwawa	Nason	Little Wenatchee	White	Wenatchee River	Icicle	Peshastin	Total	
2008	11	88	NS	1	100	37	49	$\mathbf{2 8 6}$	
2009	75	126	0	0	327	102	32	$\mathbf{6 6 2}$	
Average $^{\boldsymbol{b}}$	$\mathbf{5 7}$	$\mathbf{1 2 6}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2 1 7}$	31	$\mathbf{4 4}$	$\mathbf{4 6 7}$	

${ }^{a}$ Includes redds in Beaver and Chiwaukum creeks.
${ }^{\mathrm{b}}$ The average is based on estimates from 2004 to present.

Figure 3.3. Percent of the total number of steelhead redds counted in different streams/watersheds within the Wenatchee Basin during March through May, 2009.

Redd Distribution

Steelhead redds were not evenly distributed among reaches within survey streams in 2009 (Table 3.17). Most of the spawning in the Chiwawa Basin occurred in Reach 1. Only two redds were observed in Clear Creek and Chikamin Creek and three redds were observed in Meadow Creek. No redds were observed in Rock or Alder creeks.

Most of the spawning in the Nason Creek Basin occurred in Nason Creek (primarily in Reach 3 and lower but similar numbers in Reaches 1, 2, and 4), with no spawning in tributaries. All spawning in the Peshastin Creek Basin occurred in Peshastin Creek (mostly in Reach 1). About 60\% of the spawning in the Wenatchee River occurred upstream from Tumwater Dam.
Table 3.17. Numbers and percentages of steelhead redds counted within different streams/watersheds within the Wenatchee Basin during March through May, 2009.

Stream/watershed	Reach	Number of redds	Percent of redds within stream/watershed
Chiwawa	Chiwawa 1	68	90.7

Stream/watershed	Reach	Number of redds	Percent of redds within stream/watershed
	Rock Creek	0	0.0
	Chikamin Creek	2	2.7
	Meadow Creek	3	3.9
	Alder Creek	0	0.0
	Clear Creek	2	2.7
	Total	75	100.0
Nason	Nason 1	24	19.0
	Nason 2	21	16.7
	Nason 3	58	46.0
	Nason 4	23	18.3
	White Pine Creek	0	0.0
	Un-named Creek	0	0.0
	Roaring Creek	0	0.0
	Total	126	100.0
White	White 2	0	0.0
	White 3	0	0.0
	Panther Creek	0	0.0
	Naqeequa River	0	0.0
	Total	0	0.0
Icicle	Icicle	102	100.0
	Total	102	100.0
Peshastin	Peshastin 1	28	87.5
	Peshastin 2	4	12.5
	Mill Creek	0	0.0
	Ingalls Creek	0	0.0
	Tronsen Creek	0	0.0
	Scotty Creek	0	0.0
	Shaser Creek	0	0.0
	Schafer Creek	0	0.0
	Total	32	100.0
Wenatchee	Wenatchee 1	0	0.0
	Wenatchee 2	36	11.0
	Wenatchee 3	36	11.0
	Wenatchee 4	0	0.0
	Wenatchee 5	12	3.7
	Wenatchee 6	36	11.0
	Wenatchee 7	12	3.7
	Wenatchee 8	17	5.2

Stream/watershed	Reach	Number of redds	Percent of redds within stream/watershed
	Wenatchee 9	84	25.7
	Wenatchee 10	94	28.7
	Beaver Creek	0	0.0
	Chiwaukum Creek	0	0.0
	Total	$\mathbf{3 2 7}$	$\mathbf{1 0 0 . 0}$

Spawn Timing

Steelhead began spawning during the third week of March in the Wenatchee River and Peshastin Creek and the fourth week of March in Icicle Creek. Spawning occurred at temperatures between 3.2° and $9.4^{\circ} \mathrm{C}$ and progressed upstream as water temperatures increased. Most spawning began when mean daily temperatures reached about $4.4^{\circ} \mathrm{C}$. Spawning in most tributaries within the Wenatchee River Basin peaked the fourth week of April (Figure 3.4).

Figure 3.4. Numbers of steelhead redds counted during different weeks in different index areas within the Wenatchee Basin, March through May 2009.

Spawning Escapement

Spawning escapement for steelhead upstream from Tumwater Dam was calculated as the number of redds (upstream from the dam) times the fish per redd ratio (based on sex ratios estimated at Tumwater Dam using video surveillance). The estimated fish per redd ratio for steelhead in 2009 was 1.83 (Table 3.18). Multiplying this ratio by the total number of redds upstream from the dam resulted in a total spawning escapement of 716 steelhead (Table 3.18). This means that of the 1,781
steelhead counted at Tumwater, only about 40% of them were estimated to have spawned upstream from the dam. This estimate was lower than the average of 44%.

The low estimated spawning escapement in 2009 may have resulted from the difficult survey conditions that biologists experienced in that year. That is, poor survey conditions may have obscured redds and high spring flows prevented post-peak surveys to be conducted in some areas. The effect of other factors, such as pre-spawning mortality, fallback, illegal harvest, etc. remain unknown.

Table 3.18. Numbers of steelhead counted at Tumwater Dam, fish/redd estimates (based on male-to-female ratios estimated at Tumwater Dam), numbers of steelhead redds counted upstream from Tumwater Dam, total spawning escapement upstream from Tumwater Dam (estimated as the total number of redds times the fish/redd ratio), and the proportion of the Tumwater Dam count that made up the spawning escapement.

Survey year	Total count at Tumwater Dam	Fish/redd	Number of redds			Spawning escapement	Proportion of Tumwater count that spawned
			Index area	Non-index area	Total redds		
2001	820	2.08	118	19	137	285	0.35
2002	1,720	2.68	296	179	475	1,273	0.74
2003	1,810	1.60	353	88	441	706	0.39
2004	1,869	2.21	277	92	369	815	0.44
2005	2,650	1.61	828	136	964	1,552	0.59
2006	1,053	2.05	192	34	226	463	0.44
2007	657	1.94	105	29	134	260	0.40
2008	1,328	2.81	124	35	159	447	0.34
2009	1,781	1.83	284	107	931	716	0.40
Average ${ }^{\text {a }}$	1,556	2.08	302	72	464	709	0.44

${ }^{\text {a }}$ The average is based on estimates from 2004 to present.

3.6 Life History Monitoring

Life history characteristics of steelhead were assessed by examining fish collected at broodstock collection sites, examining videotape at Tumwater Dam, and by reviewing tagging data and fisheries statistics. Some statistics could not be calculated at this time because few fish have been tagged with CWTs. All steelhead released from the hatchery received elastomer tags and about 30,000 were PIT tagged. With the placement of remote PIT tag detectors in spawning streams in 2007 and 2008, statistics such as origin on spawning grounds, stray rates, and SARs can be estimated more accurately.

Migration Timing

Sampling at Tumwater Dam indicates that steelhead migrate throughout the year; however, the migration distribution is bimodal, indicating that steelhead migrate past Tumwater Dam in two pulses: one pulse during summer-autumn the year before spawning and another during winter-spring the year of spawning (Figure 3.5). Most steelhead passed Tumwater Dam during July through October and April. The highest proportion of both wild and hatchery fish migrated during October.

Steelhead Migration Timing

Figure 3.5. Proportion of wild and hatchery steelhead sampled at Tumwater Dam for the combined brood years of 1999-2009.

Because the migration of steelhead is bimodal, we estimated migration statistics separately for each migration pulse (i.e., summer-autumn migration and winter-spring migration). That is, we compared migration statistics for wild and hatchery steelhead passing Tumwater Dam during the summerautumn period independent of those for the winter-spring migration period. We estimated the week and month that $10 \%, 50 \%$, and 90% of the wild and hatchery steelhead passed Tumwater Dam during the two migration periods. We also estimated the mean weekly and monthly migration timing for wild and hatchery steelhead.

Overall, there was little difference in migration timing of wild and hatchery fish enumerated at Tumwater Dam (Table 3.19a and b; Figure 3.5). For both the summer-autumn and winter-spring migration periods, wild and hatchery steelhead arrived at the dam during the same week and month. The mean and median migration timing for wild and hatchery steelhead was also similar. However, at the tail end of both migration periods, on average, wild steelhead appeared to end their migration about one week earlier than hatchery steelhead.

Table 3.19a. The week that 10%, 50% (median), and 90% of the wild and hatchery steelhead passed Tumwater Dam during their summer-autumn migration (June through December) and during their winterspring migration (January through May), 1999-2009. The average week is also provided for both migration periods. Migration timing is based on video sampling at Tumwater. The presence of eroded fins and/or missing adipose fins was used to distinguish hatchery fish from wild fish during video monitoring at Tumwater Dam. Estimates also include steelhead collected for broodstock.

Spawn year	Origin	Steelhead Migration Time (week)									
		Summer-Autumn Migration (Jun-Dec)					Winter-Spring Migration (Jan-May)				
		10\%	50\%	90\%	Mean	Sample size	10\%	50\%	90\%	Mean	Sample size
1999	Wild	27	32	47	35	81	12	16	17	15	29
	Hatchery	25	31	47	34	47	12	16	18	15	27
2000	Wild	31	36	41	36	238	11	14	18	14	40
	Hatchery	31	34	41	36	194	12	14	16	14	69
2001	Wild	29	34	41	35	391	13	15	17	15	84
	Hatchery	30	38	41	36	227	12	16	17	15	156
2002	Wild	29	39	46	38	810	13	14	17	14	181
	Hatchery	35	42	46	41	610	12	15	18	15	124
2003	Wild	30	33	40	35	731	3	9	16	9	193
	Hatchery	30	35	51	37	372	3	9	15	9	538
2004	Wild	30	40	45	39	644	13	16	18	16	222
	Hatchery	29	40	44	38	677	11	17	19	16	361
2005	Wild	30	39	43	38	986	10	15	17	15	206
	Hatchery	27	38	42	36	1,112	12	16	18	15	377
2006	Wild	29	40	43	39	428	12	15	17	15	191
	Hatchery	29	41	43	39	334	4	13	16	12	181
2007	Wild	30	36	41	35	277	11	17	17	15	108
	Hatchery	29	38	43	36	90	11	17	18	16	214
2008	Wild	30	38	43	38	397	13	15	18	16	123
	Hatchery	33	41	45	40	554	14	18	19	17	311
2009	Wild	30	37	46	37	339	13	15	19	15	87
	Hatchery	29	35	46	36	1,132	13	16	19	16	229
Average	Wild	30	37	43	37	484	11	15	17	14	133
	Hatchery	30	37	44	37	486	11	15	18	15	235

Table 3.19b. The month that 10%, 50% (median), and 90% of the wild and hatchery steelhead passed Tumwater Dam during their summer-autumn migration (June through December) and during their winterspring migration (January through May), 1999-2009. The average month is also provided for both migration periods. Migration timing is based on video sampling at Tumwater. The presence of eroded fins and/or missing adipose fins was used to distinguish hatchery fish from wild fish during video monitoring at Tumwater Dam. Estimates also include steelhead collected for broodstock.

Spawn year	Origin	Steelhead Migration Time (month)									
		Summer-Autumn Migration (Jun-Dec)					Winter-Spring Migration (Jan-May)				
		10\%	50\%	90\%	Mean	Sample size	10\%	50\%	90\%	Mean	Sample size
1999	Wild	7	8	11	8	81	3	4	4	4	29
	Hatchery	6	8	11	8	47	3	4	4	4	27
2000	Wild	8	9	10	9	238	3	4	5	4	40
	Hatchery	8	8	10	9	194	3	4	4	4	69
2001	Wild	7	8	10	8	391	3	4	4	4	84
	Hatchery	7	9	10	9	227	3	4	4	4	156
2002	Wild	7	9	11	9	810	3	4	4	4	181
	Hatchery	9	10	11	10	610	3	4	5	4	124
2003	Wild	7	8	10	8	731	1	3	4	3	193
	Hatchery	7	8	12	9	372	1	3	4	2	538
2004	Wild	7	10	11	9	644	3	4	4	4	222
	Hatchery	7	10	10	9	677	3	4	5	4	361
2005	Wild	7	9	10	9	986	3	4	4	4	206
	Hatchery	7	9	10	9	1,112	3	4	5	4	377
2006	Wild	7	10	10	10	428	3	4	4	4	191
	Hatchery	7	10	10	9	334	1	3	4	3	181
2007	Wild	7	9	10	9	277	3	4	4	4	108
	Hatchery	7	9	10	9	90	3	4	5	4	214
2008	Wild	7	9	10	9	397	3	4	5	4	123
	Hatchery	8	10	11	10	554	4	4	5	4	311
2009	Wild	7	9	11	9	338	3	4	5	4	87
	Hatchery	7	8	11	9	1,133	3	4	5	4	229
Average	Wild	7	9	10	9	484	3	4	4	4	133
	Hatchery	7	9	11	9	486	3	4	5	4	235

Age at Maturity

Nearly all steelhead broodstock collected at Tumwater and Dryden dams lived in saltwater 1 to 2 years (saltwater age) (Table 3.20; Figure 3.6). Very few saltwater age-3 fish returned and those that did were wild fish. On average, there was a difference between the saltwater age at return of wild and hatchery fish. A greater number of wild fish returned as saltwater age-2 fish than did hatchery fish. In contrast, a greater number of hatchery fish returned as saltwater-1 fish than did wild fish.

Table 3.20. Proportions of wild and hatchery steelhead broodstock of different ages collected at Tumwater and Dryden dams, 1998-2009. Age represents the number of years the fish lived in salt water.

Sample year	Origin	Saltwater age			Sample size
		1	2	3	
1998	Wild	0.39	0.61	0.00	35
	Hatchery	0.21	0.79	0.00	43
1999	Wild	0.50	0.48	0.02	58
	Hatchery	0.82	0.18	0.00	67
2000	Wild	0.56	0.44	0.00	39
	Hatchery	0.68	0.32	0.00	101
2001	Wild	0.52	0.48	0.00	64
	Hatchery	0.15	0.85	0.00	114
2002	Wild	0.56	0.44	0.00	99
	Hatchery	0.95	0.05	0.00	113
2003	Wild	0.13	0.85	0.02	63
	Hatchery	0.29	0.71	0.00	92
2004	Wild	0.95	0.05	0.00	85
	Hatchery	0.95	0.05	0.00	132
2005	Wild	0.22	0.78	0.00	95
	Hatchery	0.21	0.79	0.00	114
2006	Wild	0.29	0.71	0.00	101
	Hatchery	0.60	0.40	0.00	98
2007	Wild	0.40	0.59	0.00	79
	Hatchery	0.62	0.38	0.00	97
2008	Wild	0.65	0.34	0.01	104
	Hatchery	0.89	0.11	0.00	107
2009	Wild	0.40	0.58	0.20	83
	Hatchery	0.23	0.77	0.0	77
Average	Wild	0.46	0.53	0.01	75
	Hatchery	0.55	0.45	0.00	96

Steelhead Age Structure

Figure 3.6. Proportions of wild and hatchery steelhead of different saltwater ages sampled at Tumwater Dam for the combined years 1998-2009.

Size at Maturity

On average, hatchery steelhead collected at Tumwater and Dryden dams were about 1-2 cm smaller than wild steelhead (Table 3.21). This may be related to the fact that more wild steelhead return as saltwater age-2 fish than hatchery steelhead.
Table 3.21. Mean fork length (cm) at age (saltwater ages) of hatchery and wild steelhead collected from broodstock, 1998-2009; $\mathrm{N}=$ sample size and SD $=1$ standard deviation.

Return year	Origin	Steelhead fork length (cm)								
		1-Salt			2-Salt			3-Salt		
		Mean	N	SD	Mean	N	SD	Mean	N	SD
1998	Wild	63	15	4	79	20	5	-	0	-
	Hatchery	61	9	4	73	34	4	-	0	-
1999	Wild	65	29	5	74	28	5	77	1	-
	Hatchery	62	54	4	73	12	4	-	0	-
2000	Wild	64	22	3	74	17	5	-	0	-
	Hatchery	60	57	3	71	27	4	-	0	-
2001	Wild	61	33	6	77	31	5	-	0	-
	Hatchery	62	17	4	72	97	4	-	0	-
2002	Wild	64	55	4	77	44	4	-	0	-
	Hatchery	63	106	4	73	6	4	-	0	-
2003	Wild	69	8	6	77	52	5	91	1	-
	Hatchery	66	27	4	75	65	4	-	0	-
2004	Wild	63	73	6	78	4	2	-	0	-

Return year	Origin	Steelhead fork length (cm)								
		1-Salt			2-Salt			3-Salt		
		Mean	N	SD	Mean	N	SD	Mean	N	SD
	Hatchery	61	59	3	73	3	1	-	0	-
2005	Wild	59	21	4	74	74	5	-	0	-
	Hatchery	59	23	4	72	89	4	-	0	-
2006	Wild	63	27	5	75	67	6	-	0	-
	Hatchery	61	41	4	72	27	5	-	0	-
2007	Wild	64	31	6	76	46	5	-	0	-
	Hatchery	60	60	4	71	36	5	-	0	-
2008	Wild	64	68	4	77	35	4	80	2	-
	Hatchery	60	95	4	72	12	2	-	0	-
2009	Wild	65	33	5	76	48	6	81	2	0
	Hatchery	63	18	4	75	59	5	-	0	-
Averag e	Wild	64	35	5	76	39	5	82	1	0
	Hatchery	62	47	4	73	39	4	-	0	-

Contribution to Fisheries

Nearly all harvest on Wenatchee steelhead occurs within the Columbia basin. Harvest rates on steelhead in the Lower Columbia River fisheries (both tribal and non-tribal) are generally less than 5-10\% (NMFS 2004). WDFW regulates steelhead harvest in the Upper Columbia. Under certain conditions, WDFW may allow a harvest on hatchery steelhead (adipose fin clipped fish). The intent is to reduce the number of hatchery steelhead that exceed habitat seeding levels in spawning areas and to increase the proportion of wild steelhead in spawning populations.
The Hatchery Evaluation Technical Team (HETT) is currently developing methods for calculating harvest rates on Wenatchee steelhead. These methods will be presented to the Hatchery Committee for their review in 2010.

Origin on Spawning Grounds

At this time, origin of steelhead (wild or hatchery) on spawning grounds cannot be determined precisely. However, based on scales collected during steelhead run composition sampling at Dryden Dam in 2007 (2008 spawners), naturally produced steelhead made up about 32% of the escapement. More precise estimates of wild and hatchery spawners within tributaries can be generated after remote PIT tag detectors are installed within spawning tributaries.

Straying

Stray rates are currently difficult to estimate because fish are not handled on spawning grounds. As remote PIT-tag detectors are installed in spawning streams, we will be able to more accurately determine steelhead stray rates.

Genetics

A report on the genetic analysis of Wenatchee steelhead will be completed in 2010.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 2001-2007, the PNI was equal to or greater than 0.4 (Table 3.22). This indicates that the hatchery environment has an equal or greater influence on adaptation of Wenatchee steelhead than does the hatchery environment.

Table 3.22. Proportionate natural influence (PNI) of the Wenatchee steelhead supplementation program for brood years 2001-2008. PNI was calculated as the proportion of naturally produced steelhead in the hatchery broodstock (pNOB) divided by the proportion of hatchery steelhead on the spawning grounds (pHOS) plus pNOB. NOS = number of natural origin steelhead on the spawning grounds; HOS = number of hatchery origin steelhead on the spawning grounds; NOB = number of natural origin steelhead collected for broodstock; and $\mathrm{HOB}=$ number of hatchery origin steelhead included in hatchery broodstock.

Brood year	Spawners $^{\mathbf{a}}$			Broodstock *			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
2001	158	127	0.45	51	103	0.33	0.43
2002	731	542	0.43	96	64	0.60	0.59
2003	356	350	0.50	49	90	0.35	0.42
2004	371	444	0.55	75	61	0.55	0.50
2005	690	862	0.56	87	104	0.46	0.45
2006	253	210	0.45	93	69	0.57	0.56
2007	145	115	0.44	76	58	0.57	0.56
2008	NA	NA	NA	82	82	0.50	NA
Average	386	379	$\mathbf{0 . 5 0}$	75	78	$\boldsymbol{0 . 4 9}$	$\boldsymbol{0 . 5 0}$

${ }^{\text {a }}$ Proportions of natural origin and hatchery origin spawners were determined from video tape at Tumwater Dam. Therefore, these PNI estimates are appropriate for steelhead spawning upstream from Tumwater Dam. They may not represent PNI for steelhead spawning downstream from Tumwater Dam.

Natural Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population. For brood years 1989-2001, NRR in the Wenatchee averaged 0.83 (range, 0.07-3.13) (Table 3.23). NRRs for more recent brood years will be calculated as soon as the data are available.

Table 3.23. Spawning escapements, natural origin recruits (NOR), and natural replacement rates (NRR) for Wenatchee steelhead, 1989-2003. Numbers of hatchery and wild steelhead were based on radio telemetry results, numbers of steelhead passing Priest and Wells dams, and the number of steelhead harvested or removed for broodstock. (The numbers in this table may change as the HETT and HC refine the methods for estimating steelhead escapement, NORs, and NRRs.)

Brood year	Spawning escapement			NOR	NRR
	Hatchery	Wild	Total		348
1989	1,849	1,001	2,851	342	0.122
1990	1,487	936	2,423	321	0.141
1991	990	481	1,471	262	0.218
1992	1,333	888	2,221	241	0.118
1993	2,951	566	3,516	342	0.068
1994	985	309	1,294	427	0.265
1995	1,637	303	1,940	1,037	0.220
1996	1,036	409	1,445	1,609	0.717
1997	245	269	514	1,225	3.129
1998	391	278	668	796	1.832
1999	114	268	382	1,260	2.085
2000	738	406	1,144	1,301	1.101
2001	1,065	773	1,838	NA	0.707
2002	NA	NA	NA	NA	NA
2003	NA	NA	NA	NA	
Average	$\mathbf{1 , 1 4 0}$	530	$\mathbf{1 , 6 7 0}$	731	$\boldsymbol{0 . 8 2 5}$

Hatchery Replacement Rates

Hatchery replacement rates were estimated as hatchery adult-to-adult returns. These rates should be greater than the NRRs and greater than or equal to 19.2 (the calculated target value in Murdoch and Peven 2005). In years with data, HRRs and adjusted HRRs were consistently greater than NRRs (Table 3.24). In contrast, HRRs exceeded the estimated target value of 19.2 in only one year and adjusted HRRs exceeded the estimated target in two of the six years (Table 3.24).

Table 3.24. Hatchery replacement rates (HRR), adjusted HRR (for estimated tag loss), and NRR for Wenatchee steelhead, 1998-2005. (The numbers in this table may change as the HETT and HC refine the methods for estimating steelhead HRRs and NRRs.)

Brood year	HRR	Adjusted HRR	NRR
1998	1.89	3.49	1.83
1999	15.47	23.16	2.09
2000	2.60	3.33	1.10
2001	57.97	63.37	0.71
2002	11.76	12.18	NA
2003	6.56	6.56	NA

Brood year	HRR	Adjusted HRR	NRR
2004	NA	NA	NA
2005	NA	NA	NA
Average	16.04	18.68	$\mathbf{1 . 4 3}$

Smolt-to-Adult Survivals

Smolt-to-adult ratios (SARs) are calculated as the number of returning hatchery adults divided by the number of hatchery smolts released. SARs are generally based on CWT returns. However, Wenatchee steelhead have not been extensively tagged with CWTs. Therefore, elastomer-tagged fish were used to estimate SARs from release to capture at Priest Rapids Dam. Two different estimates are provided. One (unadjusted) is based on elastomer tag recaptures at Priest Rapids Dam; the other (adjusted) is corrected for tag loss after release (based on the number of unmarked hatchery adults that could not be accounted for). SARs for steelhead may change once a more accurate methodology for estimating adult survival has been developed.

Unadjusted SARs for Wenatchee steelhead ranged from 0.0017 to 0.0307 (mean $=0.0076$) for brood years 1996-2005 (Table 3.25). Accounting for post-release tag loss, SARs ranged from 0.0016 to 0.0336 (mean $=0.0105$) for brood years 1998-2005.

Table 3.25. Smolt-to-adult ratios (SARs) for Wenatchee hatchery steelhead, 1996-2005; NA = not available. Unadjusted estimates were based on elastomer tags recaptured at Priest Rapids Dam. Adjusted estimates were corrected for tag loss after release.

Brood year	Number of tagged smolts released	SAR (unadjusted)	SAR (adjusted)
1996	348,693	0.0034	NA
1997	429,422	0.0041	NA
1998	172,078	0.0009	0.0016
1999	175,661	0.0110	0.0165
2000	184,639	0.0017	0.0022
2001	335,933	0.0307	0.0336
2002	302,060	0.0063	0.0065
2003	374,867	0.0027	0.0027
2004	NA	NA	NA
2005	NA	NA	NA
Average	278,355	$\mathbf{0 . 0 0 7 6}$	$\boldsymbol{0 . 0 1 0 5}$

3.7 ESA/HCP Compliance

Broodstock Collection

Collection of brood-year 2008 broodstock for Wenatchee steelhead at Tumwater and Dryden dams began on 2 July and ended on 24 October 2007 and represented a slightly shortened collection duration from the 1 July - 12 November collection period detailed in the 2007 broodstock collection protocol. The broodstock collection protocols specified a total collection of 208 steelhead, including 104 natural-origin steelhead. Actual broodstock collection totaled 211 steelhead collected at Tumwater and Dryden dams, including 104 natural-origin fish (49.3\% of the total collection). The total number and proportion of natural-origin steelhead in the broodstock were less than the 104 and slightly below the 50% values identified in the 2006 protocol and ESA Permit 1395, respectively.
About 177 and 1,018 steelhead were handled and released at Dryden Dam and Tumwater Dam, respectively, during BY 2008 Wenatchee steelhead broodstock collection. These fish were released because the weekly quota for either hatchery or wild steelhead had been attained, but not both, or because they were non-target (red VIE), or they were unidentifiable hatchery-origin steelhead. All steelhead released were allowed to fully recover from the anesthesia and released immediately upstream from the trap sites.

In addition to steelhead encountered at Dryden Dam during steelhead broodstock collection, 248 spring Chinook salmon were captured and released unharmed immediately upstream from the trap facility. Consistent with ESA Section 10 Permit 1395 impact minimization measures, all ESA species handled at this site were subject of water-to-water transfers.

Hatchery Rearing and Release

The 2008 brood Wenatchee steelhead reared throughout all life-stages without significant mortality (defined as $>10 \%$ population mortality associated with a single event). However, the 2008 brood had poor fertilization to eyed-egg and eyed-egg to ponding survival resulting in an unfertilized-to-release survival of 74.4%, which was less than the program target of 81% (see Section 3.2).
Juvenile rearing occurred at three separate facilities including Eastbank Fish Hatchery, Chelan Falls Fish Hatchery, and Turtle Rock Fish Hatchery. Multiple facilities were used to take advantage of variable water temperatures to manipulate growth of juveniles from different parental crosses. Typically, wild steelhead spawn later than their hatchery cohort and are therefore reared at Chelan Falls Fish Hatchery on warmer water to accelerate their growth so they achieve a size at release similar to HxH and HxW parental cross progeny reared on cooler water at Eastbank Fish Hatchery. All parental cross groups received final rearing at Turtle Rock Fish Hatchery on Columbia River surface water before direct release (scatter planting) in the Wenatchee River basin.
The 2008 brood steelhead smolt release in the Wenatchee Basin totaled 327,143 smolts, representing about 82% of the program target of 400,000 smolts identified in the Rocky Reach and Rock Island Dam HCPs and in ESA Section 10 Permit 1395. As specified in ESA Section 10 Permit 1395, all steelhead smolts released were externally marked or tagged and a representative number were PIT tagged (see Section 3.2)

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery facilities during the period 1 January 2009 through 31 December 2009. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2009 are provided in Appendix E.

Smolt and Emigrant Trapping

Per ESA Section 10 Permit No. 1395, the permit holders are authorized a direct take of 20% of the emigrating steelhead population and a lethal take not to exceed 2\% of the fish captured (NMFS 2003). Based on the estimated wild steelhead population (smolt trap expansion) and hatchery juvenile steelhead population estimate (hatchery release data) for the Wenatchee Basin, the reported steelhead encounters during the 2009 emigration complied with take provisions in the Section 10 permit and are detailed in Table 3.26. Additionally, juvenile fish captured at the trap locations were handled consistent with provisions in ESA Section 10 Permit 1395 Section B.

Table 3.26. Estimated take of Upper Columbia River steelhead resulting from juvenile emigration monitoring in the Wenatchee Basin, 2009. NA = not available.

Trap location	Population estimate				Number trapped				Total	Take allowed by Permit
	Wild ${ }^{\text {a }}$	Hatchery ${ }^{\text {b }}$	Parr ${ }^{\text {c }}$	Fry	Wild	Hatchery	Parr	Fry		
Chiwawa Trap										
Population	NA	51,613	NA	NA	248	2,708	1,709	0	4,665	
Encounter rate	NA	NA	NA	NA	NA	0.0525	NA	NA	NA	0.20
Mortality ${ }^{\text {d }}$	NA	NA	NA	NA	0	2	20	1	23	
Mortality rate	NA	NA	NA	NA	0.0000	0.0007	0.0117	NA	0.0049	0.02
Upper Wenatchee Trap										
Population	NA	102,170	NA	NA	37	637	29	0	703	
Encounter rate	NA	NA	NA	NA	NA	0.0062	NA	NA		0.20
Mortality ${ }^{\text {d }}$	NA	NA	NA	NA	0	0	1	0	1	
Mortality rate	NA	NA	NA	NA	0.0000	0.0000	0.0345	NA	0.0014	0.02
Lower Wenatchee Trap										
Population	27,513	327,143	NA	NA	216	1,949	48	0	2,213	
Encounter rate	NA	NA	NA	NA	0.0079	0.0060	NA	NA	0.0062	0.20
Mortality ${ }^{\text {d }}$	NA	NA	NA	NA	2	0	0	0	2	
Mortality rate	NA	NA	NA	NA	0.0093	0.0000	0.0000	NA	0.0009	0.02
Wenatchee Basin Total										
Population	27,513	327,143	NA	NA	681	4,851	1,363	1	6,895	
Encounter rate	NA	NA	NA	NA	0.0248	0.0148	NA	NA	0.0194	0.20
Mortality ${ }^{\text {d }}$	NA	NA	NA	NA	2	2	21	1	26	
Mortality rate	NA	NA	NA	NA	0.0029	0.0004	0.0154	1.0000	0.0038	0.02

${ }^{\text {a }}$ Smolt production estimates based on juvenile emigration monitoring (Miller 2009).
${ }^{\text {b }} 2009$ smolt release data for the Wenatchee basin.
${ }^{\text {c }}$ Estimated parr emigrating past juvenile trap sites (Miller et al.2009)
${ }^{\mathrm{d}}$ Mortality includes trapping and PIT tag mortalities.

Spawning Surveys

Steelhead spawning ground surveys were conducted in the Wenatchee Basin during 2009, as authorized by ESA Section 10 Permit No. 1395. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

Stock Assessment at Priest Rapids Dam

Upper Columbia River steelhead stock assessment sampling at Priest Rapids Dam (PRD) is authorized through ESA Section 10 Permit No. 1395 (NMFS 2003). Permit authorizations include interception and biological sampling of up to 10% of the UCR steelhead passing PRD to determine upriver adult population size, estimate hatchery to wild ratios, determine age-class contribution, and evaluate the need for managing hatchery steelhead consistent with ESA recovery objectives, which include fully seeding spawning habitat with naturally produced Upper Columbia River steelhead supplemented with artificially propagated enhancement steelhead (NMFS 2003). The 2008-09 runcycle report (BY 2008) for stock assessment sampling at Priest Rapids Dam was complied under provisions of ESA Section 10 Permit 1395. Data and reporting information are included in Appendix F.

SECTION 4: WENATCHEE SOCKEYE SALMON

4.1 Broodstock Sampling

This section focuses on results from sampling 2007 and 2008 Wenatchee sockeye broodstock, which were collected at Tumwater Dam. The 2007 brood begins the tracking of the life cycle of sockeye that were released as parr into Lake Wenatchee in 2008 and some of which began smolt migrations in 2009. The 2008 brood is included because juveniles from this brood were released as parr in the lake in 2009. Complete information is not currently available for the 2009 brood (this information will be provided in the 2010 annual report). Collection of sockeye broodstock targets naturally produced fish and equal numbers of male and female fish.

Origin of Broodstock

The 2007 broodstock consisted of mostly naturally produced sockeye collected at Tumwater Dam between 16 July and 12 August 2007 (Table 4.1). A total of 210 sockeye were spawned, all of which were naturally produced fish. The 2008 broodstock consisted of naturally produced Wenatchee sockeye salmon collected at Tumwater Dam between 21 July and 6 August 2008 (Table 4.1). A total of 245 naturally produced sockeye were spawned.
Table 4.1. Numbers of wild and hatchery sockeye salmon collected for broodstock, numbers that died before spawning, and numbers of sockeye spawned, 1989-2008. Unknown origin fish (i.e., undetermined by scale analysis, no CWT or fin clips, and no additional hatchery marks) were considered naturally produced. Mortality includes sockeye that died of natural causes typically near the end of spawning and were not needed for the program, surplus sockeye killed at spawning, sockeye that died but were not recovered from the net pens, and sockeye that may have jumped out of the net pens.

Brood year	Wild sockeye					Hatchery sockeye					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
1989	299	93	47	115	44	0	0	0	0	0	115
1990	333	7	7	302	17	0	0	0	0	0	302
1991	357	18	16	199	124	0	0	0	0	0	199
1992	362	18	5	320	19	0	0	0	0	0	320
1993	307	79	21	207	0	0	0	0	0	0	207
1994	329	15	9	236	69	5	0	0	5	0	241
1995	218	5	7	194	12	3	0	0	3	0	197
1996	291	2	0	225	64	20	0	0	0	20	225
1997	283	12	3	192	76	19	0	0	19	0	211
1998	225	37	25	122	41	6	0	0	6	0	128
1999	90	7	1	79	3	60	0	0	60	0	139
2000	256	19	1	170	66	5	0	0	5	0	175
2001	252	27	10	200	15	8	1	0	7	0	207
2002	257	0	1	256	0	0	0	0	0	0	256
2003	261	12	9	198	42	0	0	0	0	0	198
2004	211	13	12	177	9	0	0	0	0	0	177
2005	243	29	12	166	36	0	0	0	0	0	166

Brood year	Wild sockeye					Hatchery sockeye					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
2006	260	2	4	214	40	0	0	0	0	0	214
2007	248	15	3	210	20	0	0	0	0	0	210
2008	258	4	11	243	0	2	0	0	2	0	245
Average	267	21	10	201	35	6	0	0	5	1	207

Age/Length Data

Ages of sockeye were determined from scales and otoliths collected from broodstock. The 2007 return was comprised primarily of age-5 returning adults (85.4\%; Table 4.2). Age-4 and 6 sockeye made up 1.9% and 9.7% of the 2007 return, respectively. The 2008 return consisted primarily of age-4 adults (95.0\%; Table 4.2). Age-5 and 6 sockeye made up 4.0% and 1.0% of the 2008 return, respectively.

Table 4.2. Percent of hatchery and wild sockeye salmon of different ages (total age) collected from broodstock, 1994-2008.

Return year	Origin	Total age		
		4	5	6
1994	Wild	57.3	41.7	1.0
	Hatchery	40.0	60.0	0.0
1995	Wild	77.3	20.7	2.0
	Hatchery	66.7	33.3	0.0
1996	Wild	65.8	34.2	0.0
	Hatchery	0.0	0.0	0.0
1997	Wild	86.5	13.5	0.0
	Hatchery	57.9	42.1	0.0
1998	Wild	9.9	88.6	1.5
	Hatchery	66.7	33.3	0.0
1999	Wild	21.8	74.7	3.5
	Hatchery	90.0	8.3	1.7
2000	Wild	97.7	2.3	0.0
	Hatchery	100.0	0.0	0.0
2001	Wild	69.9	29.6	0.5
	Hatchery	71.4	28.6	0.0
2002	Wild	31.6	67.6	0.8
	Hatchery	0.0	0.0	0.0
2003	Wild	2.6	90.5	6.9
	Hatchery	0.0	0.0	0.0
2004	Wild	97.5	2.0	0.5
	Hatchery	0.0	0.0	0.0

Return year	Origin	Total age		
		$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
2005	Wild	74.2	25.8	0.0
	Hatchery	0.0	0.0	0.0
20206	Wild	34.0	65.5	0.5
	Hatchery	0.0	0.0	0.0
2007	Wild	1.9	88.4	9.7
	Hatchery	0.0	0.0	0.0
2008	Wild	95.0	4.0	1.0
	Hatchery	100.0	0.0	0.0
Average	Wild	54.9	$\mathbf{4 3 . 2}$	$\mathbf{1 . 9}$
	Hatchery	39.5	$\mathbf{1 3 . 7}$	$\mathbf{0 . 1}$

Lengths of sockeye for the 2007 and 2008 return years are provided in Table 4.3. Lengths of age-4, 5 , and 6 sockeye sampled in 2008 averaged 52,52 , and 62 cm , respectively.
Table 4.3. Mean fork length (cm) at age (total age) of hatchery and wild sockeye salmon collected for broodstock, 1994-2008; SD = 1 standard deviation.

Return year	Origin	Sockeye fork length (cm)								
		Age-4			Age-5			Age-6		
		Mean	N	SD	Mean	N	SD	Mean	N	SD
1994	Wild	56	125	3	55	91	3	54	2	3
	Hatchery	57	2	1	56	3	1	-	0	-
1995	Wild	51	153	2	55	41	4	54	4	5
	Hatchery	53	2	4	59	1	-	-	0	-
1996	Wild	52	146	4	53	76	3	-	0	-
	Hatchery	-	0	-	-	0	-	-	0	-
1997	Wild	50	166	3	53	26	5	-	0	-
	Hatchery	54	11	4	59	8	2	-	0	-
1998	Wild	51	13	4	55	117	3	53	2	3
	Hatchery	52	4	2	55	2	8	-	0	-
1999	Wild	52	19	4	50	65	4	56	3	1
	Hatchery	50	54	3	56	5	4	56	1	-
2000	Wild	52	167	2	54	4	3	-	0	-
	Hatchery	54	5	1	-	0	-	-	0	-
2001	Wild	54	151	3	56	65	4	58	1	-
	Hatchery	51	5	5	55	2	4	-	0	-
2002	Wild	54	77	2	56	165	4	57	2	0
	Hatchery	-	0	-	-	0	-	-	0	-
2003	Wild	54	5	4	60	172	2	60	13	4

Return year	Origin	Sockeye fork length (cm)								
		Age-4			Age-5			Age-6		
		Mean	N	SD	Mean	N	SD	Mean	N	SD
	Hatchery	-	0	-	-	0	-	-	0	-
2004	Wild	53	192	3	56	4	3	63	1	-
	Hatchery	-	0	-	-	0	-	-	0	-
2005	Wild	51	132	3	57	46	4	-	0	-
	Hatchery	-	0	-	-	0	-	-	0	-
2006	Wild	52	70	3	56	135	4	54	2	3
	Hatchery	-	0	-	-	0	-	-	0	-
2007	Wild	57	4	2	58	182	5	58	20	5
	Hatchery	-	0	-	-	0	-	-	0	-
2008	Wild	52	245	3	52	11	3	62	2	6
	Hatchery	53	2	3	-	-	-	-	-	-

Sex Ratios

Male sockeye in the 2007 return made up about 51% of the adults collected, resulting in an overall male to female ratio of 1.05:1.00 (Table 4.4). In 2008, males made up about 49% of the adults collected, resulting in an overall male to female ratio of 0.97:1.00. Ratios for both years are near the 1:1 ratio target in the broodstock protocol.

Table 4.4. Numbers of male and female wild and hatchery sockeye collected for broodstock, 1989-2008. Ratios of males to females are also provided.

Return year	Number of wild sockeye			Number of hatchery sockeye			Total M/F ratio
	Males (M)	Females (F)	\mathbf{M} / \mathbf{F}	Males (M)	Females (F)	\mathbf{M} / \mathbf{F}	
1989	162	137	$1.18: 1.00$	0	0	$1.18: 1.00$	
1990	177	156	$1.13: 1.00$	0	0	-	$1.13: 1.00$
1991	260	97	$2.68: 1.00$	0	0	-	$2.68: 1.00$
1992	180	182	$0.99: 1.00$	0	0	-	$0.99: 1.00$
1993	130	177	$0.73: 1.00$	0	0	-	$0.73: 1.00$
1994	162	167	$0.97: 1.00$	1	4	$0.25: 1.00$	$0.95: 1.00$
1995	102	116	$0.88: 1.00$	1	2	$0.50: 1.00$	$0.87: 1.00$
1996	150	161	$0.93: 1.00$	0	0	-	$0.93: 1.00$
1997	139	144	$0.97: 1.00$	10	9	$1.11: 1.00$	$0.97: 1.00$
1998	115	110	$1.05: 1.00$	2	4	$0.50: 1.00$	$1.03: 1.00$
1999	22	68	$0.32: 1.00$	37	23	$1.61: 1.00$	$0.65: 1.00$
2000	155	101	$1.53: 1.00$	3	2	$1.50: 1.00$	$1.53: 1.00$
2001	114	138	$0.83: 1.00$	4	4	$1.00: 1.00$	$0.83: 1.00$
2002	128	129	$0.99: 1.00$	0	0	-	$0.99: 1.00$
2003	161	100	$1.61: 1.00$	0	0	-	$1.61: 1.00$

Return year	Number of wild sockeye			Number of hatchery sockeye			Total M/F ratio
	Males (M)	Females (F)	M/F	Males (M)	Females (F)	M/F	
2004	108	103	$1.05: 1.00$	0	0	-	$1.05: 1.00$
2005	130	113	$1.15: 1.00$	0	0	-	$1.15: 1.00$
2006	130	130	$1.00: 1.00$	0	0	-	$1.00: 1.00$
2007	127	121	$1.05: 1.00$	0	0	-	$1.05: 1.00$
2008	127	131	$0.97: 1.00$	1	1	$1.00: 1.00$	$0.97: 1.00$
Total	2,779	2,581	$\mathbf{1 . 0 8 : 1 . 0 0}$	59	$\mathbf{4 9}$	$\mathbf{1 . 2 0 : 1 . 0 0}$	$\mathbf{1 . 0 7 : 1 . 0 0}$

Fecundity

Fecundities for the 2007 and 2008 returns of sockeye salmon averaged 3,115 and 2,555 eggs per female, respectively (Table 4.5). The lower mean fecundity for the 2008 return was likely because of the strong age-4 component in the return. Fecundities for this program between 1989 and 2006 are based upon the total (pooled) number of eyed eggs divided by the number of females spawned. Mean fecundities for the 2007 and 2008 brood were derived from individual fecundities.

Table 4.5. Mean fecundity of female sockeye salmon collected for broodstock, 1989-2008. Fecundities were determined from pooled egg lots and were not identified for individual females.

Return year	Mean fecundity
1989	2,344
1990	2,225
1991	2,598
1992	2,341
1993	2,340
1994	2,798
1995	2,295
1996	2,664
1997	2,447
1998	2,813
1999	2,319
2000	2,673
2001	2,960
2002	2,856
2003	3,511
2004	2,505
2005	2,718
2006	2,656
2007	3,115
2008	2,555
Average	2,637

4.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of 246,914 eggs are required to meet the program release goal of 200,000 smolts. From 1989 to 2008, the egg take goal was reached in 67% of the years (Table 4.6). The number of eggs taken in 2009 was above the egg take target by 24%.

Table 4.6. Numbers of eggs taken from sockeye broodstock, 1989-2009.

Return year	Number of eggs taken
1989	133,600
1990	326,267
1991	231,254
1992	381,561
1993	231,700
1994	338,562
1995	247,900
1996	314,390
1997	254,459
1998	163,278
1999	190,732
2000	227,234
2001	301,925
2002	356,982
2003	319,470
2004	225,499
2005	211,985
2006	292,136
2007	302,363
2008	316,476
2009	304,963
Average	270,130

Number of acclimation days

Wenatchee sockeye have only been acclimated on Lake Wenatchee water. For brood years 1989 through 1998, unfed fry were transferred from Eastbank FH to Lake Wenatchee Net Pens until
release (Table 4.7). For brood years 1999 to present, juvenile sockeye were reared at Eastbank FH until July in an effort to increase growth before release.
Table 4.7. Water source and mean acclimation period for Wenatchee sockeye, brood years 1989-2007.

Brood year	Release year	Transfer date	Release date	Number of Days	Water source
1989	1990	5-Apr	24-Oct	202	Lake Wenatchee
1990	1991	10-Apr	19-Oct	192	Lake Wenatchee
1991	1992	1-Apr	20-Oct	202	Lake Wenatchee
1992	1993	5-Apr	7-Sep	155	Lake Wenatchee
		5-Apr	26-Oct	204	Lake Wenatchee
1993	1994	5-Apr	1-Sep	149	Lake Wenatchee
		5-Apr	17-Oct	195	Lake Wenatchee
1994	1995	4-Apr	15-Sep	164	Lake Wenatchee
		4-Apr	23-Oct	202	Lake Wenatchee
1995	1996	4-Apr	25-Oct	204	Lake Wenatchee
1996	1997	4-Apr	22-Oct	201	Lake Wenatchee
1997	1998	1-Apr	9-Nov	222	Lake Wenatchee
1998	1999	1-Apr	29-Oct	211	Lake Wenatchee
1999	2000	$25-J u l$	28-Aug	34	Lake Wenatchee
		26-Jul	1-Nov	98	Lake Wenatchee
2000	2001	2-Jul	27-Aug	56	Lake Wenatchee
		3-Jul	27-Sep	86	Lake Wenatchee
2001	2002	15-Jul	28-Aug	44	Lake Wenatchee
		16-Jul	22-Sep	68	Lake Wenatchee
2002	2003	30-Jun	25-Aug	56	Lake Wenatchee
		1-Jul	22-Oct	113	Lake Wenatchee
2003	2004	6-Jul	25-Aug	50	Lake Wenatchee
		7-Jul	3-Nov	119	Lake Wenatchee
2004	2005	5-Jul	29-Aug	55	Lake Wenatchee
		6-Jul	2-Nov	120	Lake Wenatchee
2005	2006	11-Jul	30-Oct	111	Lake Wenatchee
2006	2007	9-10-Jul	31-Oct	113-114	Lake Wenatchee
2007	2008	7-8 Jul	29-Oct	113-114	Lake Wenatchee

Release Information

Numbers released

The 2007 Wenatchee sockeye program achieved 77.4% of the 200,000 target goal with about 154,772 fish being released (Table 4.8).
Table 4.8. Total number of sockeye parr released and numbers of released fish with CWTs and PIT tags for brood years 1989-2007. The release target for sockeye is 200,000 fish.

Brood year	Release year	CWT mark rate	Number of released fish with PIT tags	Number released
1989	1990	Not marked	0	108,400
1990	1991	0.9308	0	270,802
1991	1992	0.8940	0	167,523
1992	1993	0.9240	0	340,597
1993	1994	0.7278	0	190,443
1994	1995	0.8869	0	252,859
$1995{ }^{\text {a }}$	1996	1.0000	0	150,808
$1996{ }^{\text {a }}$	1997	0.9680	0	284,630
$1997{ }^{\text {a }}$	1998	0.9642	0	197,195
$1998{ }^{\text {a }}$	1999	0.8713	0	121,344
1999	2000	0.9527	0	167,955
2000	2001	0.9558	0	190,174
2001	2002	0.9911	0	200,938
2002	2003	0.9306	0	315,783
2003	2004	0.9291	0	240,459
2004	2005	0.8995	0	172,923
2005	2006	0.9811	14,791	140,542
2006	2007	0.9735	14,764	225,670
2007	2008	0.9863	14,947	252,133
2008	2009	0.9576	14,858	154,772
Average		0.9315	14,840	207,298

${ }^{\text {a }}$ These groups were only adipose fin clipped.

Numbers tagged

About 96% of the hatchery sockeye released in 2009 were CWT and adipose fin clipped (Table 4.8). In addition, a total of 15,100 juvenile sockeye were PIT tagged at the Eastbank Hatchery during 29 June to 2 July 2009. These fish were transported to the Lake Wenatchee net pens in July and released into the lake on 28 October 2009. At the time of release, a total of 232 fish had died and 10 others had shed their tags. Thus, the total number of PIT-tagged sockeye released into the lake was 14,858 (Table 4.8).

Fish size and condition at release

The 2007 brood sockeye were released as parr in 2008 and emigrated as yearling smolts in spring of 2009. Size at release was 3.0% and 45.4% of the fork length and weight goals, respectively. The 2007 brood year was also above the CV goal for length by 3.3\% (Table 4.9).

Table 4.9. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of sockeye released, brood years 1989-2007. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1989	1990	128	-	18.2	25
1990	1991	131	-	18.9	24
1991	1992	117	3.0	20.6	22
1992	1993	73	6.8	4.2	44
1993	1994	103	-	13.6	40
1994	1995	75	6.1	4.5	38
1995	1996	137	8.2	14.7	30
1996	1997	107	5.6	15.1	30
1997	1998	122	6.1	21.3	21
1998	1999	112	5.4	17.0	27
1999	2000	94	9.5	9.5	48
		134	11.5	31.3	15
2000	2001	123	6.5	22.3	20
		146	8.4	26.0	12
2001	2002	118	7.4	20.7	22
		135	7.3	30.5	15
2002	2003	73	5.6	4.4	104
		118	7.7	13.7	23
		145	9.4	38.6	13
2003	2004	79	4.6	4.8	96
		118	5.9	17.0	26
		158	8.1	44.3	10
2004	2005	116	4.5	17.2	18
		151	7.0	39.3	12
2005	2006	149	7.5	43.7	10
2006	2007	138	10.6	32.4	14
2007	2008	137	9.3	33.0	14

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
Targets		133	9.0	22.7	20

Survival Estimates

Overall survival of Wenatchee sockeye from green (unfertilized) egg to release was above the standard set for the program. Survivals for collection-to-spawn for females and unfertilized-to-eyed egg were slightly below the standard for the program. Because of the highly variable unfertilized-toeyed egg survivals, studies should be considered that assess the effects of holding adults on warm surface water at Lake Wenatchee on gamete maturation/viability in addition to reducing negative phototactic behavior at swim up (potential influences on survival at the fertilization to ponding stages) (Table 4.10).
Table 4.10. Hatchery life-stage survival rates (\%) for sockeye salmon, brood years 1989-2007. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	$\begin{gathered} \text { Eyed } \\ \text { egg- } \\ \text { ponding } \end{gathered}$	30 d after ponding	$\begin{gathered} 100 \mathrm{~d} \\ \text { after } \\ \text { ponding } \end{gathered}$	$\begin{aligned} & \text { Ponding } \\ & \text { to } \\ & \text { release } \end{aligned}$	Transport to release	Unfertilized egg-release
	Femal e	Male							
1989	41.6	100.0	88.1	63.9	99.2	98.9	98.1	65.2	83.0
1990	96.2	99.4	90.8	96.3	99.9	99.2	98.4	98.4	81.1
1991	91.8	94.1	79.2	94.8	99.8	99.3	96.4	96.4	72.4
1992	91.1	98.8	92.3	98.0	99.9	99.8	98.6	98.8	89.2
1993	57.1	99.2	89.2	98.3	99.6	99.1	93.7	93.8	82.2
1994	89.8	99.2	79.2	96.0	99.5	98.6	98.3	98.2	74.7
1995	97.5	99.1	87.5	95.0	99.0	93.3	73.2	73.2	60.8
1996	99.2	100.0	95.1	98.7	99.7	99.3	96.4	96.5	90.5
1997	92.8	99.3	84.8	97.9	97.9	97.6	95.5	94.9	77.5
1998	75.4	95.5	77.7	98.4	98.6	98.2	97.1	97.2	74.3
1999	92.3	100.0	92.2	97.3	99.6	99.3	98.2	99.7	88.1
2000	84.5	98.1	93.8	97.7	96.7	96.1	91.4	96.8	83.7
2001	75.4	99.2	78.5	97.6	98.0	97.6	86.9	95.1	66.6
2002	100.0	100.0	95.7	97.8	99.6	99.2	94.6	99.8	88.5
2003	91.0	98.1	87.2	96.9	99.0	98.2	94.8	95.5	74.6
2004	88.7	92.6	88.0	93.1	97.9	97.4	93.7	96.1	76.7
2005	98.5	98.5	85.3	94.9	97.8	96.6	95.5	99.2	66.3
2006	95.3	99.1	73.2	85.4	95.4	94.6	87.8	98.5	54.9
2007	88.4	99.2	89.1	98.6	97.0	95.9	94.9	99.0	83.4
Standard	90.0	85.0	92.0	98.0	97.0	93.0	90.0	95.0	81.0

4.3 Disease Monitoring

Rearing of the 2007 brood sockeye was typical to previous years with fish being held on Lake Wenatchee water in net pens for 114 days before being released directly into the lake. No significant disease-related mortality occurred during the rearing of the 2007 brood sockeye.

4.4 Natural Juvenile Productivity

During 2009, juvenile sockeye salmon were sampled at the Upper Wenatchee and Lower Wenatchee traps.

Emigrant and Smolt Estimates

Upper Wenatchee Trap

The Upper Wenatchee Trap operated nightly between 26 March and 29 July 2009. During the fourmonth sampling period, a total of 7,314 wild sockeye and 2,444 hatchery sockeye smolts were captured at the Upper Wenatchee Trap. Based on a pooled daily trap efficiency of 1.0% for both wild and hatchery sockeye (based on three mark-recapture trials), the total number of smolts that emigrated past the trap in 2009 was $732,686(\pm 73,610)$ wild and $247,097(\pm 24,909)$ hatchery sockeye (Table 4.11). This was the third brood year since 1999 that all hatchery sockeye parr were released at a similar size and time. Monthly captures of all fish and results of capture efficiency tests at the Upper Wenatchee Trap are reported in Appendix B.
Table 4.11. Estimated numbers of wild and hatchery sockeye smolts that emigrated from Lake Wenatchee during run years 1997-2009.

Run year	Numbers of sockeye smolts	
	Wild smolts	Hatchery smolts
1997	55,359	28,828
1998	$1,447,259$	55,985
1999	$1,944,966$	112,524
2000	985,490	24,684
2001	39,353	94,046
2002	729,716	121,511
2003	$5,303,056$	140,322
2004	$5,771,187$	216,023
2005	723,413	122,399
2006	$1,266,971$	159,500
2007	$2,797,313$	140,542
2008	549,682	102,907
2009	732,686	247,098
Average	$\mathbf{1 , 7 1 8 , 9 5 8}$	$\mathbf{1 2 0 , 4 9 0}$

Age classes of wild sockeye smolts were determined from a length frequency analysis based on scales collected randomly each year since 1997 (Table 4.12). For the available run years, most wild
sockeye smolts migrated as age 1+ fish. Only in two years (1997 and 2005) did more smolts migrate as age $2+$ fish. Relatively few smolts migrated at age $3+$.
Table 4.12. Age structure and estimated number of wild sockeye smolts that emigrated from Lake Wenatchee, 1997-2009.

Run year	Proportion of wild smolts			Total wild emigrants
	Age 1+	Age 2+	Age 3+	
1997	0.075	0.906	0.019	55,359
1998	0.955	0.037	0.008	$1,447,259$
1999	0.619	0.381	0.000	$1,944,966$
2000	0.599	0.400	0.001	985,490
2001	0.943	0.051	0.006	39,353
2002	0.961	0.039	0.000	729,716
2003	0.740	0.026	0.000	$5,439,032$
2004	0.929	0.071	0.000	$5,771,187$
2005	0.230	0.748	0.022	723,413
2006	0.994	0.006	0.000	$1,266,971$
2007	0.996	0.004	0.000	$2,797,313$
2008	0.804	0.195	0.001	549,682
$2009 *$	0.930	0.055	0.051	732,686
Average	$\boldsymbol{0 . 8 2 9}$	$\mathbf{0 . 1 1 2}$	$\boldsymbol{0 . 0 0 3}$	$\mathbf{1 , 7 2 9 , 4 1 7}$

* Ages have not been confirmed with scale analysis.

Lower Wenatchee Trap

The Lower Wenatchee Trap operated nightly between 19 February and 5 August 2009. Because of high river flows, debris, snow/ice, or mechanical failure, trap 1 and trap 2 were inoperable for 13 and 35 days, respectively. During the seven-month sampling period, a total of 1,259 wild sockeye smolts and 263 hatchery sockeye smolts were captured at the Lower Wenatchee Trap. Most of the smolts migrated during May. Monthly captures and mortalities of all fish collected at the Lower Wenatchee Trap are reported in Appendix B.

Freshwater Productivity

Egg-smolt survival estimates for wild sockeye salmon are provided in Table 4.13. Estimates of egg deposition were calculated based on the spawner escapement at Tumwater Dam and the sex ratio and fecundity of the broodstock. Egg-smolt survival rates for brood years 1995-2005 have ranged from 0.012 to 0.184 (mean $=0.091$).

Table 4.13. Estimated egg deposition (estimated as mean fecundity times estimated number of females), numbers of smolts, and survival rates for wild Wenatchee sockeye salmon, 1995-2008; NA = not available.

Brood year	Number of females	Mean fecundity	Total eggs	Numbers of wild smolts				Egg-smolt survival
		2,295		4,174	53,549	0	57,723	
1996	3,767	2,664	$10,035,288$	$1,382,133$	741,032	985	$2,124,150$	0.212

| Brood
 year | Number of
 females | Mean
 fecundity | Total eggs | Numbers of wild smolts | | | | Egg-smolt
 survival |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Age 3+ | Total | | | |
| 1997 | 5,404 | 2,447 | $13,223,588$ | $1,203,934$ | 394,196 | 236 | $1,598,366$ | 0.121 |
| 1998 | 2,024 | 2,813 | $5,693,512$ | 590,309 | 2,007 | 0 | 592,316 | 0.104 |
| 1999 | 513 | 2,319 | $1,189,647$ | 37,110 | 28,459 | 0 | 65,569 | 0.055 |
| 2000 | 11,413 | 2,673 | $30,506,949$ | 701,257 | $1,378,795$ | 0 | $2,080,052$ | 0.068 |
| 2001 | 21,685 | 2,960 | $64,187,600$ | $4,024,884$ | 409,754 | 15,915 | $4,450,553$ | 0.069 |
| 2002 | 17,226 | 2,856 | $49,197,456$ | $5,361,433$ | 541,113 | 0 | $5,902,546$ | 0.120 |
| 2003 | 2,158 | 3,511 | $7,576,738$ | 166,385 | 7,602 | 8,392 | 182,379 | 0.024 |
| 2004 | 15,469 | 2,534 | $39,198,446$ | $1,259,369$ | 106,298 | 550 | $1,366,216$ | 0.035 |
| 2005 | 5,867 | 2,718 | $15,946,506$ | $2,786,123$ | 107,243 | 37,367 | $2,930,733$ | 0.184 |
| 2006 | 2,747 | 2,656 | $7,296,032$ | 442,164 | 40,224 | | | |
| 2007 | 903 | 3,115 | $2,812,845$ | 681,105 | | | | |
| 2008 | 9,623 | 2,555 | $24,586,765$ | | | | | |
| Average | 7,210 | 2,723 | $\mathbf{1 9 , 7 3 9}$ | | | | | |

Juvenile survival rates for hatchery sockeye salmon are provided in Table 4.14. Release-smolt survival rates for brood years 1995-2007 have ranged from 0.000 to 1.000 (mean $=0.573$). Eggsmolt survival rates for the same brood years ranged from 0.000 to 0.817 (mean $=0.295$). On average, egg-smolt survival of hatchery sockeye is about three times greater than egg-smolt survival of wild sockeye. On three separate occasions, however, the estimated number of hatchery smolts equaled or exceeded the number of hatchery parr released in the lake. This is probably because the pooled trap efficiencies are biased high.

Table 4.14. Juvenile survival rates for hatchery Wenatchee sockeye, brood years 1995-2007.

Brood year	Number of eggs	Number of parr released	Date of release	Estimated number of smolts	Egg-smolt survival	Release-smolt survival
1995	247,900	150,808	10/25/96	28,828	0.116	0.191
1996	314,390	284,630	10/22/97	55,985	0.178	0.197
1997	254,459	197,195	11/9/98	112,524	0.442	0.571
1998	163,278	121,344	10/27/99	24,684	0.151	0.203
1999	190,732	84,466	8/28/00	30,326	0.159	0.359
		83,489	11/1/00	63,720	0.334	0.763
2000	227,234	92,055	8/27/01	30,918	0.136	0.336
		98,119	9/27/01	90,593	0.399	0.923
2001	301,925	96,486	8/28/02	36,484	0.121	0.378
		104,452	9/23/02	103,838	0.344	0.994
2002	356,982	98,509	6/16/03	5,192	0.015	0.053
		104,855	8/25/03	98,412	0.276	0.939
		112,419	10/22/03	112,419	0.315	1.000
2003	319,470	32,755	6/15/04	0	0.000	0.000

Brood year	Number of eggs	Number of parr released	Date of release	Estimated number of smolts	Egg-smolt survival	Release-smolt survival
		104,879	8/25/04	19,574	0.061	0.187
		102,825	11/3/04	102,825	0.322	1.000
2004	225,499	81,428	8/29/05	159,500	0.707	0.922
		91,495	11/2/05			
2005	211,985	70,386	10/30/06	140,542	0.663	1.000
		70,156	10/30/06			
2006	292,136	225,670	10/31/07	102,907	0.352	0.456
2007	302,363	252,133	10/29/08	247,098	0.817	0.980

PIT Tagging Activities

As part of the Integrated Status and Effectiveness Monitoring Program (ISEMP), a total of 3,683 juvenile sockeye salmon were PIT tagged and released in 2009 (Table 4.15a). All of these were tagged at the Upper Wenatchee Trap. No sockeye were tagged and released at the Lower Wenatchee trap. See Appendix C for a complete list of all fish captured, tagged, lost, and released.
Table 4.15a. Numbers of wild sockeye salmon that were captured, tagged, and released at different locations within the Wenatchee Basin, 2009. Numbers of fish that died or shed tags are also given.

Sampling Location	Number held	Number of recaptures	Number tagged	Number died	Shed Tags	Total released	Percent mortality
Upper Wenatchee Trap	3,739	1	3,692	9	0	3,683	0.24
Lower Wenatchee Trap	0	0	0	0	0	0	--
Total:	$\mathbf{3 , 7 3 9}$	$\mathbf{1}$	$\mathbf{3 , 6 9 2}$	$\mathbf{9}$	$\mathbf{0}$	$\mathbf{3 , 6 8 3}$	$\mathbf{0 . 2 4}$

Numbers of wild sockeye salmon PIT-tagged and released as part of ISEMP during the period 20062009 are shown in Table 4.15b.
Table 4.15b. Summary of the numbers of wild sockeye salmon that were tagged and released at different locations within the Wenatchee Basin, 2006-2009.

Sampling Location	Numbers of PIT-tagged sockeye salmon released			
	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$
Upper Wenatchee Trap	0	0	3,165	3,683
Lower Wenatchee Trap	0	0	0	0
Total:	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3 , 1 6 5}$	$\mathbf{3 , 6 8 3}$

4.5 Spawning Surveys

Spawning surveys were conducted in the Little Wenatchee and White (including the Napeequa River) rivers from 24 August to 16 October 2009. Surveys in 2009 only included counting numbers
of live sockeye spawners. No redd counts were conducted in 2008 or 2009 (see Appendix G for more details).

Spawn Timing

Sockeye began spawning during the first week of September and peaked around the third week of September (Figure 4.1). Peak spawning was determined using the total number of spawners observed on the spawning grounds.

Sockeye Spawners

Figure 4.1. Numbers of sockeye spawners counted during different weeks in different sampling streams within the Wenatchee Basin, August through October 2009.

Spawning Escapement

Spawning escapement of sockeye salmon in 2009 was estimated using the area-under-the-curve (AUC) method (i.e., escapement = (AUC/redd residence time) x observer efficiency). This method relied on weekly counts of live sockeye and assumed a redd residence time of 11 days and an observer efficiency of 100%. In 2010, a mark-recapture method using PIT tags will be used to estimate Sockeye spawning escapement.

Area-under-the-curve

Based on the AUC approach, the estimated total spawning escapement of sockeye in the Wenatchee Basin in 2009 was 7,767 (Table 4.16). About 90% of the escapement spawned in the White River Basin (including the Napeequa River).

Table 4.16. Peak numbers of live spawners and total spawning escapement estimates for sockeye salmon in the Wenatchee Basin, August through October 2009.

Sampling basin	Peak number of live fish	Spawning escapement
Little Wenatchee	495	763
White River	5,060	7,004
Total	5,555	7,767

The spawning escapement of 7,767 Wenatchee sockeye is less than the overall average of 14,857 (Table 4.17).

Table 4.17. Spawning escapements for sockeye salmon in the Wenatchee Basin for return years 1989-2009; NA = not available. Total escapements before 2003 were based on counts at Tumwater Dam.

Return year	Spawning escapement		
	Little Wenatchee	White	Total
1989	NA	NA	$\mathbf{2 1 , 8 0 2}$
1990	NA	NA	$\mathbf{2 7 , 3 2 5}$
1991	NA	NA	$\mathbf{2 6 , 6 8 9}$
1992	NA	NA	$\mathbf{1 6 , 4 6 1}$
1993	NA	NA	$\mathbf{2 7 , 7 2 6}$
1994	NA	NA	$\mathbf{7 , 3 3 0}$
1995	NA	NA	$\mathbf{3 , 4 4 8}$
1996	NA	NA	$\mathbf{6 , 5 7 3}$
1997	NA	NA	$\mathbf{9 , 6 9 3}$
1998	NA	NA	$\mathbf{4 , 0 1 4}$
1999	NA	NA	$\mathbf{1 , 0 2 5}$
2000	NA	NA	$\mathbf{2 0 , 7 3 5}$
2001	NA	NA	$\mathbf{2 9 , 1 0 3}$
2002	NA	NA	$\mathbf{2 7 , 5 6 5}$
2003	NA	NA	$\mathbf{4 , 8 5 5}$
2004	NA	NA	$\mathbf{2 7 , 5 5 6}$
2005	NA	NA	$\mathbf{1 4 , 0 1 1}$
2006	574	5,634	$\mathbf{6 , 2 0 8}$
2007	150	1,720	$\mathbf{1 , 8 7 0}$
2008	3,491	16,757	$\mathbf{2 0 , 2 4 8}$
2009	763	7,004	$\mathbf{7 , 7 6 7}$
$\boldsymbol{A v e r a g e}$	$\mathbf{1 , 2 4 5}$	$\mathbf{7 , 7 7 9}$	$\mathbf{1 4 , 8 5 7}$

4.6 Carcass Surveys

Carcass surveys were conducted in the Little Wenatchee and White (including the Napeequa River) rivers from 21 September to 13 October 2009.

Number sampled

A total of 3,290 sockeye carcasses were sampled during September through October, 2009, in the Wenatchee Basin (Table 4.18). This is considerably higher than the 1993-2009 average of 2,521 carcasses. Most of the carcasses sampled in 2009 were collected in the White River basin (97% or 3,206 carcasses) (Figure 4.2). The remaining 3\% were sampled in the Little Wenatchee River (84 carcasses).

Table 4.18. Numbers of sockeye carcasses sampled within different streams/watersheds within the Wenatchee Basin, 1989-2009.

Survey year	Numbers of sockeye carcasses			
	Little Wenatchee	White	Napeequa	Total
1993	90	195	0	285
1994	121	165	0	286
1995	0	56	0	56
1996	43	1,387	3	1,433
1997	69	1,425	41	1,535
1998	61	524	4	589
1999	40	186	0	226
2000	821	5,494	0	6,315
2001	650	3,127	0	3,777
2002	506	7,258	55	7,819
2003	86	1,002	14	1,102
2004	625	6,960	138	7,723
2005	1	7	0	8
2006	101	2,158	38	2,297
2007	17	363	3	383
2008	476	5,132	125	5,733
2009	84	3,103	103	3,290
Average	223	2,267	31	2,521

Figure 4.2. Percent of the peak number of live sockeye observed and the total number of sockeye carcasses sampled in different streams/watersheds within the Wenatchee Basin during August through October, 2009.

Carcass Distribution and Origin

Sockeye carcasses were not evenly distributed among reaches within survey streams in 2009 (Table 4.19). Carcasses were only found in Reaches 2 (Lost Creek to Rainy Creek) on the Little Wenatchee. Most (97\%) of the carcasses sampled in the White River Basin were in Reach 2 (Sears Creek Bridge to Napeequa River). About 3\% of the carcasses sampled in the White River Basin were in the Napeequa River.
Table 4.19. Numbers of carcasses sampled within different streams/watersheds within the Wenatchee Basin during August through September, 2009.

Stream/watershed	Reach	Total carcasses
Little Wenatchee	Little Wen 1	0
	Little Wen 2	84
	Little Wen 3	0
	Total	84
White	White 1	0
	White 2	3,103
	White 3	0
	Napeequa 1	103
	Total	3,206
Grand Total		3,290

Numbers of wild and hatchery origin sockeye carcasses sampled in 2009 will be available after analysis of marks/tags and scales. Based on the available data (1993-2008), the largest percentage of
both wild and hatchery sockeye spawned in Reach 2 on the White River (Table 4.20 and Figure 4.3). However, a greater percentage of wild fish were found in Reach 2 than hatchery fish. The opposite occurred in Reach 2 on the Little Wenatchee. There, a larger percentage of hatchery fish were found compared to wild fish.

Table 4.20. Numbers of wild and hatchery sockeye carcasses sampled within different reaches in the Wenatchee Basin, 1993-2008. Reach codes are described in Table 2.9.

Survey year	Origin	Numbers of sockeye carcasses					
		Little Wenatchee		White River			Total
		L2	L3	H1	H2	Q1	
1993	Wild	86	0	0	183	0	269
	Hatchery	4	0	0	12	0	16
1994	Wild	112	0	0	155	0	267
	Hatchery	9	0	0	9	0	18
1995	Wild	0	0	0	55	0	55
	Hatchery	0	0	0	1	0	1
1996	Wild	41	0	0	1,299	3	1,343
	Hatchery	2	0	0	88	0	90
1997	Wild	65	0	0	1,411	40	1,516
	Hatchery	4	0	0	11	1	16
1998	Wild	61	0	0	515	4	580
	Hatchery	0	0	0	9	0	9
1999	Wild	30	0	0	164	0	194
	Hatchery	10	0	0	22	0	32
2000	Wild	694	0	3	5,239	0	5,936
	Hatchery	127	0	0	252	0	379
2001	Wild	625	0	0	3,063	0	3,688
	Hatchery	25	0	0	64	0	89
2002	Wild	504	0	0	7,207	55	7,766
	Hatchery	2	0	0	51	0	53
2003	Wild	81	0	0	993	14	1,088
	Hatchery	5	0	0	9	0	14
2004	Wild	606	0	0	6,755	166	7,527
	Hatchery	19	0	0	205	22	246
2005	Wild	201	0	5	2,966	21	3,193
	Hatchery	1	0	0	8	0	9
2006	Wild	80	0	0	2,112	36	2,228
	Hatchery	21	0	0	46	2	69
2007	Wild	17	0	0	346	3	366
	Hatchery	0	0	0	17	0	17
2008	Wild	80	0	0	3,084	103	3,267
	Hatchery	4	0	0	19	0	23
Average	Wild	205	0	1	2,222	28	2,455

Survey year	Origin	Numbers of sockeye carcasses					
		Little Wenatchee		White River			Total
		L2	L3	H1	H2	Q1	
	Hatchery	15	0	0	51	2	68

Wenatchee Sockeye Salmon

Figure 4.3. Distribution of wild and hatchery produced carcasses in different reaches in the Wenatchee Basin, pooled data from 1993-2008. Reach codes are described in Table 2.9; L = Little Wenatchee, H = White River, and Q = Napeequa River.

Sampling Rate

The sampling rate of sockeye carcasses differed among basins, with a higher sampling rate in the White than in the Little Wenatchee (Table 4.21). Nevertheless, the overall sampling rate for both basins combined exceeded the target of 20%.

Table 4.21. Numbers of carcasses, estimated spawning escapements, and sampling rates for sockeye salmon in the Wenatchee Basin, 2009.

Sampling basin	Total number of carcasses	Total spawning escapement	Sampling rate
Little Wenatchee	84	763	0.11
White	3,206	7,004	0.46
Total	3,290	7,767	0.42

Length Data

Mean lengths ($\mathrm{POH}, \mathrm{cm}$) of male and female hatchery sockeye carcasses sampled during surveys in the Wenatchee Basin in 2009 are provided in Table 4.22. Wild sockeye are sampled at Tumwater Dam, not on the spawning grounds. On average, females were slightly larger than males.

Table 4.22. Mean lengths (postorbital-to-hypural length; cm) and standard deviations (in parentheses) of male and female hatchery sockeye carcasses sampled in different streams/watersheds in the Wenatchee Basin, 2009; N = number of fish sampled. Wild sockeye were sampled at Tumwater Dam.

Stream/watershed		Male		Female	
		Length (cm)	\mathbf{N}	Length (cm)	
Little Wenatchee River	1	$44(N A)$	3	$42(3)$	
White River	4	$40(1)$	14	$41(3)$	
Napeequa River	0	NA	0	NA	
Wenatchee River	0	NA	0	NA	
Total	$\mathbf{5}$	$\mathbf{4 0 . 8}(\mathbf{1 . 9})$	$\mathbf{1 7}$	$\mathbf{4 1 . 4}(\mathbf{2 . 5})$	

4.7 Life History Monitoring

Life history characteristics of Wenatchee sockeye were assessed by examining carcasses on spawning grounds and fish sampled at broodstock collection sites, and by reviewing tagging data and fisheries statistics.

Migration Timing

There was little difference in migration timing of hatchery and wild sockeye past Tumwater Dam (Table 4.23a and b; Figure 4.4). On average, early in the run, hatchery and wild sockeye arrived at the dam at about the same time. Toward the end of the migration period, hatchery sockeye tended to arrive at the dam slightly later than did wild sockeye. Most hatchery and wild sockeye migrated upstream past Tumwater Dam during July through early August. The peak migration time for both hatchery and wild sockeye was the last week of July (Figure 4.4).
Table 4.23a. The Julian day and date that $10 \%, 50 \%$ (median), and 90% of the wild and hatchery sockeye salmon passed Tumwater Dam, 1998-2009. The average Julian day and date are also provided. Migration timing is based on video sampling at Tumwater. Data for 1998 through 2003 were based on videotapes and broodstock trapping and may not reflect the actual number of hatchery sockeye salmon. All sockeye were visually examined during trapping from 2004 to present.

Survey year	Origin	Sockeye Migration Time (days)								Sample
		10 Percentile		50 Percentile		90 Percentile		Mean		
		Julian	Date	Julian	Date	Julian	Date	Julian	Date	
1998	Wild	195	14-Jul	201	20-Jul	208	27-Jul	202	21-Jul	4,173
	Hatchery	196	15-Jul	204	23-Jul	220	8-Aug	206	25-Jul	31
1999	Wild	226	14-Aug	233	21-Aug	241	29-Aug	234	22-Aug	908
	Hatchery	228	16-Aug	234	22-Aug	242	30-Aug	235	23-Aug	264
2000	Wild	200	18-Jul	206	24-Jul	213	31-Jul	207	25-Jul	18,390
	Hatchery	199	17-Jul	206	24-Jul	213	31-Jul	206	24-Jul	2,589
2001	Wild	189	8-Jul	194	13-Jul	214	2-Aug	198	17-Jul	32,554
	Hatchery	199	18-Jul	212	31-Jul	240	28-Aug	214	2-Aug	79
2002	Wild	204	23-Jul	208	27-Jul	219	7-Aug	210	29-Jul	27,241

Survey year	Origin	Sockeye Migration Time (days)								$\begin{gathered} \text { Sample } \\ \text { size } \end{gathered}$
		10 Percentile		50 Percentile		90 Percentile		Mean		
		Julian	Date	Julian	Date	Julian	Date	Julian	Date	
	Hatchery	204	23-Jul	209	28-Jul	222	10-Aug	211	30-Jul	580
2003	Wild	194	13-Jul	200	19-Jul	208	27-Jul	201	20-Jul	4,699
	Hatchery	194	13-Jul	201	20-Jul	211	30-Jul	203	22-Jul	375
2004	Wild	191	9-Jul	196	14-Jul	207	25-Jul	198	16-Jul	31,408
	Hatchery	189	7-Jul	194	12-Jul	203	21-Jul	196	14-Jul	1,758
2005	Wild	192	11-Jul	199	18-Jul	227	15-Aug	204	23-Jul	14,176
	Hatchery	187	6-Jul	200	19-Jul	251	8-Sep	212	31-Jul	42
2006	Wild	201	20-Jul	204	23-Jul	214	2-Aug	206	25-Jul	9,151
	Hatchery	202	21-Jul	219	7-Aug	228	16-Aug	215	3-Aug	507
2007	Wild	201	20-Jul	210	29-Jul	227	15-Aug	213	1-Aug	2,542
	Hatchery	205	24-Jul	213	1-Aug	231	19-Aug	216	4-Aug	65
2008	Wild	200	18-Jul	207	25-Jul	219	6-Aug	208	26-Jul	29,229
	Hatchery	201	19-Jul	206	24-Jul	215	2-Aug	208	26-Jul	103
2009	Wild	198	17-Jul	204	23-Jul	213	1-Aug	206	25-Jul	15,552
	Hatchery	199	18-Jul	205	24-Jul	215	3-Aug	207	26-Jul	534
Average	Wild	199	-	205	-	218	-	207	-	15,835
	Hatchery	200	-	209	-	224	-	211	-	577

Table 4.23b. The week that 10%, 50% (median), and 90% of the wild and hatchery sockeye salmon passed Tumwater Dam, 1998-2009. The average week is also provided. Migration timing is based on video sampling at Tumwater. Data for 1998 through 2003 were based on videotapes and broodstock trapping and may not reflect the actual number of hatchery sockeye salmon. All sockeye were visually examined during trapping from 2004 to present.

Survey year	Origin	Sockeye Migration Time (week)				Sample size
		10 Percentile	50 Percentile	90 Percentile	Mean	
1998	Wild	28	29	30	29	4,173
	Hatchery	28	30	32	30	31
1999	Wild	33	34	35	34	908
	Hatchery	33	34	35	34	264
2000	Wild	29	30	31	30	18,390
	Hatchery	29	30	31	30	2,589
2001	Wild	27	28	31	29	32,554
	Hatchery	29	31	35	31	79
2002	Wild	30	30	32	30	27,241
	Hatchery	30	30	32	31	580
2003	Wild	28	29	30	29	4,699
	Hatchery	28	29	31	29	375

Survey year	Origin	Sockeye Migration Time (week)				Sample size
		$\mathbf{1 0}$ Percentile	$\mathbf{5 0}$ Percentile	$\mathbf{9 0}$ Percentile	Mean	
2004	Wild	28	28	28	29	31,408
	Hatchery	27	28	29	28	1,758
2005	Wild	28	29	33	30	14,176
	Hatchery	27	29	36	31	42
2006	Wild	29	29	31	30	9,151
	Hatchery	29	32	33	31	507
2007	Wild	29	30	33	31	2,542
	Hatchery	30	31	33	31	65
2008	Wild	29	30	32	30	29,229
	Hatchery	29	30	31	30	103
2009	Wild	29	30	31	30	15,552
	Hatchery	29	29	31	30	534
Average	Wild	29	30	31	30	$\mathbf{1 5 , 8 3 5}$
	Hatchery	29	30	32	31	577

Sockeye Migration Timing

Migration Week
Figure 4.4. Proportion of wild and hatchery sockeye observed (using video) passing Tumwater Dam each week during their migration period late-June through early-October; data were pooled over survey years 1998-2009.

Age at Maturity

Although sample sizes are small, it appears that most wild sockeye returned as age- 5 fish, while most hatchery sockeye returned as age-4 fish (Table 4.24; Figure 4.5). Only wild fish have returned at age-6.

Table 4.24. Proportions of wild and hatchery sockeye of different ages (total age) sampled in broodstock and on spawning grounds, 1994-2008.

Survey year	Origin	Total age						Sample size
		2	3	4	5	6	7	
1994	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.00	0.88	0.13	0.00	0.00	16
1995	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.00	0.00	1.00	0.00	0.00	1
1996	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.00	1.00	0.00	0.00	0.00	82
1997	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.00	0.77	0.23	0.00	0.00	13
1998	Wild	0.00	0.08	0.85	0.08	0.00	0.00	26
	Hatchery	0.00	0.00	0.64	0.36	0.00	0.00	11
1999	Wild	0.00	0.00	0.18	0.73	0.10	0.00	113
	Hatchery	0.00	0.00	0.65	0.35	0.00	0.00	31
2000	Wild	0.00	0.00	0.00	1.00	0.00	0.00	1
	Hatchery	0.00	0.00	0.98	0.02	0.00	0.00	359
2001	Wild	0.00	0.00	0.76	0.24	0.00	0.00	29
	Hatchery	0.00	0.00	0.75	0.25	0.00	0.00	171
2002	Wild	0.00	0.00	0.20	0.80	0.00	0.00	5
	Hatchery	0.00	0.00	0.29	0.71	0.00	0.00	63
2003	Wild	0.00	0.00	0.00	1.00	0.00	0.00	5
	Hatchery	0.00	0.33	0.67	0.00	0.00	0.00	6
2004	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.02	0.93	0.05	0.00	0.00	244
2005	Wild	-	-	-	-	-	-	0
	Hatchery	0.00	0.13	0.75	0.13	0.00	0.00	8
2006	Wild	0.00	0.00	0.34	0.65	0.01	0.00	207
	Hatchery	0.00	0.00	1.00	0.00	0.00	0.00	65
2007	Wild	0.00	0.00	0.02	0.88	0.10	0.00	206
	Hatchery	0.00	0.00	0.35	0.65	0.00	0.00	17
2008	Wild	0.00	0.00	0.95	0.04	0.01	0.00	258
	Hatchery	0.00	0.08	0.92	0.00	0.00	0.00	12
Average	Wild	0.00	0.00	0.45	0.50	0.04	0.00	57
	Hatchery	0.00	0.01	0.86	0.13	0.00	0.00	73

Sockeye Age Structure

Figure 4.5. Proportions of wild and hatchery sockeye salmon of different total ages sampled at Tumwater Dam and on spawning grounds in the Wenatchee Basin for the combined years 1994-2008.

Size at Maturity

Although sample sizes are small, wild sockeye were larger than hatchery sockeye in 2008 (Table 4.25). This is because more wild fish return at age 5, while more hatchery fish return at age 4. However, the pooled data indicate that there is virtually no difference in mean sizes of hatchery and wild sockeye salmon sampled in the Wenatchee Basin (Table 4.25). Future analyses will compare sizes of hatchery and wild fish of the same age groups and gender.
Table 4.25. Mean lengths ($\mathrm{POH} ; \mathrm{cm}$) and variability statistics for wild and hatchery sockeye salmon sampled at Tumwater Dam (broodstock) and on spawning grounds in the Wenatchee Basin, 1994-2008; SD = 1 standard deviation.

Survey year	Origin	Sample size	Sockeye length (POH; cm)			
			Mean	SD	Minimum	Maximum
1994	Wild	0	-	-	-	-
	Hatchery	14	42	3	37	47
1995	Wild	0	-	-	-	-
	Hatchery	1	53	-	53	53
1996	Wild	0	-	-	-	-
	Hatchery	5	51	3	49	55
1997	Wild	6	40	3	37	45
	Hatchery	17	41	3	3	50
1998	Wild	585	43	3	40	50
	Hatchery	20	43			

Survey year	Origin	Sample size	Sockeye length ($\mathrm{POH} ; \mathrm{cm}$)			
			Mean	SD	Minimum	Maximum
1999	Wild	99	42	3	36	50
	Hatchery	31	41	3	36	47
2000	Wild	1	48	-	48	48
	Hatchery	377	40	2	30	49
2001	Wild	29	42	2	38	47
	Hatchery	184	43	3	35	51
2002	Wild	5	42	1	40	43
	Hatchery	52	44	3	37	49
2003	Wild	5	44	4	38	47
	Hatchery	13	42	5	30	48
2004	Wild	0	-	-	-	-
	Hatchery	230	40	3	33	49
2005	Wild	0	-	-	-	-
	Hatchery	8	43	9	35	64
2006	Wild	248	45	4	34	52
	Hatchery	17	41	5	31	48
2007	Wild	248	45	3	32	52
	Hatchery	16	41	5	31	48
2008	Wild	261	52	3	44	66
	Hatchery	20	39	3	30	41
Pooled	Wild	1,487	44	3	32	66
	Hatchery	1,005	43	4	30	64

Contribution to Fisheries

The total number of hatchery and wild sockeye captured in different fisheries is provided in Tables 4.26 and 4.27. Harvest on hatchery sockeye has been less than the harvest on wild sockeye.

Table 4.26. Estimated number and percent (in parentheses) of hatchery Wenatchee sockeye captured in different fisheries, 1989-2003.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational (sport)	
1989	$0(0)$	$166(21)$	$2(0)$	$639(79)$	807
1990	$0(0)$	$21(100)$	$0(0)$	$0(0)$	21
1991	$0(0)$	$2(100)$	$0(0)$	$0(0)$	2
1992	$0(0)$	$26(100)$	$0(0)$	$0(0)$	26
1993	$0(0)$	$4(100)$	$0(0)$	$0(0)$	4
1994	$0(0)$	$7(100)$	$0(0)$	$0(0)$	7

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational (sport)	
1995	$0(0)$	$29(100)$	$0(0)$	$0(0)$	29
1996	$0(0)$	$96(86)$	$11(10)$	$4(4)$	111
1997	$0(0)$	$11(39)$	$1(4)$	$16(57)$	28
1998	$0(0)$	$34(72)$	$0(0)$	$13(28)$	47
1999	$0(0)$	$59(12)$	$8(2)$	$416(86)$	483
2000	$0(0)$	$2(33)$	$0(0)$	$4(67)$	6
2001	$0(0)$	$1(100)$	$0(0)$	$0(0)$	1
2002	$0(0)$	$27(100)$	$0(0)$	$0(0)$	27
2003	$0(0)$	$2(100)$	$0(0)$	$0(0)$	2

${ }^{\text {a }}$ Includes the Lake Wenatchee fishery.

Table 4.27. Estimated number and percent (in parentheses) of wild Wenatchee sockeye captured in different fisheries, 1989-2003.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational (sport)	
1989	$0(0)$	$2,244(31)$	$26(0)$	$4,937(69)$	7,207
1990	$0(0)$	$257(100)$	$1(0)$	$0(0)$	258
1991	$0(0)$	$276(99)$	$2(1)$	$0(0)$	278
1992	$0(0)$	$306(99)$	$4(1)$	$0(0)$	310
1993	$0(0)$	$620(99)$	$4(1)$	$0(0)$	624
1994	$0(0)$	$111(100)$	$0(0)$	$0(0)$	111
1995	$0(0)$	$34(97)$	$1(3)$	$0(0)$	35
1996	$0(0)$	$1,672(52)$	$316(10)$	$1,241(38)$	3,229
1997	$0(0)$	$2,776(53)$	$395(8)$	$2,024(39)$	5,195
1998	$0(0)$	$819(93)$	$7(1)$	$50(6)$	876
1999	$0(0)$	$13(20)$	$2(3)$	$50(77)$	65
2000	$0(0)$	$1,101(18)$	$150(2)$	$4,881(80)$	6,132
2001	$0(0)$	$768(100)$	$1(0)$	$0(0)$	769
2002	$0(0)$	$349(100)$	$0(0)$	$0(0)$	349
2003	$0(0)$	$1,536(24)$	$144(2)$	$4,831(74)$	6,511

${ }^{a}$ Includes the Lake Wenatchee fishery.

Straying

Stray rates were determined by examining CWTs recovered on spawning grounds within and outside the Wenatchee Basin. Targets for strays based on return year (recovery year) outside the Wenatchee Basin should be less than 5\%. The target for brood year strays should also be less than 5%.

There is no record that Wenatchee sockeye have strayed into other spawning areas outside the Wenatchee Basin. This may be related to the lack of carcass surveys in other locations. Nevertheless, the existing data indicate that Wenatchee sockeye stray at a rates less than the target of 5%.
Based on brood year analysis, virtually no Wenatchee sockeye have strayed into non-target spawning areas or hatchery programs (Table 4.28). These data indicate that Wenatchee sockeye stray at rates less than the target of 5%.

Table 4.28. Number and percent of hatchery Wenatchee sockeye that homed to target spawning areas and the target hatchery program, and number and percent that strayed to non-target spawning areas and hatchery programs, by brood years 1990-2003. Hatchery sockeye from brood years 1995-1998 were not tagged because of columnaris disease. Percent stays should be less than 5%.

Brood year	Homing				Straying			
	Target streams		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1990	402	99.5	2	0.5	0	0.0	0	0.0
1991	1	100.0	0	0.0	0	0.0	0	0.0
1992	92	98.9	0	0.0	0	0.0	1	1.1
1993	29	96.7	1	3.3	0	0.0	0	0.0
1994	66	94.3	4	5.7	0	0.0	0	0.0
1995	-	-	-	-	-	-	-	-
1996	-	-	-	-	-	-	-	-
1997	-	-	-	-	-	-	-	-
1998	-	-	-	-	-	-	-	-
1999	65	100.0	0	0.0	0	0.0	0	0.0
2000	571	100.0	0	0.0	0	0.0	0	0.0
2001	17	100.0	0	0.0	0	0.0	0	0.0
2002	204	100.0	0	0.0	0	0.0	0	0.0
2003	0	0.0	0	0.0	0	0.0	0	0.0
Total	1,447	99.5	7	0.5	0	0.0	1	0.0

Genetics

Genetic studies were conducted to determine the potential impacts of the Wenatchee sockeye supplementation program on natural origin sockeye in the upper Wenatchee Basin (Blankenship et al. 2008; the entire report is appended as Appendix H). Specifically, the objective of the study was to determine if the genetic composition of the Lake Wenatchee sockeye population had been altered by the supplementation program, which was based on the artificial propagation of a small subset of the Wenatchee population. Microsatellite DNA allele frequencies were used to differentiate between temporally replicated collections of natural and hatchery-origin sockeye in the Wenatchee Basin. A total of 13 collections of Wenatchee sockeye were analyzed; eight temporally replicated collections of natural-origin sockeye and five temporally replicated collections of hatchery-origin sockeye.

Paired natural-hatchery collections were available from return years 2000, 2001, 2004, 2006, and 2007.

Overall, the study showed that allele frequency distributions were consistent over time, regardless of origin, resulting in small, insignificant measures of genetic differentiation among collections. This indicates that there was no year-to-year differences in allele frequencies between natural and hatchery-origin sockeye. In addition, the analyses found no differences between pre- and postsupplementation collections. Thus, it was concluded that the allele frequencies of the broodstock collections equaled the allele frequency of the natural collections.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 1989-2008, the PNI was consistently been greater than 0.5 (Table 4.29). This indicates that the natural environment has a greater influence on adaptation of Wenatchee sockeye than does the hatchery environment.

Table 4.29. Proportionate natural influence (PNI) of the Wenatchee sockeye supplementation program for brood years 1989-2007. PNI was calculated as the proportion of naturally produced sockeye in the hatchery broodstock (pNOB) divided by the proportion of hatchery sockeye on the spawning grounds ($\mathrm{pHOS} \mathrm{)} \mathrm{plus}$ pNOB. NOS = number of natural origin sockeye on the spawning grounds; HOS = number of hatchery origin sockeye on the spawning grounds; NOB = number of natural origin sockeye collected for broodstock; and HOB = number of hatchery origin sockeye included in hatchery broodstock.

Brood year	Spawners ${ }^{\text {a }}$			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1989	21,802	0	0.00	115	0	1.00	1.00
1990	27,325	0	0.00	302	0	1.00	1.00
1991	26,689	0	0.00	199	0	1.00	1.00
1992	16,461	0	0.00	320	0	1.00	1.00
1993	25,064	2,662	0.10	207	0	1.00	0.91
1994	6,934	396	0.05	236	5	0.98	0.95
1995	3,262	186	0.05	194	3	0.98	0.95
1996	6,027	546	0.08	225	0	1.00	0.93
1997	9,615	78	0.01	192	19	0.91	0.99
1998	3,982	32	0.01	122	6	0.95	0.99
1999	961	64	0.06	79	60	0.57	0.90
2000	19,574	1,161	0.06	170	5	0.97	0.94
2001	28,288	815	0.03	200	7	0.97	0.97

Brood year	Spawners $^{\mathbf{a}}$			Broodstock *			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	PNI
2002	27,372	193	0.01	256	0	1.00	0.99
2003	4,797	58	0.01	198	0	1.00	0.99
2004	26,095	1,460	0.05	177	0	1.00	0.95
2005	13,983	28	0.00	166	0	1.00	1.00
2006	9,183	255	0.03	214	0	1.00	0.97
2007	2,320	59	0.02	210	0	1.00	0.98
2008	23,138	93	0.00	243	2	0.99	1.00
Average	$\mathbf{1 5 , 1 4 4}$	$\mathbf{4 0 4}$	$\mathbf{0 . 0 3}$	$\mathbf{2 0 1}$	$\mathbf{5}$	$\mathbf{0 . 9 7}$	$\mathbf{0 . 9 7}$

${ }^{\text {a }}$ Proportions of natural origin and hatchery origin spawners were determined from video tape at Tumwater Dam.

Natural Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population. For brood years 1989-2003, NRR in the Wenatchee averaged 0.85 (range, 0.1-4.98) if harvested fish were not included in the estimate and 0.97 (range, 0.10-6.18) if harvested fish were included in the estimate (Table 4.30).

Hatchery replacement rates (HRR) were estimated as hatchery adult-to-adult returns. These rates should be greater than the NRRs and greater than or equal to 5.40 (the calculated target value in Murdoch and Peven 2005). HRRs exceeded NRRs in 8 or 9 of the 15 years of data depending on if harvest was or was not in the estimates (Table 4.30). Hatchery replacement rates for Wenatchee sockeye have equaled or exceeded the estimated target value of 5.40 in only three years regardless if harvest was or was not included in the estimate (Table 4.30).
Table 4.30. Spawning escapements, hatchery replacement rates (HRR), natural origin recruits (NOR), and natural replacement rates (NRR) with and without harvest for sockeye salmon in the Wenatchee Basin, 19892003.

Brood year	Escapement	Harvest not included			Harvest included		
		HRR	NOR	NRR	HRR	NOR	NRR
1989	21,802	10.81	23,619	1.08	14.43	30,672	1.41
1990	27,325	1.27	3,511	0.13	1.34	3,701	0.14
1991	26,689	0.41	4,822	0.18	0.43	5,093	0.19
1992	16,461	1.75	5,507	0.33	1.84	5,809	0.35
1993	27,726	0.25	12,246	0.44	0.26	12,875	0.46
1994	7,330	0.18	1,237	0.17	0.18	1,366	0.19
1995	3,448	0.58	853	0.25	0.62	921	0.27
1996	6,573	5.94	28,055	4.27	6.28	30,976	4.71
1997	9,693	3.27	36,103	3.72	3.74	42,117	4.35
1998	4,014	0.55	16,166	4.03	0.58	17,068	4.25
1999	1,025	0.46	566	0.55	0.56	680	0.66
2000	20,735	7.31	29,082	1.40	9.75	35,216	1.70
2001	29,103	0.09	17,242	0.59	0.11	18,020	0.62

Brood year	Escapement	Harvest not included			Harvest included		
		HRR	NOR	NRR	HRR	NOR	NRR
2002	27,565	1.09	5,755	0.21	1.15	6,207	0.23
2003	4,855	0.13	2,003	0.41	0.14	2,532	0.52
Average	$\mathbf{1 5 , 6 2 3}$	2.23	$\mathbf{1 2 , 4 5 1}$	$\mathbf{0 . 8 0}$	2.70	$\mathbf{1 4 , 2 1 7}$	$\boldsymbol{0 . 9 1}$

Juvenile-to-Adult Survivals

When possible, both parr-to-adult ratios (PAR) and smolt-to-adult ratios (SAR) were calculated for hatchery sockeye salmon. Ratios were calculated as the number of hatchery adults divided by the number of hatchery parr released or the estimated number of smolts emigrating from Lake Wenatchee. Survival ratios were based on CWT returns, when available, or on the estimated number of hatchery adults recovered on the spawning grounds, in broodstock, and harvested. For the available brood years, PARs have ranged from 0.0001 to 0.0141 for hatchery sockeye salmon and SARs have ranged from 0.0002 to 0.0255 (Table 4.31).

Table 4.31. Parr-to-adult ratios (PAR) and smolt-to-adult ratios (SAR) for Wenatchee hatchery sockeye salmon, brood years 1990-2002; NA = not available.

Brood year	Number of parr released	Number of smolts	Estimated adult recaptures	PAR	SAR
1989	260,400	NA	3,680	0.0141	NA
1990	372,102	NA	422	0.0011	NA
1991	167,523	NA	100	0.0006	NA
1992	340,557	NA	632	0.0019	NA
1993	190,443	NA	81	0.0004	NA
1994	252,859	NA	49	0.0002	NA
1995	150,808	28,828	130	0.0009	0.0045
1996	284,630	55,985	1,426	0.0050	0.0255
1997	197,195	112,524	845	0.0043	0.0075
1998	121,344	24,684	110	0.0009	0.0045
1999	167,955	94,046	83	0.0005	0.0009
2000	190,174	121,511	1,902	0.0100	0.0157
2001	200,938	140,322	27	0.0001	0.0002
2002	315,783	216,023	296	0.0009	0.0014
Average	229,479	99,240	699	$\mathbf{0 . 0 0 3 0}$	$\boldsymbol{0 . 0 0 6 1}$

4.8 ESA/HCP Compliance

Broodstock Collection

The 2007 sockeye broodstock collections at Tumwater Dam occurred concurrently with the spring Chinook reproductive success monitoring and evaluation activities (BPA Project No. 2003-039-00) and Wenatchee steelhead broodstock collection activities authorized under ESA permits 1196 and 1395, respectively. No ESA-listed spring Chinook or steelhead takes occurred during sockeye broodstock collections at Tumwater Dam that were outside those authorized through ESA Section 10 permits 1196 and 1395.

Hatchery Rearing and Release

The 2007 Wenatchee sockeye program released 252,133 juveniles, representing 126% of the program production objective and 160.7% of the 10% production overage allowance in ESA Section 10 Permit 1347.

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2009 are provided in Appendix E.

Smolt and Emigrant Trapping

ESA-listed spring Chinook and steelhead were encountered during operation of the upper and lower Wenatchee traps. ESA takes are reported in the steelhead (Section 3.8) and spring Chinook (Section 5.8) sections and will not be repeated here.

Spawning Surveys

Sockeye spawning ground surveys conducted in the Wenatchee Basin during 2009 were consistent with ESA Section 10 Permit No. 1347. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical and extreme caution was used to avoid established redds when wading was required.

SECTION 5: WENATCHEE (CHIWAWA) SPRING CHINOOK

Although this section of the report focuses on results from monitoring the Chiwawa spring Chinook program, information on spring Chinook collected throughout the Wenatchee Basin is also provided.

5.1 Broodstock Sampling

This section focuses on results from sampling 2007-2009 Chiwawa spring Chinook broodstock, which were collected at the Chiwawa weir and at Tumwater Dam. Some information for the 2009 return is not available at this time (e.g., age structure and final origin determination). This information will be provided in the 2010 annual report.

Origin of Broodstock

Hatchery origin adults made up between 57-73\% of the Chiwawa spring Chinook broodstock for return years 2007-2009 (Table 5.1). Hatchery origin adults were collected at both Tumwater Dam and the Chiwawa weir. In an effort to partially address straying of Chiwawa spring Chinook to other tributaries in the basin, and secondarily to ensure meeting adult collection quotas, hatchery origin adults were collected to the greatest extent possible at Tumwater Dam. Natural origin fish were collected only at the Chiwawa weir. Broodstock were trapped at Tumwater Dam and Chiwawa weir from mid June through August.

Table 5.1. Numbers of wild and hatchery Chiwawa spring Chinook collected for broodstock, numbers that died before spawning, and numbers of Chinook spawned, 1989-2009. Unknown origin fish (i.e., undetermined by scale analysis, no CWT or fin clips, and no additional hatchery marks) were considered naturally produced. Mortality includes fish that died of natural causes typically near the end of spawning and were not needed for the program or were surplus fish killed at spawning.

Brood year	Wild spring Chinook					Hatchery spring Chinook					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
1989	28	0	0	28	0	0	0	0	0	0	28
1990	19	1	0	18	0	0	0	0	0	0	18
1991	32	0	5	27	0	0	0	0	0	0	27
1992	113	0	0	78	35	0	0	0	0	0	78
1993	100	3	3	94	0	0	0	0	0	0	94
1994	9	0	1	8	0	4	0	0	4	0	12
1995	No Program										
1996	8	0	0	8	0	10	0	0	10	0	18
1997	37	0	5	32	0	83	1	3	79	0	111
1998	13	0	0	13	0	35	1	0	34	0	47
1999	No Program										
2000	10	0	1	9	0	38	1	16	21	0	30
2001	115	2	0	113	0	267	8	0	259	0	372
2002	21	0	1	20	0	63	1	11	51	0	71
2003	44	1	2	41	0	75	2	20	53	0	94
2004	100	1	16	83	0	196	30	34	132	0	215
2005	98	1	6	91	0	185	3	1	181	0	279

Brood year	Wild spring Chinook					Hatchery spring Chinook					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
2006	95	0	4	91	0	303	0	29	224	50	315
2007	45	1	1	43	0	124	2	18	104	0	147
2008	88	2	3	83	0	241	5	16	220	0	303
2009	113	6	11	96	0	151	3	37	111	0	207
Average $^{\text {a }}$	57	1	3	51	2	93	3	8	78	3	130

${ }^{\text {a }}$ Origin determinations should be considered preliminary pending scale analyses.

Age/Length Data

Ages were determined from scales and/or coded wire tags (CWT) collected from broodstock. For both the 2007 and 2008 returns, most adults, regardless of origin, were age- 4 Chinook (Table 5.2). A larger percentage of the age-5 Chinook were natural origin fish, whereas a larger percentage of the age-3 fish were hatchery origin fish.
Table 5.2. Percent of hatchery and wild spring Chinook of different ages (total age) collected from broodstock, 1991-2008.

Return year	Origin	Total age			
		2	3	4	5
1991	Wild	0.0	15.6	59.4	25.0
	Hatchery	0.0	0.0	0.0	0.0
1992	Wild	0.0	0.0	0.0	0.0
	Hatchery	0.0	0.0	0.0	0.0
1993	Wild	0.0	0.0	22.0	78.0
	Hatchery	0.0	0.0	0.0	0.0
1994	Wild	0.0	0.0	28.6	71.4
	Hatchery	0.0	0.0	50.0	50.0
1995	Wild	No program			
	Hatchery				
1996	Wild	0.0	28.6	71.4	0.0
	Hatchery	0.0	50.0	50.0	0.0
1997	Wild	0.0	0.0	87.5	12.5
	Hatchery	0.0	1.2	98.8	0.0
1998	Wild	0.0	0.0	63.6	36.4
	Hatchery	0.0	0.0	62.9	37.1
1999	Wild	No program			
	Hatchery				
2000	Wild	0.0	20.0	70.0	10.0
	Hatchery	0.0	76.3	23.7	0.0
2001	Wild	0.0	2.8	94.4	2.8
	Hatchery	0.0	1.5	98.5	0.0

Return year	Origin	Total age			
		2	3	4	5
2002	Wild	0.0	0.0	66.7	33.3
	Hatchery	0.0	0.0	93.4	6.6
2003	Wild	0.0	27.0	2.7	70.3
	Hatchery	0.0	21.3	5.3	73.3
2004	Wild	1.1	4.3	89.4	5.3
	Hatchery	0.0	36.9	63.1	0.0
2005	Wild	0.0	1.1	84.5	14.4
	Hatchery	0.0	4.3	94.6	1.1
2006	Wild	0.0	1.1	71.1	27.8
	Hatchery	0.0	1.4	81.3	17.3
2007	Wild	2.3	16.3	48.8	32.6
	Hatchery	0.0	27.4	61.5	11.1
2008	Wild	0.0	9.1	75.3	15.6
	Hatchery	0.0	7.9	86.5	5.6
Average	Wild	0.2	7.9	58.5	27.2
	Hatchery	0.0	14.3	54.4	12.6

There was little difference in mean lengths between hatchery and natural origin broodstock of age-4 and 5 Chinook in 2007 and 2008 (Table 5.3). Additionally, for the 2007 and 2008 returns, there was relatively little difference in mean lengths within or among years for age-3 hatchery and natural origin fish.
Table 5.3. Mean fork length (cm) at age (total age) of hatchery and wild spring Chinook collected from broodstock, 1991-2008; N = sample size and SD = 1 standard deviation.

Return year	Origin	Spring Chinook fork length (cm)											
		Age-2			Age-3			Age-4			Age-5		
		Mean	N	SD									
1991	Wild	-	0	-	-	5	-	-	19	-	-	8	-
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-
1992	Wild	-	0	-	-	0	-	-	0	-	-	0	-
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-
1993	Wild	-	0	-	-	0	-	79	22	3	92	78	4
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-
1994	Wild	-	0	-	-	0	-	79	2	3	96	5	6
	Hatchery	-	0	-	-	0	-	82	2	11	91	2	3
1995	Wild	No program											
1996	Wild	-	0	-	51	2	1	79	5	7	-	0	-

Return year	Origin	Spring Chinook fork length (cm)											
		Age-2			Age-3			Age-4			Age-5		
		Mean	N	SD									
	Hatchery	-	0	-	56	5	4	74	5	6	-	0	-
1997	Wild	-	0	-	-	0	-	80	28	5	99	4	8
	Hatchery	-	0	-	56	1	-	82	82	4	-	0	-
1998	Wild	-	0	-	-	0	-	78	7	13	83	4	18
	Hatchery	-	0	-	-	0	-	77	22	8	93	13	7
1999	Wild	No program											
2000	Wild	-	0	-	51	2	3	82	7	4	98	1	-
	Hatchery	-	0	-	58	29	7	79	9	8	-	0	-
2001	Wild	-	0	-	49	3	6	82	101	6	95	3	3
	Hatchery	-	0	-	56	4	7	83	261	5	-	0	-
2002	Wild	-	0	-	-	0	-	79	12	4	96	6	10
	Hatchery	-	0	-	-	0	-	81	57	6	94	4	9
2003	Wild	-	0	-	55	10	5	83	1	-	99	26	6
	Hatchery	-	0	-	59	16	5	86	4	18	96	55	6
2004	Wild	47	1	-	57	4	4	80	84	5	95	5	9
	Hatchery	-	0	-	49	72	6	79	123	6	-	0	-
2005	Wild	-	0	-	49	1	-	80	82	6	96	14	8
	Hatchery	-	0	-	56	8	5	82	175	6	93	2	2
2006	Wild	-	0	-	48	1	-	80	64	7	96	25	5
	Hatchery	-	0	-	49	4	4	80	240	6	95	51	7
2007	Wild	54	1	-	57	7	10	79	21	6	93	14	7
	Hatchery	-	0	-	59	32	8	81	72	6	93	13	6
2008	Wild	-	0	-	54	7	8	82	58	5	93	12	7
	Hatchery	-	0	-	56	20	10	82	218	6	95	14	6

Sex Ratios

Male spring Chinook in 2007-2009 return years made up 51%, 46%, and 50%, respectively, of the adults collected. This resulted in overall male to female ratios of 1.04:1.00, 0.84:1.00, and 1.00:1.00, respectively (Table 5.4). Only returns in 2007 and 2009 were at or above the 1:1 ratio target in the broodstock protocol. For the 2009 return year, natural origin fish consisted of a slightly lower proportion of males than females, whereas hatchery origin fish consisted of a slightly higher proportion of males than females (Table 5.4.).

Table 5.4. Numbers of male and female wild and hatchery spring Chinook collected for broodstock, 19892009. Ratios of males to females are also provided.

Return year	Number of wild spring Chinook			Number of hatchery spring Chinook			$\begin{gathered} \text { Total } M / F \\ \text { ratio } \end{gathered}$
	Males (M)	Females (F)	M/F	Males (M)	Females (F)	M/F	
1989	11	17	0.65:1.00	-	-	-	0.65:1.00
1990	7	12	0.58:1.00	-	-	-	0.58:1.00
1991	13	19	0.68:1.00	-	-	-	0.68:1.00
1992	39	39	1.00:1.00	-	-	-	1.00:1.00
1993	50	50	1.00:1.00	-	-	-	1.00:1.00
1994	5	4	1.25:1.00	2	2	1.00:1.00	1.17:1.00
1995	No program						
1996	6	2	3.00:1.00	8	2	4.00:1.00	3.50:1.00
1997	14	23	0.61:1.00	34	49	0.69:1.00	0.67:1.00
1998	9	4	2.25:1.00	18	17	1.06:1.00	1.29:1.00
1999	No program						
2000	5	5	1.00:1.00	32	6	5.33:1.00	3.36:1.00
2001	45	70	0.64:1.00	90	177	0.51:1.00	0.55:1.00
2002	9	12	0.75:1.00	30	33	0.91:1.00	0.87:1.00
2003	28	16	1.75:1.00	42	33	1.27:1.00	1.43:1.00
2004	58	42	1.38:1.00	102	94	1.09:1.00	1.18:1.00
2005	58	40	1.45:1.00	89	96	0.93:1.00	1.08:1.00
2006	49	46	1.07:1.00	123	179	0.69:1.00	0.77:1.00
2007	20	25	0.80:1.00	66	58	1.14:1.00	1.04:1.00
2008	41	47	0.87:1.00	109	132	0.83:1.00	0.84:1.00
2009	53	60	0.88:1.00	79	72	1.10:1.00	1.00:1.00
Total	520	533	0.98:1.00	824	950	0.87:1.00	0.91:1.00

Fecundity

Mean fecundities for the 2007-2009 returns of spring Chinook ranged from 4,441-4,592 eggs per female (Table 5.5). These fecundities were less than the overall average of 4,758 eggs per female, but were close to the expected fecundity of 4,400 eggs per female assumed in the broodstock protocol. For the three return years, natural origin Chinook produced more eggs per female than did hatchery origin fish (Table 5.5). This could be attributed to differences in size and age of hatchery and natural origin fish described above.

Table 5.5. Mean fecundity of wild, hatchery, and all female spring Chinook collected for broodstock, 19892009; NA = not available.

Return year	Mean fecundity		
	Wild	Hatchery	Total
1989*	NA	NA	2,832
1990*	NA	NA	5,024
1991*	NA	NA	4,600
1992*	NA	NA	5,199 ${ }^{\text {a }}$
1993*	NA	NA	5,249
1994*	NA	NA	5,923
1995		No program	
1996*	NA	NA	4,645
1997	4,752	4,479	4,570
1998	5,157	5,376	5,325
1999		No program	
2000	5,028	5,019	5,023
2001	4,530	4,663	4,624
2002	5,024	4,506	4,654
2003	6,191	5,651	5,844
2004	4,846	4,775	4,799
2005	4,365	4,312	4,327
2006	4,773	4,151	4,324
2007	4,656	4,351	4,441
2008	4,691	4,560	4,592
2009	4,691	4,487	4,573
Average	4,892	4,694	4,758

* Individual fecundities were not tracked with females until 1997.
${ }^{\text {a }}$ Estimated as the mean of fecundities two years before and two years after 1992.

5.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of 829,630 eggs are required to meet the program release goal of 672,000 smolts. Between 1989 and 2009, the egg take goal was reached in one of those years (Table 5.6). The green egg takes for 2007-2009 brood years were $43 \%, 92 \%$, and 68% of program goals, respectively.

ESA Permit 1196 sets limits on the percentage of the total run, natural origin run, and a minimum contribution of natural origin fish that must be in the broodstock. Applying these criteria to the low total abundance of spring Chinook salmon to the Chiwawa Basin and the low abundance of natural origin fish returning to the basin has resulted in the program not meeting production goals.

Table 5.6. Numbers of eggs taken from spring Chinook broodstock, 1989-2009.

Return year	Number of eggs taken
1989	45,311
1990	60,287
1991	73,601
1992	111,624
1993	257,208
1994	35,539
1995	No program
1996	18,579
1997	312,182
1998	90,521
1999	No program
2000	55,256
2001	$1,099,630$
2002	196,186
2003	247,501
2004	538,176
2005	536,490
2006	744,344
2007	359,739
2008	761,821
2009	353,136
Average	

Number of acclimation days

Early rearing of the 2007 brood Chiwawa spring Chinook was similar to previous years with fish being held on well water before being transferred to Chiwawa Ponds for final acclimation. Beginning in 2006 (2005 brood acclimation), modifications were made to the Chiwawa FH intakes so that Wenatchee River water could be applied to the Chiwawa River intakes during severe cold periods to prevent the formation of frazzle ice. During acclimation of the 2008 brood, fish were acclimated for 223 days on Chiwawa River water, with 103 of those days containing a small percentage of Wenatchee River water (Table 5.7).

Table 5.7. Number of days spring Chinook broods were acclimated and water source, brood years 1989-2007; NA = not available.

Brood year	Release year	Transfer date	Release date	Number of days and water source		
				Total	Chiwawa	Wenatchee
1989	1991	19-Oct	11-May	204	NA	NA
1990	1992	13-Sep	27-Apr	227	NA	NA
1991	1993	24-Sep	24-Apr	212	NA	NA
1992	1994	30-Sep	20-Apr	202	NA	NA
1993	1995	28-Sep	20-Apr	204	NA	NA
1994	1996	1-Oct	25-Apr	207	NA	NA
1995	1997	No Program				
1996	1998	25-Sep	29-Apr	216	NA	NA
1997	1999	28-Sep	22-Apr	206	NA	NA
1998	2000	27-Sep	24-Apr	210	NA	NA
1999	2001	No Program				
2000	2002	26-Sep	25-Apr	211	NA	NA
2001	2003	22-Oct	1-May	191	NA	NA
2002	2004	25-Sep	2-May	220	NA	NA
2003	2005	30-Sep	3-May	215	NA	NA
		30-Sep	18-Apr-18-May	200	NA	NA
2004	2006	3-Sep	1-May	240	88-104	124
		3-Sep	17-Apr-17-May	226	NA	NA
2005	2007	25-Sep	1-May	217	217	$98^{\text {a }}$
		26-Sep	16-Apr-15-May	202-232	202-232	$98^{\text {a }}$
2006	2008	24-27-Sep	14-Apr-13-May	231	231	$95^{\text {a }}$
2007	2009	1-Oct	15-Apr-13-May	223	223	$103^{\text {a }}$

${ }^{\text {a }}$ Represents the number of days Wenatchee River water was applied to the Chiwawa River intake screen to prevent the formation of frazzle ice.

Release Information

Numbers released

The 2007 brood Chiwawa spring Chinook program achieved 45.5\% of the 672,000 target goal with about 296,048 smolts (305,542 fish if the high ELISA group released directly into Big Meadow Creek is included) being released volitionally into the Chiwawa River (Table 5.8).
Table 5.8. Numbers of spring Chinook smolts tagged and released from the hatchery, brood years 1989-2007. The release target for Chiwawa spring Chinook is 672,000 smolts.

Brood year	Release year	Type of release	CWT mark rate	Number released that were PIT tagged	Number of smolts released	Total number of smolts released
1989	1991	Volitional	0.9932	0	43,000	43,000
1990	1992	Volitional	0.9931	0	53,170	53,170
1991	1993	Volitional	0.9831	0	62,138	62,138
1992	1994	Volitional	0.9747	0	85,113	85,113
1993	1995	Volitional	0.9892	0	223,610	223,610
1994	1996	Volitional	0.9967	0	27,226	27,226
1995	1997	No program				
1996	1998	Forced	0.8413	0	15,176	15,176
1997	1999	Volitional	0.9753	0	266,148	266,148
1998	2000	Volitional	0.9429	0	75,906	75,906
1999	2001	No program				
2000	2002	Volitional	0.9920	0	47,104	47,104
2001	2003	Forced	0.9961	0	192,490 ${ }^{\text {a }}$	377,544
		Volitional	0.9856	0	185,054 ${ }^{\text {a }}$	
2002	2004	Volitional	0.9693	0	149,668	149,668
2003	2005	Forced	0.9783	0	69,907	222,131
		Volitional	0.9743	0	152,224	
2004	2006	Forced	0.9533	0	243,505	494,517
		Volitional	0.9493	0	251,012	
2005	2007	Forced	0.9882	4,993	245,406	494,012
		Volitional	0.9864	4,988	248,606	
2006	2007	Direct	0.0000	0	$12,977^{\text {b }}$	612,482
	2008	Volitional	0.9795	9,894	612,482	
2007	2008	Direct	0.0000	0	9,494	305,542
	2009	Volitional	0.9948	10,035	296,048	

${ }^{\text {a }}$ This does not include the 226,456 eyed eggs that were planted in the Chiwawa River.
${ }^{\mathrm{b}}$ This high ELISA group was only adipose fin clipped and directly planted into Big Meadow Creek in May.

Numbers tagged

The 2007 brood Chiwawa spring Chinook were 99.5\% CWT and adipose fin clipped (Table 5.8).
In 2009, a total of 10,101 spring Chinook from the 2008 brood were PIT tagged at the Eastbank Hatchery during 16-18 June. These fish were transferred to the Chiwawa raceway in September. As of the end of January 2010, a total of 75 tagged fish have died and no fish have shed their tags,
leaving 10,026 tagged spring Chinook alive. These fish will be released in the Chiwawa River in spring of 2010. Table 5.9 summarizes the number of hatchery spring Chinook that have been PITtagged and released into the Chiwawa River.
Table 5.9. Summary of PIT-tagging activities for Chiwawa hatchery spring Chinook, brood years 2005-2007.

Brood year	Release year	Number of fish tagged	Number of tagged fish that died	Number of tags shed	Number of tagged fish released
2005	2007	10,063	74	8	$9,981^{\mathrm{a}}$
2006	2008	10,055	134	27	9,894
2007	2009	10,112	61	16	10,035

${ }^{\text {a }}$ This release consisted of 4,988 tagged Chinook that were released volitionally and 4,993 that were forced released.

Fish size and condition at release

Spring Chinook from the 2007 brood were released as yearling smolts between 15 April and 13 May of 2009. Size at release was below the targets established for the program. The coefficient of variation for fork length was 22% above the target (Table 5.10).
Table 5.10. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of spring Chinook smolts released from the hatchery, brood years 1989-2007. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1989	1991	147	4.4	37.8	12
1990	1992	137	5.0	32.4	14
1991	1993	135	4.2	30.3	15
1992	1994	133	5.0	28.4	16
1993	1995	136	4.5	30.2	15
1994	1996	139	7.1	34.4	13
1995	1997	No Program			
1996	1998	157	5.3	52.1	9
1997	1999	146	7.2	38.7	12
1998	2000	143	9.1	39.5	12
1999	2001	No Program			
2000	2002	150	6.8	46.7	10
2001	2003	142	7.1	37.6	12
2002	2004	146	8.5	40.3	11
2003	2005	$167^{\text {a }}$	5.9	59.4	8
		$151{ }^{\text {b }}$	7.4	44.2	10
2004	2006	$146^{\text {a }}$	6.4	39.1	12
		$139^{\text {b }}$	5.7	34.3	13
2005	2007	$136^{\text {a }}$	4.6	30.8	15
		$129^{\text {b }}$	5.8	26.6	17

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	$\mathbf{C V}$	Grams (g)	Fish/pound
2006	2008	124	8.8	23.5	19
2007	2008	70	4.0	3.7	122
	2009	140	11.0	33.6	14
Targets		$\mathbf{1 7 6}$	$\mathbf{9 . 0}$	37.8	$\mathbf{1 2}$

${ }^{\mathrm{a}}$ Forced release group.
${ }^{\mathrm{b}}$ Volitional release group.

Survival Estimates

Overall survival of Chiwawa spring Chinook from green (unfertilized) egg to release was above the standard set for the program (Table 5.11). Survival from the eyed egg-to-ponding stage was slightly below program objectives. Pre-spawn survival of adults was above the standard set for the program.
Table 5.11. Hatchery life-stage survival rates (\%) for spring Chinook, brood years 1989-2007. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	$\begin{gathered} \text { Eyed } \\ \text { egg- } \\ \text { ponding } \end{gathered}$	30 d after ponding	$100 \mathrm{~d}$after ponding	$\begin{aligned} & \text { Ponding } \\ & \text { to } \\ & \text { release } \end{aligned}$	Transport to release	Unfertilized egg-release
	Female	Male							
1989	100.0	100.0	98.0	99.1	99.1	99.0	96.4	99.3	94.8
1990	100.0	85.7	91.8	98.1	99.5	98.9	97.9	99.2	88.2
1991	100.0	100.0	94.4	96.1	99.6	97.9	93.2	95.0	84.4
1992	100.0	100.0	98.4	96.7	99.9	99.9	80.0	80.6	76.2
1993	96.0	98.0	89.7	98.0	99.7	99.3	98.9	99.7	86.9
1994	100.0	100.0	98.6	100.0	99.8	99.4	77.0	78.9	76.6
1995	No program								
1996	100.0	100.0	88.3	100.0	93.8	93.0	89.9	97.7	81.7
1997	98.6	100.0	93.2	95.7	98.3	99.6	95.6	99.3	85.3
1998	95.2	100.0	94.5	99.0	98.5	98.3	89.6	99.1	83.9
1999	No program								
2000	100.0	100.0	91.0	98.1	97.2	96.6	95.4	99.3	85.2
2001	97.6	97.0	88.9	98.1	99.7	99.6	51.3	51.8	34.3
2002	97.8	100.0	82.1	98.0	97.4	96.7	94.8	99.1	76.3
2003	93.9	100.0	93.2	97.7	99.5	99.3	98.5	98.1	89.7
2004	97.8	82.5	93.3	98.4	98.8	94.3	93.9	97.2	91.9
2005	97.1	100.0	95.9	98.0	99.2	99.0	97.9	99.1	92.1
2006	100.0	100.0	90.1	98.1	99.2	99.0	95.3	97.7	84.2
2007	98.8	97.7	92.9	97.2	99.4	99.0	98.0	99.4	88.5
Standard	90.0	85.0	92.0	98.0	97.0	93.0	90.0	95.0	81.0

5.3 Disease Monitoring

Results of 2009 adult broodstock bacterial kidney disease (BKD) monitoring indicated that most females (94.4\%) had ELISA values less than 0.199 . About 85% of females had ELISA values less than 0.120 , which would have required about 15% of the progeny to be reared at densities not to exceed 0.06 fish per pound (Table 5.12). As per the HCP Hatchery Committee Agreement, progeny from the six high and one moderate ELISA females were culled to minimize possible negative effects to the balance of the program. These progeny represented about 6% of the estimated production for the 2009 brood.
Mortalities resulting from external fungal infections began increasing shortly after transfer to the Chiwawa Ponds. The first formalin drip treatment failed to control the infection. The failure precipitated a second treatment, which was successful. No significant health issues were encountered for the remainder of juvenile rearing.
Table 5.12. Proportion of bacterial kidney disease (BKD) titer groups for the Chiwawa spring Chinook broodstock, brood years 1996-2009. Also included are the proportions to be reared at either 0.125 fish per pound or 0.060 fish per pound.

Brood year ${ }^{\text {a }}$	Optical density values by titer group				Proportion at rearing densities (fish per pound, fpp)	
	Very Low (≤ 0.099)	$\begin{gathered} \text { Low } \\ (\mathbf{0 . 1 - 0 . 1 9 9)} \end{gathered}$	$\begin{gathered} \text { Moderate } \\ \text { (0.2-0.449) } \end{gathered}$	$\begin{gathered} \text { High } \\ (\geq \mathbf{0 . 4 5 0}) \end{gathered}$	$\underset{(<0.119)}{\leq 0.125 \mathrm{fpp}}$	$\underset{(>0.120)}{\leq 0.060 \mathrm{fpp}}$
1996	0.0000	0.2500	0.2500	0.5000	0.0000	1.0000
1997	0.1176	0.7353	0.0588	0.0882	0.3529	0.6471
1998	0.1176	0.8235	0.0588	0.0000	0.4706	0.5294
1999	No Program					
2000	0.0000	0.9091	0.0909	0.0000	0.1818	0.8182
2001	0.4066	0.5436	0.0373	0.0124	0.6515	0.3485
2002	0.2195	0.6585	0.0732	0.0488	0.5610	0.4390
2003	0.6957	0.1087	0.0652	0.1304	0.7174	0.2826
2004	0.8182	0.1515	0.0227	0.0076	0.8939	0.1061
2005	0.9084	0.0916	0.0000	0.0000	0.9695	0.0305
2006	0.7222	0.2556	0.0000	0.0222	0.8444	0.1556
2007	0.5854	0.3415	0.0244	0.0488	0.7073	0.2927
2008	0.8304	0.1520	0.0058	0.0117	0.9357	0.0643
2009	0.7600	0.1840	0.0080	0.0480	0.8480	0.1520
Average	0.4755	0.4004	0.0535	0.0706	0.6257	0.3743

${ }^{\text {a }}$ Individual ELISA samples were not collected before the 1996 brood.

5.4 Natural Juvenile Productivity

During 2009, juvenile spring Chinook were sampled at the Upper Wenatchee, Lower Wenatchee, and Chiwawa traps and counted during snorkel surveys within the Chiwawa Basin.

Parr Estimates

A total of 106,705 ($\pm 20 \%$) subyearling and 54 ($\pm 69 \%$) yearling spring Chinook were estimated in the Chiwawa River Basin in August 2009 (Table 5.13 and 5.14). During the survey period 19922009, numbers of subyearling and yearling Chinook have ranged from 5,815 to 134,872 and 5 to 563, respectively, in the Chiwawa Basin (Table 5.13 and 5.14; Figure 5.1). Numbers of all fish counted in the Chiwawa Basin are reported in Appendix A.
Table 5.13. Total numbers of subyearling spring Chinook estimated in different steams in the Chiwawa Basin during snorkel surveys in August 1992-2009; NS = not sampled.

Sample Year	Number of subyearling spring Chinook									
	Chiwawa River	Phelps Creek	Chikamin Creek	Rock Creek	Peven Creek	Big Meadow Creek	Alder Creek	Brush Creek	Clear Creek	Total
1992	45,483	NS	45,483							
1993	77,269	0	1,258	586	NS	NS	NS	NS	NS	79,113
1994	53,492	0	398	474	68	624	0	0	0	55,056
1995	52,775	0	1,346	210	0	683	67	160	0	55,241
1996	5,500	0	29	10	0	248	28	0	0	5,815
1997	15,438	0	56	92	0	480	0	0	0	16,066
1998	65,875	0	1,468	496	57	506	0	13	0	68,415
1999	40,051	0	366	592	0	598	22	0	0	41,629
2000	NS									
2001	106,753	168	2,077	2,855	354	2,332	78	0	0	114,617
2002	117,230	75	8,233	2,953	636	5,021	429	0	297	134,874
2003	80,250	4,508	1,570	3,255	118	1,510	22	45	0	91,278
2004	43,360	102	717	215	54	637	21	71	0	45,177
2005	45,999	71	2,092	660	17	792	0	0	0	49,631
2006	73,478	113	2,500	1,681	51	1,890	62	127	0	79,902
2007	53,863	125	5,235	870	51	538	20	28	22	60,752
2008	72,431	214	3,287	4,730	163	1,221	28	255	22	82,351
2009	101,085	125	2,486	1,849	14	1,082	29	18	17	106,705
Average	61,784	344	2,070	1,346	106	1,211	54	48	24	66,594

Table 5.14. Total numbers of yearling spring Chinook estimated in different steams in the Chiwawa Basin during snorkel surveys in August 1992-2009; NS = not sampled.

Sample Year	Number of yearling spring Chinook									
	Chiwawa River	Phelps Creek	Chikamin Creek	Rock Creek	Peven Creek	Big Meadow Creek	Alder Creek	Brush Creek	Y Creek	Total
1992	563	NS	563							
1993	174	0	0	0	NS	NS	NS	NS	NS	174
1994	14	0	0	4	0	0	0	0	0	18
1995	13	0	0	0	0	0	0	0	0	13
1996	22	0	0	0	0	0	0	0	0	22
1997	5	0	0	0	0	0	0	0	0	5

Sample Year	Number of yearling spring Chinook									
	Chiwawa River	Phelps Creek	Chikamin Creek	Rock Creek	Peven Creek	Big Meadow Creek	Alder Creek	Brush Creek	Y Creek	Total
1998	63	0	0	0	0	0	0	0	0	63
1999	41	0	0	0	0	0	0	0	0	41
2000	NS									
2001	66	0	3	0	0	0	0	0	0	69
2002	32	0	0	0	0	0	0	0	0	32
2003	134	0	0	0	0	0	0	0	0	134
2004	14	0	0	0	0	7	0	0	0	21
2005	62	0	17	0	0	0	0	0	0	79
2006	345	0	0	43	0	0	0	0	0	388
2007	41	0	0	0	0	0	0	0	0	41
2008	144	0	45	0	0	0	0	0	0	189
2009	49	0	0	5	0	0	0	0	0	54
Average	105	0	4	3	0	0	0	0	0	112

Chinook Salmon

Figure 5.1. Numbers of subyearling and yearling Chinook salmon within the Chiwawa River Basin in August 1992-2009; ND = no data.

Juvenile Chinook were distributed contagiously among reaches in the Chiwawa River. Their densities were highest in the upper portions of the basin, with the highest densities within tributaries. Juvenile Chinook were most abundant in multiple channels and least abundant in glides. Most Chinook associated closely with woody debris in multiple channels. These sites (multiple channels) made up 15% of the total area of the Chiwawa Basin, but they provided habitat for 51% of all the subyearling Chinook in the basin in 2009. In contrast, riffles made up 54% of the total area, but provided habitat for only 11% of all juvenile Chinook in the Chiwawa Basin. Pools made up 22% of the total area and provided habitat for 36% of all juvenile Chinook in the basin. Virtually no Chinook used glides that lacked woody debris.

Mean densities of juvenile Chinook in two reaches of the Chiwawa River were generally less than those in corresponding reference areas (Nason Creek and the Little Wenatchee River) (Figure 5.2). Within both the Chiwawa River and its reference areas, pools and multiple channels consistently had the highest densities of juvenile Chinook.

Figure 5.2. Comparison of the 16-year means of subyearling spring Chinook densities within state/habitat types in reaches 3 and 8 of the Chiwawa River and their matched reference areas on Nason Creek and the Little Wenatchee River. NC = natural channel; S = straight channel; EB = eroded banks; MC = multiple channel. There was no sampling in 2000 and no sampling within reference areas in 1992.

Smolt and Emigrant Estimates

Numbers of spring Chinook smolts and emigrants were estimated at the Upper Wenatchee, Chiwawa, and Lower Wenatchee traps in 2009.

Chiwawa Trap

The Chiwawa Trap operated between 5 March and 2 December 2009. During that time period the trap was inoperable for 17 days because of high river flows, debris, snow/ice, or mechanical failure. The trap operated in two different positions depending on stream flow; lower position at flows greater than $12 \mathrm{~m}^{3} / \mathrm{s}$ and an upper position at flows less than $12 \mathrm{~m}^{3} / \mathrm{s}$. Daily trap efficiencies were estimated from two regression models depending on trap position and age class of fish (e.g., subyearling and yearling). The daily number of fish captured was expanded by the estimated trap efficiency to estimate daily total emigration. Monthly captures of all fish and results of markrecapture efficiency tests at the Chiwawa Trap are reported in Appendix B.
Wild yearling spring Chinook (2007 brood year) were primarily captured from March through June 2009 (Figure 5.3). Based on capture efficiencies estimated from the flow model, the total number of wild yearling Chinook emigrating from the Chiwawa River was 25,809 ($\pm 10,914$). Combining the total number of subyearling spring Chinook $(60,196)$ that emigrated during the fall of 2008 with the total number of yearling Chinook $(25,809)$ that emigrated during 2009 resulted in a total emigrant estimate of 86,006 spring Chinook for the 2007 brood year (Table 5.15).

Juvenile Spring Chinook

Figure 5.3. Monthly captures of wild subyearling, wild yearling, and hatchery yearling spring Chinook at the Chiwawa Trap, 2009.

Table 5.15. Numbers of redds and juvenile spring Chinook at different life stages in the Chiwawa Basin for brood years 1991-2009; NS = not sampled.

Brood year	Number of redds	Egg deposition	Number of parr	Number of smolts produced within Chiwawa Basin $^{\mathbf{a}}$	Total number of smolts $^{\mathbf{b}}$	Number of emigrants
1991	104	478,400	$45,483^{\text {c }}$	42,525	42,525	NS
1992	302	$1,570,098$	79,113	39,723	56,763	65,541
1993	106	556,394	55,056	8,662	17,926	22,698
1994	82	485,686	55,240	16,472	22,145	25,067
1995	13	66,248	5,815	3,830	5,230	5,951
1996	23	106,835	16,066	15,475	17,922	19,183
1997	82	374,740	68,415	28,334	39,044	44,562
1998	41	218,325	41,629	23,068	24,953	25,923
1999	34	166,090	NS	10,661	13,953	15,649
2000	128	642,944	114,617	40,831	50,634	55,685
2001	1,078	$4,984,672$	134,874	86,482	389,940	546,266
2002	345	$1,605,630$	91,278	90,948	152,547	184,279
2003	111	648,684	45,177	16,755	27,897	33,637
2004	241	$1,156,559$	49,631	72,080	101,172	116,158
2005	332	$1,436,564$	79,902	69,064	140,737	177,659
2006	297	$1,284,228$	60,752	45,050	86,579	107,972
2007	283	$1,256,803$	82,351	25,809	65,539	86,006
2008	689	$3,163,888$	106,705		-	-

Brood year	Number of redds	Egg deposition	Number of parr	Number of smolts produced within Chiwawa Basin $^{\mathbf{a}}$	Total number of smolts $^{\mathbf{b}}$	Number of emigrants
2009	423	$1,934,379$	-	-	-	-
Average	248	$1,165,114$	66,594	37,398	73,860	95,765

${ }^{\text {a }}$ The estimated number of smolts (yearlings) that are produced entirely within the Chiwawa Basin. Smolt estimates for brood years 1992-1996 were calculated with a mark-recapture model; brood years 1997-present were calculated with a flow model.
${ }^{\mathrm{b}}$ These numbers represent Chiwawa smolts produced within the entire Wenatchee Basin. This assumes that 66% of the subyearling migrants from the Chiwawa Basin survive to smolt in the Wenatchee Basin, regardless of the number of subyearling migrants (i.e., no density dependence). Smolt estimates for brood years 1992-1996 were calculated with a mark-recapture model; brood years 1997-present were calculated with a flow model.
${ }^{\text {c }}$ Estimate only includes numbers of Chinook in the Chiwawa River. Tributaries were not sampled at that time.

Wild subyearling spring Chinook (2008 brood year) were captured between 5 March and 2 December 2009. Based on capture efficiencies estimated from the flow model for both the upper trap position and lower position, the total number of wild subyearling (fry and parr) Chinook from the Chiwawa Basin was $233,079(\pm 62,658)$. Removing fry from the estimate, a total of $85,161(\pm 6,885)$ parr emigrated from the Chiwawa Basin in 2009. Although subyearlings migrated during most months of sampling, the majority (85\%) migrated during April, July, August, October, and November (Figure 5.3).

Yearling spring Chinook sampled in 2009 averaged 92 mm in length, 8.8 g in weight, and had a mean condition of 0.89 (Table 5.16). These size estimates were less than the overall mean of yearling spring Chinook sampled in previous years (overall means: $94 \mathrm{~mm}, 9.3 \mathrm{~g}$, and condition of 1.08). Subyearling spring Chinook sampled in 2009 at the Chiwawa Trap averaged 75 mm in length, averaged 4.9 g , and had a mean condition of 0.91 (Table 5.16). These sizes were less than the overall mean of subyearling spring Chinook sampled in previous years (overall means, $77 \mathrm{~mm}, 5.6 \mathrm{~g}$, and condition of 1.09).

Table 5.16. Mean fork length (mm), weight (g), and condition factor of subyearling and yearling spring Chinook collected in the Chiwawa Trap, 1996-2009. Numbers in parentheses indicate 1 standard deviation.

Sample year	Life stage	Sample size ${ }^{\text {a }}$	Mean size		
			Length (mm)	Weight (g)	Condition (K)
1996	Subyearling	514	78 (25)	6.9 (4.2)	1.11 (0.11)
	Yearling	1,589	94 (9)	9.5 (3.0)	1.11 (0.08)
1997	Subyearling	840	86 (8)	7.5 (2.1)	1.16 (0.08)
	Yearling	1,114	100 (7)	10.2 (2.6)	1.02 (0.10)
1998	Subyearling	3,743	82 (11)	6.2 (2.2)	1.08 (0.09)
	Yearling	2,663	97 (7)	10.3 (2.8)	1.12 (0.23)
1999	Subyearling	569	89 (9)	8.5 (2.4)	1.15 (0.07)
	Yearling	3,664	95 (8)	9.6 (3.4)	1.09 (0.19)
2000	Subyearling	1,810	85 (10)	7.4 (2.4)	1.15 (0.10)
	Yearling	1,891	97 (8)	10.5 (5.2)	1.13 (0.07)
2001	Subyearling	4,657	82 (11)	6.6 (3.4)	1.14 (0.09)

Sample year	Life stage	Sample size ${ }^{\text {a }}$	Mean size		
			Length (mm)	Weight (g)	Condition (K)
	Yearling	2,935	97 (7)	10.5 (2.4)	1.15 (0.08)
2002	Subyearling	6,130	64 (12)	3.0 (1.6)	1.06 (0.10)
	Yearling	1,735	94 (8)	9.0 (2.3)	1.09 (0.08)
2003	Subyearling	3,679	64 (12)	3.2 (1.7)	1.08 (0.10)
	Yearling	2,657	87 (9)	7.2 (3.5)	1.07 (0.10)
2004	Subyearling	2,278	75 (16)	4.3 (2.1)	0.92 (0.16)
	Yearling	1,032	91 (9)	8.5 (2.7)	1.09 (0.10)
2005	Subyearling	2,702	73 (12)	4.6 (2.2)	1.08 (0.09)
	Yearling	803	96 (9)	9.9 (2.8)	1.08 (0.08)
2006	Subyearling	3,462	76 (11)	5.1 (2.0)	1.12 (0.21)
	Yearling	4,645	95 (7)	9.4 (2.3)	1.10 (0.13)
2007	Subyearling	1,718	72 (12)	4.5 (2.1)	1.13 (0.16)
	Yearling	2,245	91 (8)	8.6 (2.5)	1.10 (0.09)
2008	Subyearling	10,443	79 (12)	5.9 (2.3)	1.15 (0.15)
	Yearling	8,792	93 (7)	8.8 (2.1)	1.08 (0.10)
2009	Subyearling	10,536	75 (10)	5.0 (2)	0.91 (0.11)
	Yearling	3,630	92 (7)	8.8 (2)	0.89 (0.07)
Average	Subyearling	3,792	77 (12)	5.6 (2.3)	1.09 (0.12)
	Yearling	2,814	94 (8)	9.3 (2.8)	1.08 (0.11)

${ }^{\text {a }}$ Sample size represents the number of fish that were measured for both length and weight.

Upper Wenatchee Trap

The Upper Wenatchee Trap operated nightly between 26 March and 29 July 2009. During the fivemonth sampling period, a total of 323 wild yearling Chinook, 312 wild subyearling Chinook, and 1,074 hatchery yearling Chinook were captured at the Upper Wenatchee Trap. Monthly captures of all fish collected at the Upper Wenatchee Trap are reported in Appendix B.

Lower Wenatchee Trap

The Lower Wenatchee Trap operated nightly between 19 February and 5 August 2009. During that time period the trap was inoperable for 13 days because of high river flows, debris, snow/ice, or mechanical failure. During the seven-month sampling period, a total of 536 wild yearling Chinook, 37,568 wild subyearling Chinook (mostly summer Chinook), and 6,692 hatchery yearling Chinook were captured at the Lower Wenatchee Trap. Based on capture efficiencies estimated from the flow model, the total number of wild yearling Chinook that emigrated past the Lower Wenatchee Trap was $60,739(\pm 14,229)$. The majority (64%) of these fish emigrated during April. Monthly captures of all fish collected at the Lower Wenatchee Trap are reported in Appendix B.

PIT Tagging Activities

As part of the Integrated Status and Effectiveness Monitoring Program (ISEMP), a total of 14,389 wild juvenile Chinook (9,915 subyearling and 4,474 yearlings) were PIT tagged and released in

2009 throughout the Wenatchee Basin (Table 5.17a). Most of these (88\%) were tagged in the Chiwawa Basin (12,459 at the trap plus 131 others upstream from the trap). Few were tagged and released in the Wenatchee River. A total of 468 Chinook were tagged and released at the Lower Wenatchee trap. See Appendix C for a complete list of all fish captured, tagged, lost, and released.
Table 5.17a. Numbers of wild Chinook that were captured, tagged, and released at different locations within the Wenatchee Basin, 2009. Numbers of fish that died or shed tags are also given.

Sampling Location	Species and Life Stage	$\begin{gathered} \text { Number } \\ \text { held } \end{gathered}$	Number of recaptures	Number tagged	$\begin{gathered} \text { Number } \\ \text { died } \end{gathered}$	Shed Tags	Total released	Percent mortality
Chiwawa Trap	Wild Subyearling Chinook	9,300	333	8,785	18	2	8,765	0.19
	Wild Yearling Chinook	4,170	338	3,710	15	1	3,694	0.36
	Total	13,470	671	12,495	33	3	12,459	0.24
Chiwawa Remote	Wild Subyearling Chinook	402	2	128	0	0	128	0.00
	Wild Yearling Chinook	3	0	3	0	0	3	0.00
	Total	405	2	131	0	0	131	0.00
Upper Wenatchee Trap	Wild Subyearling Chinook	38	0	38	1	0	37	2.63
	Wild Yearling Chinook	308	3	299	3	0	296	0.97
	Total	346	3	337	4	0	333	1.16
Nason Creek Remote	Wild Subyearling Chinook	750	6	702	1	0	701	0.13
	Wild Yearling Chinook	14	0	13	0	0	13	0.00
	Total	764	6	715	1	0	714	0.13
Upper Wenatchee Remote	Wild Subyearling Chinook	0	0	0	0	0	0	--
	Wild Yearling Chinook	0	0	0	0	0	0	--
	Total	0	0	0	0	0	0	--
Middle Wenatchee Remote	Wild Subyearling Chinook	343	4	284	0	0	284	0.00
	Wild Yearling Chinook	0	0	0	0	0	0	--
	Total	343	4	284	0	0	284	0.00
Lower Wenatchee Remote	Wild Subyearling Chinook	0	0	0	0	0	0	--
	Wild Yearling Chinook	0	0	0	0	0	0	--
	Total	0	0	0	0	0	0	--
Peshastin Creek Remote	Wild Subyearling Chinook	0	0	0	0	0	0	--
	Wild Yearling Chinook	0	0	0	0	0	0	--
	Total	0	0	0	0	0	0	--
Lower Wenatchee Trap	Wild Subyearling Chinook	0	0	0	0	0	0	--
	Wild Yearling Chinook	529	53	471	3	0	468	0.57
	Total	529	53	471	3	0	468	0.57
Total:	Wild Subyearling Chinook	10,833	345	9,937	20	2	9,915	0.18
	Wild Yearling Chinook	5,024	394	4,496	21	1	4,474	0.42
Grand Total:		15,857	739	14,433	41	3	14,389	

Numbers of wild Chinook salmon PIT-tagged and released as part of ISEMP during the period 20062009 are shown in Table 5.17b.

Table 5.17b. Summary of the numbers of wild Chinook that were tagged and released at different locations within the Wenatchee Basin, 2006-2009.

Sampling Location	Species and Life Stage	Numbers of PIT-tagged Chinook salmon released			
		2006	2007	2008	2009
Chiwawa Trap	Wild Subyearling Chinook	5,130	6,137	8,755	8,765
	Wild Yearling Chinook	2,793	4,659	8,397	3,694
	Total	7,923	10,796	17,152	12,459
Chiwawa Remote	Wild Subyearling Chinook	111	20	43	128
	Wild Yearling Chinook	0	0	0	3
	Total	111	20	43	131
Upper Wenatchee Trap	Wild Subyearling Chinook	0	15	0	37
	Wild Yearling Chinook	81	1,434	159	296
	Total	81	1,449	159	333
Nason Creek Remote ${ }^{\text {a }}$	Wild Subyearling Chinook	68	6	4	701
	Wild Yearling Chinook	1	7	0	13
	Total	69	13	4	714
Upper Wenatchee Remote	Wild Subyearling Chinook	0	61	1	0
	Wild Yearling Chinook	27	0	0	0
	Total	27	61	1	0
Middle Wenatchee Remote	Wild Subyearling Chinook	0	0	65	284
	Wild Yearling Chinook	0	0	0	0
	Total	0	0	65	284
Lower Wenatchee Remote	Wild Subyearling Chinook	0	0	0	0
	Wild Yearling Chinook	0	0	0	0
	Total	0	0	0	0
Peshastin Creek Remote	Wild Subyearling Chinook	0	0	0	0
	Wild Yearling Chinook	0	0	0	0
	Total	0	0	0	0
Lower Wenatchee Trap	Wild Subyearling Chinook	0	0	2	0
	Wild Yearling Chinook	522	1,641	506	468
	Total	522	1,641	508	468
Total:	Wild Subyearling Chinook	5,309	6,239	8,870	9,915
	Wild Yearling Chinook	3,424	7,741	9,062	4,474
Grand Total:		$8,733$	13,980	17,932	14,389

Freshwater Productivity

Both productivity and survival estimates for different life stages of spring Chinook in the Chiwawa Basin are provided in Table 5.18. Estimates for brood year 2007 fall within the ranges estimated over the period of brood years 1991-2006. During that period, freshwater productivities ranged from 125-1,015 parr/redd, 169-779 smolts/redd, and 214-834 emigrants/redd. Survivals during the same period ranged from 2.7-19.1\% for egg-parr, 3.2-16.8\% for egg-smolt, and 4.1-18.0\% for eggemigrants. Overwinter survival rates for juvenile spring Chinook within the Chiwawa Basin have ranged from 15.7-100.0\%.

Table 5.18. Productivity (fish/redd) and survival (\%) estimates for different juvenile life stages of spring Chinook in the Chiwawa Basin for brood years 1991-2008; ND = no data. These estimates were derived from data in Table 5.14.

Brood year	Parr/Redd	Smolts/Redd ${ }^{\text {a }}$	Emigrants/ Redd	$\underset{(\%)}{\text { Egg-Parr }}$	$\begin{gathered} \text { Parr-Smolt }{ }^{\text {b }} \\ (\%) \end{gathered}$	$\underset{(\%)}{\text { Egg-Smolt }}$	$\begin{aligned} & \text { Egg- } \\ & \text { Emigrant } \\ & (\%) \end{aligned}$
1991	437	409	ND	9.5	93.5	8.9	ND
1992	262	188	217	5.0	50.2	3.6	4.2
1993	519	169	214	9.9	15.7	3.2	4.1
1994	674	270	306	11.4	29.8	4.6	5.2
1995	447	402	458	8.8	65.9	7.9	9.0
1996	699	779	834	15.0	96.3	16.8	18.0
1997	834	476	543	18.3	41.4	10.4	11.9
1998	1,015	609	632	19.1	55.4	11.4	11.9
1999	ND	410	460	ND	ND	8.4	9.4
2000	895	396	435	17.8	35.6	7.9	8.7
2001	125	362	507	2.7	64.1	7.8	11.0
2002	265	442	534	5.7	99.6	9.5	11.5
2003	407	251	303	7.0	37.1	4.3	5.2
2004	206	420	482	4.3	100.0	8.7	10.0
2005	241	424	535	5.6	86.4	9.8	12.4
2006	205	292	364	4.7	74.2	6.7	8.4
2007	291	232	304	6.6	31.3	5.2	6.8
2008	155	-	-	3.4	-	-	-
Average	452	384	446	9.1	61.0	8.0	9.2

${ }^{\text {a }}$ These estimates include Chiwawa smolts produced within the Wenatchee Basin. This assumes that 66% of the subyearling migrants survive to smolt, regardless of the number of subyearling migrants (i.e., no density dependence). Smolt estimates for brood years 1992-1996 were calculated with a mark-recapture model; brood years 1997-present were calculated with a flow model.
${ }^{\mathrm{b}}$ These estimates represent overwinter survival within the Chiwawa Basin. It does not include Chiwawa smolts produced outside the Chiwawa Basin. As noted in footnote a, smolts/redd and egg-smolt survival include Chiwawa smolts produced in the Wenatchee Basin.

Seeding level (egg deposition) explained most of the variability in productivity and survival of juvenile spring Chinook in the Chiwawa Basin. That is, for estimates based on "within-Chiwawa-

Basin" life stages (e.g., parr and within-Chiwawa-Basin smolts), survival and productivity decreased as seeding levels increased (Figure 5.4). This suggests that density dependence regulates juvenile productivity and survival within the Chiwawa Basin. This form of population regulation is less apparent with total smolts (i.e., Chiwawa smolts produced within the Wenatchee Basin) and total emigrants. However, one would expect the number of emigrants to increases as seeding levels exceed the capacity of the Chiwawa Basin.

Figure 5.4. Relationships between seeding levels (egg deposition) and juvenile life-stage survivals and productivities for Chiwawa spring Chinook, brood years 1991-2007. Total smolts are Chiwawa smolts
produced within and outside the Chiwawa Basin (assumes a 66% survival on subyearling emigrants). Chiwawa smolts are smolts produced only in the Chiwawa Basin.

5.5 Spawning Surveys

Surveys for spring Chinook carcasses were conducted during August through September, 2009, in the Chiwawa River (including Rock, Phelps, Big Meadow, and Chikamin creeks), Nason Creek, Icicle Creek, Peshastin Creek (including Ingalls Creek), Upper Wenatchee River (including Chiwaukum Creek), Little Wenatchee River, and White River (including the Napeequa River and Panther Creek).

Redd Counts

A total of 733 spring Chinook redds were counted in the Wenatchee Basin in 2009 (Table 5.19). This is higher than the average of 548 redds counted during the period 1989-2008 in the Wenatchee Basin. Most spawning occurred in the Chiwawa River (58\% or 421 redds) (Table 5.19; Figure 5.5). Nason Creek contained 23\% (167 redds), White River contained 7\% (54 redds), Little Wenatchee contained 5\% (39 redds), Icicle contained 4\% (32 redds), Peshastin Creek contained 2\% (15 redds), and the Upper Wenatchee River 1\% (5 redds).

Table 5.19. Numbers of spring Chinook redds counted within different streams/watersheds within the Wenatchee Basin, 1989-2009. Redd counts in Peshastin Creek in 2001 and $2002\left(^{*}\right)$ were elevated because the U.S. Fish and Wildlife Service planted 487 and 350 spring Chinook adults, respectively, into the stream. These counts were not included in the total or average calculations.

Sample year	Number of spring Chinook redds							
	Chiwawa	Nason	Little Wenatchee	White	Wenatchee River	Icicle	Peshastin	Total
1989	314	98	45	64	94	24	NS	639
1990	255	103	30	22	36	50	4	500
1991	104	67	18	21	41	40	1	292
1992	302	81	35	35	38	37	0	528
1993	106	223	61	66	86	53	5	600
1994	82	27	7	3	6	15	0	140
1995	13	7	0	2	1	9	0	32
1996	23	33	3	12	1	12	1	85
1997	82	55	8	15	15	33	1	209
1998	41	29	8	5	0	11	0	94
1999	34	8	3	1	2	6	0	54
2000	128	100	9	8	37	68	0	350
2001	1,078	374	74	104	218	88	173*	2,109
2002	345	294	42	42	64	245	107*	1,139
2003	111	83	12	15	24	18	60	323
2004	241	169	13	22	46	30	55	576
2005	332	193	64	86	143	8	3	829
2006	297	152	21	31	27	50	10	588

Sample year	Number of spring Chinook redds								
	Chiwawa	Nason	Little Wenatchee	White	Wenatchee River	Icicle	Peshastin	Total	
2007	283	101	22	20	12	17	11	$\mathbf{4 6 6}$	
2008	689	336	38	31	180	116	21	$\mathbf{1 , 4 1 1}$	
2009	421	167	39	54	5	32	15	$\mathbf{7 3 3}$	
Average	251	$\mathbf{1 2 9}$	$\mathbf{2 6}$	31	51	$\mathbf{4 6}$	23	557	

Spring Chinook Redds

Figure 5.5. Percent of the total number of spring Chinook redds counted in different streams/watersheds within the Wenatchee Basin during August through September, 2009.

Redd Distribution

Spring Chinook redds were not evenly distributed among reaches within survey streams in 2009 (Table 5.20). Most of the spawning in the Chiwawa Basin occurred in Reaches 1, 2, 4, 5, and 6. Over half of all the spawning in the Chiwawa Basin occurred in the lower two reaches (RM 0.019.3; from the mouth to Rock Creek). Relatively few fish spawned in Rock, Chikamin, and Big Meadow creeks. The spatial distribution of redds in Nason Creek was weighted towards Reach 3, having 41% of the Nason Creek redds. In the Little Wenatchee River, 74% of all spawning occurred in Reach 3 (RM 5.2-9.2; Lost Creek to Rainy Creek). On the White River, 78\% occurred in Reach 3 (RM 11.0-12.9; Napeequa River to Grasshopper Meadows). Eighty percent of all the spawning in the Wenatchee River occurred upstream from the mouth of the Chiwawa River.

Table 5.20. Numbers and proportions of spring Chinook redds counted within different streams/watersheds within the Wenatchee Basin during August through September, 2009.

Stream/watershed	Reach	Number of redds	Proportion of redds within stream/watershed
Chiwawa	Chiwawa 1	81	0.19
	Chiwawa 2	180	0.43
	Chiwawa 3	17	0.04
	Chiwawa 4	44	0.10
	Chiwawa 5	42	0.10
	Chiwawa 6	46	0.11
	Phelps 1	0	0.00
	Rock 1	8	0.02
	Chikamin 1	2	0.01
	Big Meadow 1	1	0.00
	Total	421	1.00
Nason	Nason 1	28	0.17
	Nason 2	35	0.21
	Nason 3	69	0.41
	Nason 4	35	0.21
	Total	167	1.00
Little Wenatchee	Little Wen 2	10	0.26
	Little Wen 3	29	0.74
	Total	39	1.00
White	White 2	2	0.04
	White 3	42	0.78
	White 4	1	0.02
	Napeequa 1	3	0.05
	Panther 1	6	0.11
	Total	54	1.00
Wenatchee River	Wen 8	0	0.00
	Wen 9	0	0.00
	Wen 10	4	0.80
	Chiwaukum 1	1	0.20
	Total	5	1.00
Icicle	Icicle 1	32	1.00
	Total	32	1.00
Peshastin	Peshastin 1	9	0.60
	Peshastin 2	0	0.00
	Ingalls	6	0.40
	Total	15	1.00

Stream/watershed	Reach	Number of redds	Proportion of redds within stream/watershed
Grand Total		733	1.00

Spawn Timing

Spring Chinook began spawning during the first week of August in the Chiwawa River, the second week in the White River and Nason Creek, and the third week in the Little Wenatchee River and the Upper Wenatchee River (Figure 5.6). Spawning generally peaked the fourth week of August. All spawning was completed by the end of September.

Figure 5.6. Proportion of spring Chinook redds counted during different weeks in different sampling streams within the Wenatchee Basin, August through September 2009.

The temporal distribution of spawning activity in the Chiwawa River in 2009 occurred earlier than the mean 1991-2008 spawning distribution for the Chiwawa (Figure 5.7). The greatest difference in distributions was noted in early August.

Chiwawa Spring Chinook

Figure 5.7. Comparison of the number of new spring Chinook redds counted during different weeks in the Chiwawa Basin, August through September, 2009, to the overall average.

Spawning Escapement

Spawning escapement for spring Chinook was calculated as the number of redds times the male-tofemale ratio (i.e., fish per redd expansion factor) estimated from broodstock and fish sampled at adult trapping sites. The estimated fish per redd ratio for spring Chinook upstream from Tumwater in 2009 was 3.20 (based on sex ratios estimated at Tumwater Dam). The estimated fish per redd ratio for spring Chinook downstream from Tumwater (Icicle and Peshastin creeks) was 2.72 (derived from broodstock collected at the Leavenworth National Fish Hatchery). Multiplying these ratios by the number of redds counted in the Wenatchee Basin resulted in a total spawning escapement of 2,323 spring Chinook (Table 5.21). The Chiwawa Basin had the highest spawning escapement (1,347 Chinook), while the Upper Wenatchee River had the lowest.

Table 5.21. Number of redds, fish per redd ratios, and total spawning escapement for spring Chinook in the Wenatchee Basin, 2009. Spawning escapement was estimated as the product of redds times fish per redd.

Sampling area	Total number of redds	Fish/redd	Total spawning escapement*
Chiwawa	421	3.20	1,347
Nason	167	3.20	534
Upper Wenatchee River	5	3.20	16
Icicle	32	2.72	87
Little Wenatchee	39	3.20	125
White	54	3.20	173
Peshastin	15	2.72	41
Total	733	-	2,323

* Spawning escapement estimate is based on total number of redds by stream. If escapement is calculated at the reach scale, then the total escapement may vary from what is shown here because of rounding errors.

The estimated total spawning escapement of 2,323 spring Chinook in 2009 was greater than the overall average of 1,290 spring Chinook (Table 5.22). The large escapement in the Chiwawa Basin in 2009 was over twice the escapement in Nason Creek, the second most abundant stream in the Wenatchee Basin (Table 5.22).

Table 5.22. Spawning escapements for spring Chinook in the Wenatchee Basin for return years 1989-2009; NA = not available.

Return year	Upper basin spawning escapement						Lower basin spawning escapement			Total
	Fish/redd	Chiwawa	Nason	Little Wenatchee	White	Wenatchee River	Fish/redd	Icicle	Peshastin	
1989	2.27	713	222	102	145	213	2.27	54	NA	1,449
1990	2.24	571	231	67	49	81	2.24	112	9	1,120
1991	2.33	242	156	42	49	96	2.33	93	2	680
1992	2.24	676	181	78	78	85	2.24	83	0	1,181
1993	2.20	233	491	134	145	189	2.20	117	11	1,320
1994	2.24	184	60	16	7	13	2.24	34	0	314
1995	2.51	33	18	0	5	3	2.51	23	0	82
1996	2.53	58	83	8	30	3	2.53	30	3	215
1997	2.22	182	122	18	33	33	2.22	73	2	463
1998	2.21	91	64	18	11	0	2.21	24	0	208
1999	2.77	94	22	8	3	6	2.77	17	0	150
2000	2.44	312	244	22	20	90	2.44	166	0	854
2001	2.31	2,490	864	171	240	504	2.31	203	400	4,872
2002	2.05	707	603	86	86	131	2.05	502	219	2,334
2003	2.43	270	202	29	36	58	2.43	44	146	785
$2004{ }^{\text {a }}$	3.56/3.00	858	507	39	66	138	1.79	54	98	1,759
2005	1.80	598	347	115	155	257	1.75	14	5	1,491
2006	1.78	529	271	37	55	48	1.80	90	18	1,048
2007	4.58	1,296	463	101	92	55	1.86	32	20	2,059
2008	1.68	1,158	565	64	52	302	1.77	205	37	2,383
2009	3.20	1,347	534	125	173	16	2.72	87	41	2,323
Average	2.46	602	298	61	73	111	2.22	98	51	1,290

${ }^{\text {a }}$ In 2004 the fish/redd expansion estimate of 3.56 was applied to the Chiwawa River only and 3.00 fish/redd for the rest of the upper basin.

5.6 Carcass Surveys

Surveys for spring Chinook carcasses were conducted during August through September, 2009, in the Chiwawa River (including Rock, Phelps, Big Meadow, and Chikamin creeks), Nason Creek, Icicle Creek, Peshastin Creek (including Ingalls Creek), Upper Wenatchee River (including Chiwaukum Creek), Little Wenatchee River, and White River (including the Napeequa River and Panther Creek).

Number sampled

A total of 478 spring Chinook carcasses were sampled during August through September in the Wenatchee Basin (Table 5.23). Most were sampled in the Chiwawa Basin (50\% or 240 carcasses) and Nason Creek (27% or 128 carcasses) (Figure 5.8). A total of 67 carcasses were sampled in Icicle Creek, 20 in the Little Wenatchee, 19 in the White River, 2 in the upper Wenatchee River, and 2 in Peshastin Creek.

Table 5.23. Numbers of spring Chinook carcasses sampled within different streams/watersheds within the Wenatchee Basin, 1996-2009.

Survey year	Number of spring Chinook carcasses								
	Chiwawa	Nason	Little Wenatchee	White	Wenatchee River	Icicle	Peshastin	Total	
1996	22	3	0	2	0	1	0	$\mathbf{2 8}$	
1997	13	42	3	8	1	28	1	$\mathbf{9 6}$	
1998	24	25	3	2	1	6	0	$\mathbf{6 1}$	
1999	15	5	0	0	2	1	0	$\mathbf{2 3}$	
2000	122	110	8	1	37	52	0	$\mathbf{3 3 0}$	
2001	751	388	68	74	213	163	63	$\mathbf{1 , 7 2 0}$	
2002	190	292	30	24	34	91	49	$\mathbf{7 1 0}$	
2003	70	100	8	8	12	37	42	$\mathbf{2 7 7}$	
2004	178	186	1	13	29	16	40	$\mathbf{4 6 3}$	
2005	391	217	48	52	120	2	0	$\mathbf{8 3 0}$	
2006	241	190	13	25	15	7	0	$\mathbf{4 9 1}$	
2007	250	201	16	13	25	15	6	$\mathbf{5 2 6}$	
2008	386	243	15	13	108	68	5	$\mathbf{8 3 8}$	
2009	240	128	20	19	2	67	2	$\mathbf{4 7 8}$	
Average	207	$\mathbf{1 5 2}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{4 3}$	$\mathbf{4 0}$	$\mathbf{1 5}$	$\mathbf{4 9 1}$	

Spring Chinook Carcasses

River/Watershed
Figure 5.8. Percent of the total number of spring Chinook carcasses sampled in different streams/watersheds within the Wenatchee Basin during August through September, 2009.

Carcass Distribution and Origin

Spring Chinook carcasses were not evenly distributed among reaches within survey streams in 2009 (Table 5.24). Most of the carcasses in the Chiwawa Basin occurred in Reaches 1 and 2 (downstream from Rock Creek). In Nason Creek, most carcasses (30\%) were collected in Reach 4 and the fewest (20\%) in Reach 1. Most of the carcasses in the Little Wenatchee River (75\%) were sampled in Reach 3 (Lost Creek to Rainy Creek). On the White River, about 84% occurred in Reach 3 (Napeequa River to Grasshopper Meadows). On the Wenatchee River, one carcass was found upstream from the confluence of the Chiwawa River and the other was found in Chiwaukum Creek.
Table 5.24. Numbers and proportions of carcasses sampled within different streams/watersheds within the Wenatchee Basin during August through September, 2009.

Stream/watershed	Reach	Number of carcasses	Proportion of redds within stream/watershed
Chiwawa	Chiwawa 1	92	0.38
	Chiwawa 2	91	0.38
	Chiwawa 3	10	0.04
	Chiwawa 4	22	0.09
	Chiwawa 5	11	0.05
	Chiwawa 6	6	0.03
	Phelps 1	0	0.00
	Rock 1	8	0.03
	Chikamin 1	0	0.00
	Big Meadow 1	0	0.00
	Total	$\mathbf{2 4 0}$	$\mathbf{1 . 0 0}$

Stream/watershed	Reach	Number of carcasses	Proportion of redds within stream/watershed
Nason	Nason 1	26	0.20
	Nason 2	33	0.26
	Nason 3	30	0.23
	Nason 4	39	0.30
	Total	128	1.00
Little Wenatchee	Little Wen 2	5	0.25
	Little Wen 3	15	0.75
	Total	20	1.00
White	White 2	0	0.00
	White 3	16	0.84
	White 4	0	0.00
	Napeequa 1	0	0.00
	Panther 1	3	0.16
	Total	19	1.00
Wenatchee River	Wen 8	0	0.00
	Wen 9	0	0.00
	Wen 10	1	0.50
	Chiwaukum 1	1	0.50
	Total	2	1.00
Icicle	Icicle 1	67	1.00
	Total	67	1.00
Peshastin	Peshastin 1	2	1.00
	Ingalls	0	0.00
	Total	2	1.00
Grand Total		478	1.00

Of the 478 carcasses sampled in 2009, 78% were hatchery fish (Table 5.25; these numbers may change after analysis of CWTs). In the Chiwawa Basin, the spatial distribution of hatchery and wild fish was not equal (Table 5.25). A larger percentage of hatchery fish were found in the lower reaches (C1 and C2; Mouth to Rock Creek) than were wild fish. This general trend was also apparent in the pooled data (Figure 5.9).
Table 5.25. Numbers of wild and hatchery spring Chinook carcasses sampled within different reaches in the Chiwawa Basin, 1993-2009. See Table 2.8 for description of survey reaches.

Survey year	Origin	Survey Reach								Total
		C-1	C-2	C-3	C-4	C-5	C-6	Chikamin	Rock	
1993	Wild	0	0	0	0	0	0	0	0	0
	Hatchery	1	0	0	0	0	0	0	0	1
1994	Wild	0	6	0	2	0	1	0	0	9

Survey year	Origin	Survey Reach								Total
		C-1	C-2	C-3	C-4	C-5	C-6	Chikamin	Rock	
	Hatchery	1	1	0	2	0	0	0	0	4
1995	Wild	0	0	0	0	0	0	0	0	0
	Hatchery	2	3	0	1	0	0	0	0	6
1996	Wild	11	1	1	1	0	0	0	0	14
	Hatchery	6	0	0	0	0	0	0	0	6
1997	Wild	5	2	0	1	0	0	0	0	8
	Hatchery	3	1	0	0	0	1	1	3	9
1998	Wild	0	3	5	1	2	4	0	0	15
	Hatchery	1	3	2	0	1	1	0	0	8
1999	Wild	1	8	0	5	0	0	0	0	14
	Hatchery	0	0	0	0	1	0	0	0	1
2000	Wild	25	27	1	1	1	1	0	0	56
	Hatchery	42	12	0	0	0	2	0	0	56
2001	Wild	24	57	15	40	16	20	1	3	176
	Hatchery	164	284	19	58	14	21	8	0	568
2002	Wild	15	11	9	6	7	5	2	0	55
	Hatchery	46	40	12	5	1	15	14	4	137
2003	Wild	7	13	0	11	3	2	0	0	36
	Hatchery	14	14	0	3	1	0	0	0	32
2004	Wild	23	48	2	11	7	3	0	1	95
	Hatchery	46	21	1	1	1	3	0	2	75
2005	Wild	16	36	3	4	3	2	0	0	64
	Hatchery	170	132	7	7	4	3	0	1	324
2006	Wild	10	17	2	8	4	3	1	0	45
	Hatchery	84	75	5	7	6	13	3	3	196
2007	Wild	3	20	3	4	4	2	0	0	36
	Hatchery	42	113	15	14	16	12	2	0	214
2008	Wild	4	24	0	5	4	8	0	0	45
	Hatchery	174	121	2	8	15	15	4	1	340
2009	Wild	4	22	4	8	4	1	0	3	46
	Hatchery	88	69	6	14	7	5	0	5	194
Average	Wild	9	17	3	6	3	3	0	0	42
	Hatchery	52	52	4	7	4	5	2	1	128

Spring Chinook Carcass Distribution

Figure 5.9. Distribution of wild and hatchery produced carcasses in different reaches in the Chiwawa Basin, 1993-2009; Chik = Chikamin Creek and Rock = Rock Creek. Reach codes are described in Table 2.8.

Sampling Rate

Overall, 21% of the estimated total spawning escapement of spring Chinook in the Wenatchee Basin was sampled in 2009 (Table 5.26). Sampling rates among streams/watershed varied from 5 to 77%.

Table 5.26. Number of redds and carcasses, total spawning escapement, and sampling rates for spring Chinook salmon in the Wenatchee Basin, 2009.

Sampling area	Total number of redds	Total number of carcasses	Total spawning escapement	Sampling rate
Chiwawa	421	240	1,347	0.18
Nason	167	128	534	0.24
Upper Wenatchee	5	2	16	0.13
Icicle	32	67	87	0.77
Little Wenatchee	39	20	125	0.16
White	54	19	173	0.11
Peshastin	15	2	41	0.05
Total	733	$\mathbf{4 7 8}$	$\mathbf{0 . 2 1}$	

Length Data

Mean lengths ($\mathrm{POH}, \mathrm{cm}$) of male and female spring Chinook carcasses sampled during surveys in the Wenatchee Basin in 2009 are provided in Table 5.27. The average sizes of males and females sampled in the Wenatchee Basin were 56 and 62 cm , respectively.

Table 5.27. Mean lengths (postorbital-to-hypural length; cm) and standard deviations (in parentheses) of male and female spring Chinook carcasses sampled in different streams/watersheds in the Wenatchee Basin, 2009.

Stream/watershed		Mean lengths (cm)	
		Female	
Chiwawa	$58(10.6)$	$63(3.8)$	
Nason	$56(9.9)$	$61(4.4)$	
Upper Wenatchee	--	$60(2.1)$	
Icicle	$52(13.3)$	$60(8.9)$	
Little Wenatchee	$61(8.4)$	$61(3.3)$	
White	$63(5.3)$	$64(4.6)$	
Peshastin $\quad 62(0.0)$	$57(0.0)$		
	$\mathbf{5 6 (1 1 . 1)}$	$\mathbf{6 2}(\mathbf{4 . 7})$	

5.7 Life History Monitoring

Life history characteristics of spring Chinook were assessed by examining carcasses on spawning grounds and fish collected at broodstock collection sites, and by reviewing tagging data and fisheries statistics.

Migration Timing

There was little difference in migration timing of hatchery and wild spring Chinook past Tumwater Dam (Table 5.28a and b; Figure 5.10). On average, early in the migration, wild Chinook arrived at Tumwater Dam slightly earlier than hatchery fish, but by the end of the migration, both arrived at about the same time. Most hatchery and wild spring Chinook migrated upstream past Tumwater Dam during June and July (Figure 5.10).
Table 5.28a. The Julian day and date that 10%, 50% (median), and 90% of the wild and hatchery spring Chinook salmon passed Tumwater Dam, 1998-2009. The average Julian day and date are also provided. Migration timing is based on video sampling at Tumwater. Data for 1998 through 2003 were based on videotapes and broodstock trapping and may not reflect the actual number of hatchery spring Chinook. All spring Chinook were visually examined during trapping from 2004 to present.

Survey year	Origin	Spring Chinook Migration Time (days)								Sample size
		10 Percentile		50 Percentile		90 Percentile		Mean		
		Julian	Date	Julian	Date	Julian	Date	Julian	Date	
1998	Wild	156	5-Jun	156	5-Jun	156	5-Jun	156	5-Jun	49
	Hatchery	156	5-Jun	156	5-Jun	156	5-Jun	156	5-Jun	25
1999	Wild	192	11-Jul	207	26-Jul	224	12-Aug	207	26-Jul	173
	Hatchery	200	19-Jul	211	30-Jul	229	18-Aug	213	1-Aug	25
2000	Wild	171	19-Jun	186	4-Jul	194	12-Jul	184	2-Jul	651
	Hatchery	179	27-Jun	189	7-Jul	201	19-Jul	190	8-Jul	357
2001	Wild	154	3-Jun	166	15-Jun	185	4-Jul	167	16-Jun	2,073
	Hatchery	157	6-Jun	169	18-Jun	185	4-Jul	170	19-Jun	4,244

Survey year	Origin	Spring Chinook Migration Time (days)								Sample size
		10 Percentile		50 Percentile		90 Percentile		Mean		
		Julian	Date	Julian	Date	Julian	Date	Julian	Date	
2002	Wild	174	23-Jun	189	8-Jul	204	23-Jul	189	8-Jul	1,033
	Hatchery	178	27-Jun	189	8-Jul	199	18-Jul	189	8-Jul	1,363
2003	Wild	162	11-Jun	181	30-Jun	200	19-Jul	181	30-Jun	919
	Hatchery	157	6-Jun	179	28-Jun	192	11-Jul	178	27-Jun	423
2004	Wild	156	4-Jun	172	20-Jun	189	7-Jul	172	20-Jun	969
	Hatchery	161	9-Jun	177	25-Jun	189	7-Jul	177	25-Jun	1,295
2005	Wild	153	2-Jun	172	21-Jun	193	12-Jul	173	22-Jun	1,038
	Hatchery	153	2-Jun	173	22-Jun	187	6-Jul	172	21-Jun	2,808
2006	Wild	177	26-Jun	184	3-Jul	193	12-Jul	185	7-Jul	577
	Hatchery	178	27-Jun	185	4-Jul	194	13-Jul	186	5-Jul	1,601
2007	Wild	169	18-Jun	185	4-Jul	203	22-Jul	185	4-Jul	351
	Hatchery	174	23-Jun	192	11-Jul	209	28-Jul	192	11-Jul	3,232
2008	Wild	173	21-Jun	188	6-Jul	209	27-Jul	189	7-Jul	634
	Hatchery	177	25-Jun	193	11-Jul	210	28-Jul	193	11-Jul	5,368
2009	Wild	174	23-Jun	186	5-Jul	201	20-Jul	187	6-Jul	1,008
	Hatchery	175	24-Jun	187	6-Jul	202	21-Jul	188	7-Jul	4,106
Average	Wild	168	-	181	-	196	-	181	-	790
	Hatchery	170	-	183	-	196	-	184	-	2,071

Table 5.28b. The week that $10 \%, 50 \%$ (median), and 90% of the wild and hatchery spring Chinook salmon passed Tumwater Dam, 1998-2009. The average week is also provided. Migration timing is based on video sampling at Tumwater. Data for 1998 through 2003 were based on videotapes and broodstock trapping and may not reflect the actual number of hatchery spring Chinook. All spring Chinook were visually examined during trapping from 2004 to present.

Survey year	Origin	Spring Chinook Migration Time (week)				Sample size
		10 Percentile	50 Percentile	90 Percentile	Mean	
1998	Wild	23	23	23	23	49
	Hatchery	23	23	23	23	25
1999	Wild	28	30	32	30	173
	Hatchery	29	31	34	31	25
2000	Wild	24	27	27	27	651
	Hatchery	26	27	29	28	357
2001	Wild	22	24	27	24	2,073
	Hatchery	23	25	27	25	4,244
2002	Wild	25	27	30	27	1,033
	Hatchery	26	27	29	27	1,363
2003	Wild	24	26	29	26	919

Survey year	Origin	Spring Chinook Migration Time (week)				Sample size
		10 Percentile	50 Percentile	90 Percentile	Mean	
	Hatchery	23	26	28	26	423
2004	Wild	23	25	27	25	969
	Hatchery	23	26	27	26	1,295
2005	Wild	22	25	28	25	1,038
	Hatchery	22	25	27	25	2,808
2006	Wild	26	27	28	27	577
	Hatchery	26	27	28	27	1,601
2007	Wild	25	27	29	27	351
	Hatchery	25	28	30	28	3,232
2008	Wild	25	27	30	27	634
	Hatchery	26	28	30	28	5,368
2009	Wild	25	27	29	27	1,008
	Hatchery	25	27	29	27	4,106
Average	Wild	24	26	28	26	790
	Hatchery	25	27	28	27	2,071

Spring Chinook Migration Timing

Figure 5.10. Proportion of wild and hatchery spring Chinook observed (using video) passing Tumwater Dam each week during their migration period May through September; data were pooled over survey years 19982009.

Age at Maturity

Most of the wild and hatchery spring Chinook sampled during the period 1994-2009 in the Chiwawa Basin were age-4 fish (total age) (Table 5.29; Figure 5.11). On average, hatchery fish made up a higher percentage of age- 3 and 4 Chinook than did wild fish. In contrast, a higher proportion of age5 wild fish returned than did age- 5 hatchery fish. Thus, wild fish tended to return at an older age than hatchery fish.

Table 5.29. Proportions of wild and hatchery spring Chinook of different ages (total age) sampled on spawning grounds in the Chiwawa Basin, 1994-2009.

Sample year	Origin	Total age					Sample size
		2	3	4	5	6	
1994	Wild	0.00	0.00	0.33	0.67	0.00	9
	Hatchery	0.00	0.20	0.00	0.80	0.00	5
1995	Wild	0.00	0.00	0.00	0.00	0.00	0
	Hatchery	0.00	0.00	1.00	0.00	0.00	2
1996	Wild	0.00	0.36	0.64	0.00	0.00	14
	Hatchery	0.00	0.83	0.17	0.00	0.00	6
1997	Wild	0.00	0.00	0.75	0.25	0.00	8
	Hatchery	0.00	0.00	1.00	0.00	0.00	9
1998	Wild	0.00	0.00	0.00	1.00	0.00	15
	Hatchery	0.00	0.00	0.13	0.88	0.00	8
1999	Wild	0.00	0.07	0.50	0.43	0.00	14
	Hatchery	0.00	0.00	0.00	1.00	0.00	1
2000	Wild	0.00	0.02	0.95	0.03	0.00	56
	Hatchery	0.00	0.50	0.50	0.00	0.00	52
2001	Wild	0.00	0.01	0.95	0.04	0.00	176
	Hatchery	0.00	0.02	0.98	0.00	0.00	571
2002	Wild	0.00	0.00	0.56	0.44	0.00	55
	Hatchery	0.00	0.00	0.91	0.09	0.00	128
2003	Wild	0.00	0.09	0.00	0.91	0.00	36
	Hatchery	0.00	0.19	0.03	0.78	0.00	32
$2004{ }^{\text {a }}$	Wild	0.00	0.02	0.97	0.01	0.00	124
	Hatchery	0.00	0.43	0.57	0.00	0.00	80
$2005{ }^{\text {a }}$	Wild	0.00	0.00	0.85	0.15	0.00	111
	Hatchery	0.00	0.07	0.93	0.00	0.00	656
$2006{ }^{\text {a }}$	Wild	0.01	0.03	0.56	0.40	0.00	86
	Hatchery	0.00	0.16	0.72	0.12	0.00	451
$2007{ }^{\text {a }}$	Wild	0.00	0.09	0.26	0.65	0.00	54
	Hatchery	0.00	0.32	0.61	0.07	0.00	304
$2008{ }^{\text {a }}$	Wild	0.02	0.02	0.80	0.16	0.00	44
	Hatchery	0.00	0.07	0.89	0.04	0.00	339

Sample year	Origin	Total age					Sample size
		2	3	4	5	6	
$2009{ }^{\text {a }}$	Wild	0.00	0.07	0.89	0.04	0.00	118
	Hatchery	0.00	0.17	0.81	0.02	0.00	417
Average	Wild	0.00	0.03	0.75	0.21	0.00	58
	Hatchery	0.00	0.13	0.82	0.05	0.00	191

${ }^{\mathrm{a}}$ These years include carcass and live fish PIT-tag detection data (fish that were sampled both as carcasses and detected as live fish on the spawning grounds were not counted twice). Also origin assignments have been made to fish that were previously identified as fish of unknown origin.

Spring Chinook Age Structure

Figure 5.11. Proportions of wild and hatchery spring Chinook of different total ages sampled at the Chiwawa Weir and on spawning grounds in the Chiwawa Basin for the combined years 1994-2009.

Size at Maturity

On average, hatchery and wild spring Chinook of a given age differed slightly in length (Table 5.30). For example, wild age- 5 fish were larger on average than the age-5 hatchery fish. In contrast, hatchery age- 3 and 4 Chinook were generally larger than age-3 and 4 wild fish.

Table 5.30. Mean lengths (POH in $\mathrm{cm} ; \pm 1 \mathrm{SD}$) and sample sizes (in parentheses) of different ages (total age) of male and female spring Chinook of wild and hatchery origin sampled in the Chiwawa Basin, 1994-2009. Brood years 2004-2009 include carcasses and live fish PIT-tag detections. In addition, 2005 and 2006 include fish released at the weir.

Brood year	Total age	Mean length (cm)			
		Male		Female	
		Wild	Hatchery	Wild	Hatchery
1994	3				43 ± 0 (1)
	4			62 ± 3 (3)	

Brood year	Total age	Mean length (cm)			
		Male		Female	
		Wild	Hatchery	Wild	Hatchery
	5	76 ± 0 (1)		73 ± 2 (5)	
	6				
1995	3				
	4		61 ± 5 (5)		
	5				
	6				
1996	3	45 ± 3 (5)	49 ± 7 (10)		
	4	69 ± 4 (6)	69 ± 0 (1)	67 ± 8 (2)	
	5				
	6				
1997	3				
	4	61 ± 1 (2)	68 ± 0 (1)	67 ± 5 (3)	63 ± 3 (8)
	5	67 ± 5 (2)			
	6				
1998	3				
	4				54 ± 0 (1)
	5	77 ± 7 (8)	75 ± 4 (4)	74 ± 4 (7)	76 ± 4 (3)
	6				
1999	3	44 ± 0 (1)			
	4	61 ± 0 (1)		64 ± 3 (6)	
	5	76 ± 5 (3)		72 ± 5 (3)	66 ± 0 (1)
	6				
2000	3		46 ± 3 (17)		50 ± 7 (3)
	4	60 ± 8 (23)	62 ± 5 (5)	61 ± 5 (26)	62 ± 3 (20)
	5	77 ± 1 (2)			
	6				
2001	3	37 ± 0 (1)	42 ± 4 (11)	41 ± 0 (1)	60 ± 0 (1)
	4	63 ± 5 (57)	65 ± 5 (151)	62 ± 4 (110)	63 ± 4 (407)
	5	75 ± 5 (2)	83 ± 0 (1)	76 ± 1 (5)	
	6				
2002	3				
	4	64 ± 4 (14)	66 ± 5 (46)	60 ± 4 (15)	63 ± 4 (71)
	5	80 ± 6 (13)	75 ± 5 (4)	72 ± 3 (12)	73 ± 6 (6)
	6				
2003	3	45 ± 2 (3)	45 ± 1 (6)		
	4		63 ± 0 (1)		
	5	$78 \pm 5(12)$	74 ± 8 (11)	75 ± 3 (19)	$72 \pm 5(14)$
	6				
2004	3	42 ± 3 (3)	44 ± 5 (33)		
	4	63 ± 7 (60)	66 ± 5 (9)	63 ± 4 (59)	63 ± 6 (36)

Brood year	Total age	Mean length (cm)			
		Male		Female	
		Wild	Hatchery	Wild	Hatchery
	5			74 ± 0 (1)	
	6				
2005	3		43 ± 5 (48)		
	4	61 ± 5 (32)	65 ± 5 (224)	62 ± 4 (61)	62 ± 4 (382)
	5	74 ± 5 (6)	54 ± 0 (1)	71 ± 3 (11)	
	6				
2006	3	45 ± 3 (3)	43 ± 3 (73)		
	4	64 ± 3 (7)	62 ± 6 (91)	63 ± 5 (41)	60 ± 4 (227)
	5	74 ± 6 (8)	75 ± 6 (17)	71 ± 4 (26)	71 ± 4 (37)
	6				
2007	3	39 ± 3 (5)	45 ± 6 (90)		50 ± 3 (7)
	4	60 ± 4 (4)	66 ± 5 (45)	61 ± 4 (10)	63 ± 3 (142)
	5	78 ± 6 (15)	76 ± 5 (8)	74 ± 3 (20)	73 ± 5 (12)
	6				
2008	3	43 ± 0 (1)	44 ± 5 (22)		
	4	65 ± 4 (9)	64 ± 6 (73)	62 ± 4 (26)	64 ± 4 (229)
	5	65 ± 5 (3)	79 ± 5 (10)	73 ± 3 (4)	72 ± 3 (5)
	6				
2009	3	45 ± 3 (8)	46 ± 6 (68)		65 ± 0 (1)
	4	64 ± 4 (38)	65 ± 5 (136)	63 ± 3 (67)	64 ± 4 (202)
	5	79 ± 0 (1)		72 ± 2 (4)	71 ± 4 (10)
	6				

Contribution to Fisheries

Nearly all the harvest on Chiwawa spring Chinook occurs within the Columbia Basin. Ocean catch records (Pacific Fishery Management Council) indicate that virtually no Upper Columbia spring Chinook are taken in ocean fisheries. Most of the harvest on Chiwawa spring Chinook occurs in the Lower Columbia River fisheries, which are managed by the states and tribes pursuant to management plans developed in U.S. v Oregon. The Lower Columbia River fisheries occur during what is referred to in U.S. v Oregon as the winter, spring, and summer seasons, which begin in February and ends July 31 of each year. The Tribal fishery occurs upstream from Bonneville Dam, but primarily in Zone 6, the area between Bonneville and McNary dams; the non-treaty commercial fisheries occur in Zones 1-5, which are downstream from Bonneville Dam. The non-treaty recreational (sport) fishery occurs in the lower mainstem.
The total number of spring Chinook captured in different fisheries has been relatively low (Table 5.31). Relatively larger numbers of spring Chinook were taken from the 1997 and 1998 brood years, because those brood years produced large escapements.

Table 5.31. Estimated number and percent (in parentheses) of Chiwawa spring Chinook captured in different fisheries; NP = no hatchery program.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational ${ }^{\text {a }}$ (sport)	
1989	3 (13)	5 (21)	0 (0)	16 (67)	24
1990	0 (0)	0 (0)	0 (0)	18 (100)	18
1991	0 (0)	3 (100)	0 (0)	0 (0)	3
1992	0 (0)	1 (100)	0 (0)	0 (0)	1
1993	3 (75)	1 (25)	0 (0)	0 (0)	4
1994	0 (0)	0 (0)	0 (0)	0 (0)	0
1995	NP	NP	NP	NP	NP
1996	0 (0)	1 (50)	1 (50)	0 (0)	2
1997	1 (0)	193 (51)	68 (18)	115 (31)	377
1998	9 (5)	47 (24)	12 (6)	126 (65)	194
1999	NP	NP	NP	NP	NP
2000	0 (0)	17 (74)	0 (0)	6 (26)	23
2001	17 (46)	8 (22)	1 (3)	11 (30)	37
2002	12 (17)	11 (15)	22 (31)	26 (37)	71
2003	21 (27)	20 (26)	11 (14)	26 (33)	78

${ }^{\text {a }}$ Includes the Wanapum fishery.

Straying

Stray rates were determined by examining CWTs recovered on spawning grounds within and outside the Wenatchee Basin. Targets for strays based on return year (recovery year) within the Wenatchee Basin should be less than 10% and targets for strays outside the Wenatchee Basin should be less than 5%. The target for brood year stray rates should be less than 5%.
Rates of Chiwawa spring Chinook straying into non-target spawning areas within the Wenatchee Basin have been high in some years and exceeded the target of 10\% (Table 5.32). They have strayed into spawning areas on Nason Creek, the White River, the Little Wenatchee River, and the Upper Wenatchee River. On average, stray rates are typically highest in Nason Creek and the Upper Wenatchee River. Stray rates of Chiwawa spring Chinook should decrease with the change in source water that was implemented in 2006 for the Chiwawa rearing ponds.

Table 5.32. Number and percent of spawning escapement in other non-target spawning streams within the Wenatchee Basin that consisted of Chiwawa spring Chinook, return years 1992-2007. For example, for return year 2001, 24.4% of the spring Chinook spawning escapement in Nason Creek consisted of Chiwawa spring Chinook. Percent strays should be less than 10%.

Return year	Nason Creek		Icicle Creek		Upper Wenatchee		White River		Little Wenatchee	
	Number	\%								
1992	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1993	61	12.4	0	0.0	34	18.0	7	4.8	0	0.0

Return year	Nason Creek		Icicle Creek		Upper Wenatchee		White River		Little Wenatchee	
	Number	\%								
1994	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1995	0	0.0	0	0.0	2	66.7	0	0.0	0	0.0
1996	25	30.1	0	0.0	0	0.0	0	0.0	0	0.0
1997	55	45.1	8	11.0	0	0.0	0	0.0	0	0.0
1998	3	4.7	0	0.0	0	0.0	0	0.0	0	0.0
1999	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2000	45	18.4	0	0.0	31	34.4	0	0.0	6	27.3
2001	211	24.4	0	0.0	271	53.8	46	19.2	52	30.4
2002	188	31.2	10	2.0	60	45.8	14	16.3	21	24.4
2003	14	6.9	0	0.0	30	51.7	0	0.0	0	0.0
2004	139	27.4	0	0.0	54	39.1	1	1.5	0	0.0
2005	252	72.6	7	50.0	256	99.6	106	68.4	65	56.5
2006	131	48.3	13	14.4	28	58.3	9	16.4	12	32.4
2007	303	65.4	0	0.0	36	65.5	7	7.6	6	5.9
Total	1,427	35.0	38	2.6	802	51.5	190	19.6	162	20.8

Rates of Chiwawa spring Chinook straying into basins outside the Wenatchee have been low (Table 5.33). Chiwawa spring Chinook have strayed into the Methow and Entiat basins. During return year 2002, their stray rate exceeded the target of 0.05 in the Entiat Basin. Stray rates of Chiwawa spring Chinook should decrease with the change in source water that was implemented in 2006 for the Chiwawa rearing ponds.

Table 5.33. Number and percent of spawning escapements within other non-target basins that consisted of Chiwawa spring Chinook, return years 1992-2007. For example, for return year 2002, 12.6\% of the spring Chinook spawning escapement in the Entiat Basin consisted of Chiwawa spring Chinook. Percent strays should be less than 5%. NS = not sampled; NA = not available.

Return year	Methow Basin		Entiat Basin	
	Number	\%	Number	\%
1992	0	0.0	0	0.0
1993	0	0.0	0	0.0
1994	0	0.0	0	0.0
1995	0	0.0	0	0.0
1996	NS	NS	0	0.0
1997	0	0.0	0	0.0
1998	NS	0	0.0	0
1999	0	0.0	0	0.0
2000	0	0.0	1	0.0
2001	0	0.0	34	0.2
2002				12.6

Return year	Methow Basin		Entiat Basin	
	Number	\%	Number	\%
2003	0	0.0	0	0.0
2004	0	0.0	0	0.0
2005	10	0.7	4	1.1
2006	8	0.5	8	3.1
2007	9	0.8	4	1.6
Total	27	$\mathbf{0 . 1}$	$\mathbf{5 2}$	$\mathbf{1 . 6}$

On average, about 33\% of the returns have strayed into non-target spawning areas, exceeding the target of 5\% (Table 5.34). Depending on brood year, percent strays into non-target spawning areas have ranged from $0-81 \%$. Few ($<1 \%$) have strayed into non-target hatchery programs. Stray rates of Chiwawa spring Chinook should decrease with the change in source water that was implemented in 2006 for the Chiwawa rearing ponds.
Table 5.34. Number and percent of Chiwawa spring Chinook that homed to target spawning areas and the target hatchery program, and number and percent that strayed to non-target spawning areas and non-target hatchery programs, by brood years 1989-2003. Percent stays should be less than 5%.

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1989	58	35.4	1	0.6	102	62.2	3	1.8
1990	0	0.0	1	100.0	0	0.0	0	0.0
1991	29	87.9	0	0.0	2	6.1	2	6.1
1992	2	6.5	4	12.9	25	80.6	0	0.0
1993	134	47.5	82	29.1	63	22.3	3	1.1
1994	4	19.0	14	66.7	3	14.3	0	0.0
1995	No program							
1996	58	75.3	7	9.1	12	15.6	0	0.0
1997	1,242	55.6	298	13.4	687	30.8	5	0.2
1998	553	55.8	109	11.0	329	33.2	0	0.0
1999	No program							
2000	144	41.9	115	33.4	85	24.7	0	0.0
2001	647	35.8	276	15.3	878	48.6	4	0.2
2002	314	48.0	210	32.1	129	19.7	1	0.2
2003	555	80.0	11	1.6	123	17.7	5	0.7
Total	3,740	51.0	1,128	15.4	2,438	33.3	23	0.3

Genetics

Genetic studies were conducted to determine the potential impacts of the Chiwawa Supplementation Program on natural origin spring Chinook in the upper Wenatchee Basin (Blankenship et al. 2007; the entire report is appended as Appendix I). Microsatellite DNA allele frequencies collected from temporally replicated natural and hatchery origin spring Chinook were used to statistically assign individual fish to specific demes (locations) within the Wenatchee population. In addition, genetic effects of the hatchery program were assessed by examining relationships between census and effective population sizes $\left(\mathrm{N}_{\mathrm{e}}\right)$ from samples collected before and after supplementation.

Overall, this work showed that although allele frequencies within and between natural and hatchery origin spring Chinook were significantly different, there was no evidence (i.e., robust signal) that the difference was the result of the hatchery program. Rather, the differences were more likely the result of life history characteristics. However, there was an increasing trend toward homogenization of the allele frequencies of the natural and hatchery origin fish that comprised the broodstock, even though there was consistent year-to-year variation in allele frequencies among hatchery and natural origin fish. In addition, there were no robust signals indicating that hatchery-origin hatchery broodstock, hatchery-origin natural spawners, natural-origin hatchery broodstock, and natural-origin natural spawners were substantially different from each other. Finally, the N_{e} estimate of 387 was only slightly larger than the pre-hatchery N_{e} (based on demographic data from 1989-1992), which means that the Chiwawa hatchery program has not reduced the N_{e} of the Wenatchee spring Chinook population.

Significant differences in allele frequencies were observed within and among major spawning areas in the Upper Wenatchee Basin. However, these differences made up only a very small portion of the overall variation, indicating genetic similarity among the major spawning areas. There was no evidence that the Chiwawa program has changed the genetic structure (allele frequency) of spring Chinook in Nason Creek and the White River, despite the presence of hatchery origin spawners in both systems.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 1989-1996, the PNI was greater than 0.50, indicating that the natural environment had a greater influence on adaptation of Chiwawa spring Chinook than did the hatchery environment (Table 5.35). For brood years 1997-2008, however, the PNI was generally less than 0.50 , indicating that the hatchery environment had a greater influence on adaptation than did the natural environment.

Table 5.35. Proportionate natural influence (PNI) of the Chiwawa spring Chinook supplementation program for brood years 1989-2008. PNI was calculated as the proportion of naturally produced Chinook in the hatchery broodstock (pNOB) divided by the proportion of hatchery Chinook on the spawning grounds (pHOS) plus pNOB. NOS = number of natural origin Chinook on the spawning grounds; HOS = number of hatchery origin Chinook on the spawning grounds; $\mathrm{NOB}=$ number of natural origin Chinook collected for broodstock; and HOB = number of hatchery origin Chinook included in hatchery broodstock.

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1989	713	0	0.00	28	0	1.00	1.00
1990	571	0	0.00	18	0	1.00	1.00
1991	242	0	0.00	27	0	1.00	1.00
1992	676	0	0.00	78	0	1.00	1.00
1993	76	157	0.67	94	0	1.00	0.60
1994	132	52	0.28	8	4	0.67	0.70
1995	6	26	0.81	No Program			
1996	53	5	0.08	8	10	0.44	0.84
1997	74	108	0.59	32	79	0.29	0.33
1998	52	39	0.43	13	34	0.28	0.39
1999	71	23	0.25	No Program			
2000	203	109	0.35	9	21	0.30	0.46
2001	680	1,810	0.73	113	259	0.30	0.29
2002	220	487	0.69	20	51	0.28	0.29
2003	165	105	0.39	41	53	0.44	0.53
2004	582	276	0.32	83	132	0.39	0.55
2005	135	463	0.77	91	181	0.33	0.30
2006	116	412	0.78	91	224	0.29	0.27
2007	192	1,104	0.85	43	104	0.29	0.26
2008	201	956	0.83	83	220	0.27	0.25
Average	258	307	0.54	49	76	0.39	0.42

Natural and Hatchery Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population (spawning escapement). For brood years 1989-2002, NRR for spring Chinook in the Chiwawa averaged 0.46 (range, $0.00-4.23$) if harvested fish were not include in the estimate and 0.50 (range, 0.00-4.69) if harvested fish were included in the estimate (Table 5.36). NRRs for more recent brood years will be calculated as soon as all tag recoveries and sampling rates have been loaded into the database.

Hatchery replacement rates (HRR) are the hatchery adult-to-adult returns and were calculated as the ratio of hatchery origin recruits (HOR) to the parent broodstock collected. These rates should be greater than the NRRs and greater than or equal to 5.30 (the calculated target value in Murdoch and

Peven 2005). In nearly all years, HRRs were greater than NRRs, regardless if harvest was or was not included (Table 5.36). HRRs exceeded the estimated target value of 5.3 in five of the 14 years.
Table 5.36. Broodstock collected, spawning escapements, natural and hatchery origin recruits (NOR and HOR), and natural and hatchery replacement rates (NRR and HRR; with and without harvest) for spring Chinook in the Chiwawa Basin, brood years 1989-2002; NP = no hatchery program.

Brood year	Broodstock Collected	Spawning Escapement	Harvest not included				Harvest included			
			HOR	NOR	HRR	NRR	HOR	NOR	HRR	NRR
1989	28	713	164	169	5.86	0.24	188	246	6.71	0.35
1990	19	571	1	44	0.05	0.08	19	52	1.00	0.09
1991	32	242	33	0	1.03	0.00	36	0	1.13	0.00
1992	113	676	31	50	0.27	0.07	32	53	0.28	0.08
1993	100	233	282	153	2.82	0.66	286	157	2.86	0.67
1994	13	184	21	44	1.62	0.24	21	45	1.62	0.24
1995	NP	33	NP	51	NP	1.55	NP	53	NP	1.61
1996	18	58	77	188	4.28	3.24	79	205	4.39	3.53
1997	120	182	2,232	769	18.60	4.23	2,609	853	21.74	4.69
1998	48	91	991	295	20.65	3.24	1,185	311	24.69	3.42
1999	NP	94	NP	10	NP	0.11	NP	11	NP	0.12
2000	48	312	344	714	7.17	2.29	367	529	7.65	2.34
2001	382	2,490	1,805	286	4.73	0.11	1,842	291	4.82	0.12
2002	84	707	654	255	7.79	0.36	725	265	8.63	0.37
Average	84	470	553	216	6.60	0.46	616	234	7.40	0.50

Smolt-to-Adult Survivals

Smolt-to-adult survival ratios (SARs) were calculated as the number of hatchery adults divided by the number of hatchery smolts released. SARs were based on CWT returns. For the available brood years, SARs have ranged from 0.00036 to 0.01562 for hatchery spring Chinook (Table 5.37).
Table 5.37. Smolt-to-adult ratios (SARs) for Chiwawa hatchery spring Chinook, brood years 1989-2003.

Brood year	Number of tagged smolts released	Estimated adult captures	SAR
1989	42,707	188	0.00440
1990	52,798	19	0.00036
1991	61,088	36	0.00059
1992	82,976	31	0.00037
1993	221,316	284	0.00128
1994	27,135	21	0.00077
1995	12,767	No hatchery program	
1996	67		

Brood year	Number of tagged smolts released	Estimated adult captures	SAR
1997	259,585	2,549	0.00982
1998	71,571	1,118	0.01562
1999		365	0.00781
2000	46,726	1,827	0.00488
2001	374,129	706	0.00487
2002	145,074	756	0.00349
2003	216,702	$\mathbf{6 1 3}$	$\mathbf{0 . 0 0 4 9 3}$
Average	$\mathbf{1 2 4 , 1 9 8}$		

5.8 ESA/HCP Compliance

Broodstock Collection

The collection of 2007 Brood Chiwawa River spring Chinook broodstock was consistent with the 2007 Upper Columbia River salmon and steelhead broodstock objectives and site-based broodstock collection protocols. Specifically, broodstock collection targeted hatchery origin fish at Tumwater Dam and the Chiwawa Weir, while only natural-origin spring Chinook were collected at the Chiwawa Weir. In-season adjustments were made to the number of hatchery and natural origin spring Chinook collected for bloodstock and were based on in-season escapement monitoring at Tumwater Dam and estimated Chiwawa run-escapement.

Broodstock collection at Tumwater Dam began 1 May 2007, concluded on 9 July 2007, and targeted hatchery-origin, coded-wire tagged spring Chinook. Collection was implemented concurrent with trapping, sampling, and tagging associated with the spring Chinook reproductive success study (BPA project No. 2003-039-00). Trapping at the Chiwawa Weir began on 6 June 2007 and concluded on 2 August 2007. Broodstock were collected between 4 July 2007 and 2 August 2007 and targeted natural-origin spring Chinook and hatchery-origin spring Chinook as needed to attain a minimum 33\% natural-origin broodstock and a maximum 33\% extraction of the estimated naturalorigin return to the Chiwawa River.

The BY 2007 brood collection retained a total of 169 spring Chinook, including 45 natural-origin fish, representing a 27% natural-origin broodstock. While the brood collection failed to meet the targeted 33% natural-origin composition primarily because of false negative wire detection at Chiwawa weir that underestimated the number of hatchery-origin Chinook retained.

Both passive (low abundance periods) and active (high abundance periods) trapping were used to collect spring Chinook at Tumwater Dam. During passive trapping, the trap was checked and fish were processed several times per day. At the Chiwawa Weir, the trap was operated passively, checked several times per day, and fish were processed once daily. Trapping at the Chiwawa Weir generally followed a four-up and three-down schedule, and operated only as needed to meet weekly collection objectives consistent with the 2007 collection protocol or as adjusted based on in-season run escapement monitoring and ESA Section 10 Permit 1196 requirements. All spring Chinook, steelhead, and bull trout that were captured were anesthetized with tricaine methanesulfonate (MS-
222) and subject to water-to-water transfers during handling. All fish were allowed to fully recover before release.

The estimated escapement of 2007 spring Chinook past Tumwater Dam totaled 3,490 adult and jack spring Chinook (Murdoch et al. 2008). In 2007, the Wenatchee Basin experienced severe drought conditions that likely adversely affected pre-spawn survival. Murdoch et al. (2008) estimated prespawn survival of natural and hatchery-origin spring Chinook migrating past Tumwater Dam at 58.9\%. Based on 2007 spawning ground data (redd and carcass surveys), an estimated 194 naturalorigin spring Chinook spawned in the Chiwawa River Basin (Table 5.34). Assuming the pre-spawn survival of Chiwawa River natural-origin spring Chinook was similar to the at-large population upstream from Tumwater Dam (58.9\%), combined with the 45 natural-origin Chinook extracted for broodstock, the natural-origin escapement to the Chiwawa Basin totaled 374 spring Chinook (i.e., $(194 / 0.589)+45=374)$. The 2007 broodstock retention of 169 spring Chinook (45 natural-origin and 124 hatchery-origin) represents 7% of the estimated 2007 Chiwawa spring Chinook escapement (12% of the wild Chiwawa escapement) to Tumwater Dam and 5.0% of the run escapement of spring Chinook upstream from Tumwater Dam. The estimated broodstock extraction rate of natural-origin Chiwawa spring Chinook and overall extraction of spring Chinook upstream from Tumwater Dam comply with provisions of ESA Permit 1196.

No additional spring Chinook were handled and released as a function of maintaining, at minimum, 33% natural-origin spring Chinook in the broodstock. About 69 bull trout were captured and released. To minimize fallback or impingement on the weir, all spring Chinook and bull trout were released unharmed about 10 km upstream from the weir.

Hatchery Rearing and Release

The rearing and release of 2007 Chiwawa spring Chinook was completed without incident. No mortality events occurred that exceeded 10% of the population. Fish were acclimated on Wenatchee River water and to the extent possible on Chiwawa River water (see Section 5.2).

The release of 2007 brood Chiwawa spring Chinook smolts totaled 296,048 spring Chinook, representing 45.5% of program objective and complied with ESA Section 10 Permit 1196 production level of 672,000 smolts.

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery facilities during the period 1 January 2009 through 31 December 2009. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2009 are provided in Appendix E.

Smolt and Emigrant Trapping

Per ESA Section 10 Permit No. 1196, the permit holders are authorized a direct take of 20% of the emigrating spring Chinook population during juvenile emigration monitoring and a lethal take not to exceed 2% of the fish captured (NMFS 2003). Based on the estimated wild spring Chinook population (smolt trap expansion) and hatchery juvenile spring Chinook population estimate (hatchery release data) for the Wenatchee Basin, the reported spring Chinook encounters during

2009 emigration monitoring complied with take provisions in the Section 10 permit. Spring Chinook encounter and mortality rates for each trap site (including PIT tag mortalities) are detailed in Table 5.38. Additionally, juvenile fish captured at the trap locations were handled consistent with provisions in ESA Section 10 Permit 1196, Section B.

Table 5.38 . Estimated take of Upper Columbia River spring Chinook resulting from juvenile emigration monitoring in the Wenatchee Basin, 2009.

Trap location	Population estimate			Number trapped			Total	Take allowed under Permit
	Wild ${ }^{\text {a }}$	Hatchery ${ }^{\text {b }}$	Subyearling ${ }^{\text {c }}$	Wild	Hatchery	Subyearling		
Chiwawa Trap								
Population	25,809	296,048	60,196	3,765	14,097	30,641	48,503	
Encounter rate	NA	NA	NA	0.1459	0.0476	0.5090	0.1270	0.20
Mortality ${ }^{\text {e }}$	NA	NA	NA	16	120	487	623	
Mortality rate	NA	NA	NA	0.0042	0.0085	0.0159	0.0128	0.02
Upper Wenatchee Trap								
Population	$N A^{\text {f }}$	142,033	$N A^{\text {f }}$	323	1,074	312	1,704	
Encounter rate	NA	NA	NA	NA	0.0076	NA	NA	0.20
Mortality ${ }^{\text {e }}$	NA	NA	NA	0	8	NA	8	
Mortality rate	NA	NA	NA	0.0000	0.0074	NA	0.0074	0.02
Lower Wenatchee Trap								
Population	60,219 ${ }^{\text {e }}$	438,081	NA	536	6,692	NA	7,228	
Encounter rate	NA	NA	NA	0.0089	0.0153	NA	0.0145	0.20
Mortality ${ }^{\text {e }}$	NA	NA	NA	2	9	NA	11	
Mortality rate	NA	NA	NA	0.0075	0.0013	NA	0.0015	0.02
Wenatchee Basin Total								
Population	60,219 ${ }^{\text {e }}$	438,081	NA	4,624	21,863	30,953	57,440	
Encounter rate	NA	NA	NA	0.0768	0.0499	NA	0.1153	0.20
Mortality ${ }^{\text {e }}$	NA	NA	NA	18	137	487	642	
Mortality rate	NA	NA	NA	0.0039	0.0063	0.0157	0.0112	0.02

${ }^{\text {a }}$ Smolt population estimate derived from juvenile emigration trap data.
${ }^{\mathrm{b}} 2008$ smolt release data for the Wenatchee Basin.
${ }^{\text {c }}$ Based on size, date of capture, and location of capture, subyearling Chinook encountered at the Lower Wenatchee Trap are categorized as summer Chinook.
${ }^{\mathrm{d}}$ Combined trapping and PIT tagging mortality.
${ }^{e}$ Expanded total Wenatchee Basin natural-origin spring Chinook smolt estimates based on the estimated Chiwawa smolt production and proportion of total redds in the Chiwawa Basin.
${ }^{\mathrm{f}}$ Insufficient numbers of natural-origin spring Chinook were encountered to derive a population estimate.

Spawning Surveys

Spring Chinook spawning ground surveys were conducted in the Wenatchee Basin during 2009, as authorized by ESA Section 10 Permit 1196. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds,
wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

Spring Chinook Reproductive Success Study

ESA Section 10 Permit 1196 specifically provides authorization to capture, anesthetize, biologically sample, PIT tag, and release adult spring Chinook at Tumwater Dam for reproductive success studies and general program monitoring. During 2007 through 2009, all spring Chinook passing Tumwater Dam were enumerated, anesthetize, biologically sampled, PIT tagged, and released (not including hatchery-origin Chinook retained for broodstock) as a component of the reproductive success study (BPA Project No. 2003-039-00). Please refer to Murdoch et al. (2006) and Murdoch et al. (2007) for complete details on the methods and results of the spring Chinook reproductive success study for 2005 and 2006.

SECTION 6: WENATCHEE SUMMER CHINOOK

6.1 Broodstock Sampling

This section focuses on results from sampling 2007-2008 Wenatchee summer Chinook broodstock, which were collected at Dryden and Tumwater dams. Complete information is not currently available for the 2009 brood (this information will be provided in the 2010 annual report).

Origin of Broodstock

Both the 2007 and 2008 broodstock consisted primarily of natural origin (adipose fin present) summer Chinook (Table 6.1). In order to meet production goals, hatchery origin adults were collected in concert with natural origin fish. About 15% of the 2008 broodstock was comprised of hatchery origin fish (hatchery origin was determined by examination of scales and/or CWTs).
Table 6.1. Numbers of wild and hatchery summer Chinook collected for broodstock, numbers that died before spawning, and numbers of Chinook spawned in the Wenatchee Basin, 1989-2008. Unknown origin fish (i.e., undetermined by scale analysis, no CWT or fin clips, and no additional hatchery marks) were considered naturally produced. Mortality includes fish that died of natural causes typically near the end of spawning and were not needed for the program and surplus fish killed at spawning.

Brood year	Wild summer Chinook					Hatchery summer Chinook					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
1989	346	29	27	290	0	0	0	0	0	0	290
1990	87	6	24	57	0	0	0	0	0	0	57
1991	128	9	14	105	0	0	0	0	0	0	105
1992	341	48	19	274	0	0	0	0	0	0	274
1993	480	28	46	406	0	44	0	0	44	0	450
1994	363	29	1	333	0	55	1	0	54	0	387
1995	382	15	4	363	0	16	0	0	16	0	378
1996	331	34	34	263	0	3	0	0	3	0	266
1997	225	14	6	205	0	15	1	1	13	0	218
1998	378	40	39	299	0	94	4	12	78	0	377
1999	250	7	1	242	0	238	1	1	236	0	478
2000	298	18	5	275	0	194	7	7	180	0	455
2001	311	41	60	210	0	182	8	38	136	0	346
2002	469	28	32	409	0	13	1	2	10	0	419
2003	488	90	61	337	0	8	1	0	7	0	344
2004	494	24	46	424	0	2	0	0	2	0	426
2005	491	29	19	397	46	3	0	0	3	0	400
2006	483	29	21	433	0	5	1	0	4	0	437
2007	415	53	99	263	0	4	0	1	3	0	266
2008	400	11	11	378	0	72	2	1	69	0	447
Average	358	29	28	298	2	47	1	3	43	0	341

Age/Length Data

Ages of summer Chinook broodstock were determined from analysis of scales and/or CWTs. Broodstock collected from the 2007 return consisted primarily of age- 5 natural origin Chinook (46\%). Age-3, 4, and 6 natural origin fish collectively made up 50% of the broodstock, while age- 2 , fish made up 4\% (Table 6.2). Of the four hatchery Chinook included in the broodstock, all were age5 fish.

Broodstock collected from the 2008 return consisted primarily of age-4 natural origin Chinook (65\%). Age-3, 5, and 6 natural origin fish collectively made up 34\% of the broodstock, while age-2 fish made up about 1% (Table 6.2). Of the 72 hatchery Chinook included in the broodstock, 69\% were age- 5 fish with age- 4 and 6 comprising 13% and 15%, respectively. About 3% of the hatchery broodstock were age-3 fish.
Table 6.2. Percent of hatchery and wild Wenatchee summer Chinook of different ages (total age) collected from broodstock in the Wenatchee Basin, 1991-2008.

Return Year	Origin	Total age				
		2	3	4	5	6
1991	Wild	0.0	4.6	36.8	57.5	1.1
	Hatchery	0.0	0.0	0.0	0.0	0.0
1992	Wild	0.0	2.6	40.4	50.9	6.1
	Hatchery	0.0	0.0	0.0	0.0	0.0
1993	Wild	0.0	1.5	36.0	60.3	2.2
	Hatchery	0.0	0.0	93.0	7.0	0.0
1994	Wild	0.0	1.0	33.7	64.3	1.0
	Hatchery	0.0	0.0	1.9	98.1	0.0
1995	Wild	0.0	3.3	18.9	76.6	1.2
	Hatchery	0.0	0.0	0.0	0.0	100.0
1996	Wild	0.0	4.6	40.1	53.3	2.0
	Hatchery	0.0	0.0	33.3	66.7	0.0
1997	Wild	0.0	2.3	42.6	53.2	1.9
	Hatchery	0.0	26.7	66.7	6.6	0.0
1998	Wild	0.0	5.5	34.8	58.6	1.1
	Hatchery	0.0	5.4	68.5	19.6	6.5
1999	Wild	0.5	1.9	39.0	56.3	2.4
	Hatchery	0.0	1.3	23.2	72.1	2.4
2000	Wild	2.6	6.3	24.6	66.5	0.0
	Hatchery	0.0	23.6	15.2	42.9	18.3
2001	Wild	0.3	16.4	53.9	27.7	1.7
	Hatchery	0.0	6.3	80.6	10.0	3.1
2002	Wild	1.6	8.4	61.1	28.3	0.6
	Hatchery	0.0	0.0	41.7	58.3	0.0
2003	Wild	0.9	2.8	31.4	64.9	0.0

Return Year	Origin	Total age				
		2	3	4	5	6
	Hatchery	0.0	12.5	25.0	62.5	0.0
2004	Wild	0.2	3.6	10.1	84.0	2.1
	Hatchery	0.0	0.0	50.0	50.0	0.0
2005	Wild	0.0	4.3	53.5	35.1	7.1
	Hatchery	0.0	0.0	0.0	100.0	0.0
2006	Wild	1.4	0.9	14.9	81.8	1.0
	Hatchery	0.0	0.0	0.0	80.0	20.0
2007	Wild	3.6	14.9	18.6	46.4	16.5
	Hatchery	0.0	0.0	0.0	100.0	0.0
2008	Wild	0.5	6.3	65.4	26.2	1.6
	Hatchery	0.0	3.0	13.2	69.1	14.7
Average	Wild	0.6	5.1	36.4	55.1	2.8
	Hatchery	0.0	4.4	28.5	46.8	9.2

Mean lengths of natural origin summer Chinook of a given age differed little between return years 2007 and 2008 (Table 6.3). Mean lengths of age-2 and 6 Chinook differed between years by about 3 cm and 4 cm , respectively. The few hatchery fish that were included in broodstock were about 5-9 cm smaller than their natural counterparts in the 2008 brood (Table 6.3).

Table 6.3. Mean fork length (cm) at age (total age) of hatchery and wild Wenatchee summer Chinook collected from broodstock in the Wenatchee Basin, 1991-2008; N = sample size and SD = 1 standard deviation.

Return year	Origin	Summer Chinook fork length (cm)														
		Age-2			Age-3			Age-4			Age-5			Age-6		
		Mean	N	SD												
1991	Wild	-	0	-	-	4	-	-	32	-	-	50	-	-	1	-
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-
1992	Wild	-	0	-	66	3	10	69	46	5	81	58	3	87	7	1
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-
1993	Wild	-	0	-	68	6	10	84	142	9	98	23 8	6	100	9	6
	Hatchery	-	0	-	-	0	-	79	41	8	101	3	8	-	0	-
1994	Wild	-	0	-	74	3	5	86	101	8	96	19 3	7	106	3	7
	Hatchery	-	0	-	-	0	-	75	1	-	90	53	8	-	0	-
1995	Wild	-	0	-	66	11	8	85	64	7	97	25 5	6	106	4	7
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-	91	16	8
1996	Wild	-	0	-	69	14	5	86	121	6	97	16 1	6	104	6	5
	Hatchery	-	0	-	-	0	-	63	1	-	96	2	4	-	0	-

Return year	Origin	Summer Chinook fork length (cm)														
		Age-2			Age-3			Age-4			Age-5			Age-6		
		Mean	N	SD												
1997	Wild	-	0	-	54	5	10	85	92	7	98	$\begin{gathered} 11 \\ 5 \end{gathered}$	7	97	4	9
	Hatchery	-	0	-	46	4	2	74	10	4	98	1	-	-	0	-
1998	Wild	-	0	-	66	19	9	85	120	7	99	$\begin{gathered} 20 \\ 1 \end{gathered}$	7	106	4	7
	Hatchery	-	0	-	53	5	2	77	63	8	95	19	8	98	6	8
1999	Wild	42	1	-	65	4	6	86	83	6	97	$\begin{gathered} 12 \\ 0 \end{gathered}$	7	103	5	8
	Hatchery	-	0	-	52	3	6	79	55	7	90	$\begin{gathered} 17 \\ 1 \end{gathered}$	6	100	8	6
2000	Wild	43	7	4	60	17	7	84	67	5	98	$\begin{gathered} 18 \\ 1 \end{gathered}$	6	-	0	-
	Hatchery	-	0	-	53	47	7	76	29	8	94	83	7	102	35	9
2001	Wild	48	1	-	66	48	7	88	155	7	97	80	6	102	5	3
	Hatchery	-	0	-	51	10	3	75	132	8	91	17	8	100	5	8
2002	Wild	48	7	4	64	37	8	89	270	7	100	$\begin{gathered} 12 \\ 5 \end{gathered}$	7	99	3	13
	Hatchery	-	0	-	-	0	-	78	5	8	95	7	5	-	0	-
2003	Wild	41	4	2	58	13	4	87	144	8	100	$\begin{gathered} 29 \\ 7 \end{gathered}$	7	-	0	-
	Hatchery	-	0	-	40	1	-	78	2	4	101	5	8	-	0	-
2004	Wild	51	1	-	69	17	5	84	47	8	99	$\begin{gathered} 39 \\ 2 \end{gathered}$	6	109	10	7
	Hatchery	-	0	-	-	0	-	84	1	-	108	1	-	-	0	-
2005	Wild	-	0	-	68	20	7	86	247	8	95	$\begin{gathered} 16 \\ 2 \end{gathered}$	6	101	33	6
	Hatchery	-	0	-	-	0	-	-	0	-	90	3	9	-	0	-
2006	Wild	44	6	6	63	4	11	88	66	7	99	$\begin{gathered} 36 \\ 3 \end{gathered}$	6	96	5	7
	Hatchery	-	0	-	-	0	-	-	0	-	99	4	7	100	1	-
2007	Wild	44	14	5	65	58	7	89	72	8	99	$\begin{gathered} 18 \\ 0 \end{gathered}$	7	102	64	6
	Hatchery	-	0	-	-	0	-	-	0	-	90	4	5	-	0	-
2008	Wild	46	2	3	69	24	7	90	247	6	98	99	7	105	6	9
	Hatchery	-	0	-	63	2	14	81	9	7	93	47	6	99	10	5

Sex Ratios

Male summer Chinook in the 2007 broodstock made up about 58% of the adults collected, resulting in an overall male to female ratio of 1.35:1.00 (Table 6.4.). In 2008, males made up about 50% of the adults collected, resulting in an overall male to female ratio of 1.01:1.00 (Table 6.4). The ratios in 2008 were nearly equal to the $1: 1$ ratio goal in the broodstock protocol.
Table 6.4. Numbers of male and female wild and hatchery summer Chinook collected for broodstock in the Wenatchee Basin, 1989-2008. Ratios of males to females are also provided.

Return year	Number of wild summer Chinook		Number of hatchery summer Chinook		Total M/F ratio		
	Males (M)	Females (F)	M/F	Males (M)	Females (F)	M/F	-
1989	166	180	$0.92: 1.00$	0	0	$0.92: 1.00$	
1990	45	39	$1.15: 1.00$	0	0	-	$1.15: 1.00$
1991	60	68	$0.88: 1.00$	0	0	-	$0.88: 1.00$
1992	154	187	$0.82: 1.00$	0	0	-	$0.82: 1.00$
1993	208	228	$0.91: 1.00$	35	9	$3.89: 1.00$	$1.03: 1.00$
1994	158	179	$0.88: 1.00$	24	31	$0.77: 1.00$	$0.87: 1.00$
1995	169	213	$0.79: 1.00$	1	15	$0.07: 1.00$	$0.75: 1.00$
1996	150	181	$0.83: 1.00$	2	1	$2.00: 1.00$	$0.84: 1.00$
1997	104	121	$0.86: 1.00$	15	0	-	$0.98: 1.00$
1998	211	167	$1.26: 1.00$	64	30	$2.13: 1.00$	$1.40: 1.00$
1999	130	120	$1.08: 1.00$	108	130	$0.83: 1.00$	$0.95: 1.00$
2000	153	145	$1.06: 1.00$	112	82	$1.37: 1.00$	$1.17: 1.00$
2001	187	124	$1.51: 1.00$	132	50	$2.64: 1.00$	$1.83: 1.00$
2002	266	203	$1.31: 1.00$	5	8	$0.63: 1.00$	$1.28: 1.00$
2003	270	218	$1.24: 1.00$	5	3	$1.67: 1.00$	$1.24: 1.00$
2004	230	264	$0.87: 1.00$	1	1	$1.00: 1.00$	$0.87: 1.00$
2005	291	200	$1.46: 1.00$	2	1	$2.00: 1.00$	$1.46: 1.00$
2006	237	246	$0.96: 1.00$	1	4	$0.25: 1.00$	$0.95: 1.00$
2007	239	176	$1.36: 1.00$	2	2	$1.00: 1.00$	$1.35: 1.00$
2008	208	192	$1.08: 1.00$	29	43	$0.67: 1.00$	$1.01: 1.00$
$\boldsymbol{T o t a l}$	3,636	3,451	$\mathbf{1 . 0 5 : 1 . 0 0}$	538	410	$\mathbf{1 . 3 1 : 1 . 0 0}$	$\mathbf{1} .08: 1.00$

Fecundity

Fecundities for the 2007 and 2008 returns of summer Chinook averaged 5,115 and 5,108 eggs per female, respectively (Table 6.5). These values are close to the overall average of 5,237 eggs per female. Mean observed fecundities for the 2007 and 2008 returns were above the expected fecundity of 5,000 eggs per female assumed in the broodstock protocol.
Table 6.5. Mean fecundity of wild, hatchery, and all female summer Chinook collected for broodstock in the Wenatchee Basin, 1989-2007; NA = not available.

Return year	Mean fecundity		
	Wild	Hatchery	Total
1989^{*}	NA	NA	5,280
1990^{*}	NA	NA	5,436
1991^{*}	NA	NA	4,333
1992^{*}	NA	NA	5,307
1993^{*}	NA	NA	5,177
1994^{*}	NA	NA	5,899

Return year	Mean fecundity		
	Wild	Hatchery	Total
1995^{*}	NA	NA	4,402
1996^{*}	NA	NA	4,941
1997	5,385	5,272	5,390
1998	5,393	4,825	5,297
1999	5,036	4,942	4,987
2000	5,464	5,403	5,441
2001	5,280	4,647	5,097
2002	5,502	5,027	5,484
2003	5,357	5,696	5,361
2004	5,372	6,681	5,377
2005	5,045	6,391	5,053
2006	5,126	5,633	5,133
2007	5,124	4,510	5,115
2008	5,147	4,919	5,108
Average	5,269	5,329	5,237

* Individual fecundities were not tracked with females until 1997.

6.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of $1,066,667$ eggs are required to meet the program release goal of 864,000 smolts. Between 1989 and 2008, the egg take goal was reached in six of those years (Table 6.6).
Table 6.6. Numbers of eggs taken from Wenatchee summer Chinook broodstock, 1989-2008.

Return year	Number of eggs taken
1989	829,012
1990	163,109
1991	247,000
1992	827,911
1993	$1,133,852$
1994	999,364
1995	949,531
1996	756,000
1997	554,617
1998	854,997
1999	$1,182,130$

Return year	Number of eggs taken
2000	$1,113,159$
2001	733,882
2002	$1,049,255$
2003	901,095
2004	$1,311,051$
2005	883,669
2006	$1,190,757$
2007	655,201
2008	$1,145,330$
Average	$\mathbf{8 7 4 , 0 4 6}$

Number of acclimation days

The 2007 brood Wenatchee summer Chinook were transferred to Dryden Pond on 30-31March 2009. These fish received 29-30 days of acclimation on Wenatchee River water before being released on 29 April 2009 (Table 6.7). In recent years, a small proportion of the brood (high ELISA fish) has been reared separately and received no acclimation (i.e., these fish were released directly into the Wenatchee River). These data are not shown in Table 6.7. One such release occurred on 21 April 2008 into the Wenatchee River near Leavenworth.

Table 6.7. Number of days Wenatchee summer Chinook were acclimated at Dryden Pond, brood years 19892007. Numbers in parenthesis represents the number of days fish reared at Chiwawa Ponds.

Brood year	Release year	Transfer date	Release date	Number of days
1989	1991	2-Mar	7-May	66
1990	1992	19-Feb	2-May	73
1991	1993	10-Mar	8-May	59
1992	1994	1-Mar	6-May	66
1993	1995	3-Mar	1-May	59
1994	1996	2-Oct	6-May	217 (154)
		5-Mar	6-May	62
1995	1997	16-Oct	8-May	205 (139)
		27-Feb	8-May	70
1996	1998	6-Oct	28-Apr	204 (142)
		25-Feb	28-Apr	62
1997	1999	23-Feb	27-Apr	63
1998	2000	5-Mar	1-May	57
1999	2001	8-Mar	23-Apr	46

Brood year	Release year	Transfer date	Release date	Number of days
2000	2002	$1-\mathrm{Mar}$	6-May	66
2001	2003	$19-\mathrm{Feb}$	$23-\mathrm{Apr}$	63
2002	2004	$5-\mathrm{Mar}$	$23-\mathrm{Apr}$	49
2003	2005	$15-\mathrm{Mar}$	$25-\mathrm{Apr}$	41
2004	2006	$25-\mathrm{Mar}$	$27-\mathrm{Apr}$	33
2005	2007	15-Mar	$30-\mathrm{Apr}$	46
2006	2008	$11-14-\mathrm{Mar}$	$28-\mathrm{Apr}$	$45-48$
2007	2009	$30-31-\mathrm{Mar}$	$29-\mathrm{Apr}$	$29-30$

Release Information

Numbers released

The 2007 Wenatchee summer Chinook program achieved 53% of the 864,000 target goal with about 456,805 fish being released (Table 6.8). The shortage was related to an insufficient number of broodstock, insufficient females in the broodstock, low survival of females to spawning, and low unfertilized-to-eyed egg survival.

Table 6.8. Numbers of Wenatchee summer Chinook smolts released from the hatchery, 1989-2007. The release target for Wenatchee summer Chinook is 864,000 smolts.

Brood year	Release year	CWT mark rate	Number of smolts released
1989	1991	0.2013	720,000
1990	1992	0.9597	124,440
1991	1993	0.9957	191,179
1992	1994	0.9645	627,331
1993	1995	0.9881	900,429
1994	1996	0.9697	797,350
1995	1997	0.9725	687,439
1996	1998	0.9758	600,127
1997	1999	0.9913	438,223
1998	2000	0.9869	649,612
1999	2001	0.9728	$1,005,554$
2000	2002	0.9723	929,496
2001	2003	0.9868	604,668
2002	2004	0.9644	835,645
2003	2005	0.9778	653,764
2004	2006	0.9698	892,926
2005	2007	0.9596	644,182
2006	2008	0.9676	$51,550^{\mathrm{a}}$

Brood year	Release year	CWT mark rate	Number of smolts released			
		0.9676	899,107			
2007	2009	0.9768	456,805			
Average					$\mathbf{0 . 9 3 4 4}$	$\mathbf{6 6 8 , 9 3 8}$

${ }^{\text {a }}$ Represents high Elisa group planted directly in the Wenatchee River at Leavenworth Boat Launch.

Numbers tagged

The 2007 brood Wenatchee summer Chinook were 97.7\% CWT and adipose fin-clipped, but were not PIT tagged (Table 6.8).

Fish size and condition at release

About 456,805 summer Chinook from the 2007 brood were forced release from Dryden Pond on 29 April 2009. Size at release was 92.6% and 109.5% of the target fork length and weight goals, respectively. This brood year exceeded the target CV for length by 140.0% (Table 6.9). Since the program began, Wenatchee summer Chinook have not met the target length and CV values. The target weight (fish/pound or FPP) of juvenile fish has been met occasionally.

Table 6.9. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Wenatchee summer Chinook smolts released from the hatchery, brood years 1989-2007; NA = not available. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (cm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1989	1991	158	13.7	45.4	10
1990	1992	155	14.2	45.4	10
1991	1993	156	15.5	42.3	11
1992	1994	152	13.1	40.1	10
1993	1995	149	NA	34.9	13
1994	1996	138	NA	21.7	21
1995	1997	149	12.2	42.5	11
1996	1998	151	16.6	43.2	10
1997	1999	154	10.1	42.8	11
1998	2000	166	9.7	29.1	9
1999	2001	137	16.1	37.1	16
2000	2002	148	14.6	38.9	12
2001	2003	148	NA	37.3	12
2002	2004	146	15.1	36.5	14
2003	2005	147	13.2	35.4	12
2004	2006	147	10.7	40.6	13
2005	2007	153	136	21.5	49.7
2006	2008	163	21.6	16	
2007	2009				9

Brood year	Release year	Fork length (cm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
Targets		176	9.0	45.4	10

Survival Estimates

Overall survival of the 2007 brood Wenatchee summer Chinook from green (unfertilized) egg to release was below the standard set for the program because of poor unfertilized-to-eye egg survival (Table 6.10). Additionally, low survival of females to spawn resulted in falling short of egg-take goals.
Table 6.10. Hatchery life-stage survival rates (\%) for Wenatchee summer Chinook, brood years 1989-2007. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	$\begin{gathered} \text { Eyed } \\ \text { egg- } \\ \text { ponding } \end{gathered}$		$100 \mathrm{~d}$afterponding	$\begin{aligned} & \text { Ponding } \\ & \text { to } \\ & \text { release } \end{aligned}$	Transport to release	Unfertilized egg-release
	Female	Male							
1989	90.0	93.4	90.9	97.0	99.7	99.3	98.5	99.4	86.9
1990	89.7	95.6	80.9	96.6	99.6	99.2	97.7	98.8	76.3
1991	88.2	98.3	86.9	96.1	99.3	98.5	94.9	98.1	77.4
1992	84.3	92.2	79.8	97.8	99.9	99.9	97.1	98.1	75.8
1993	92.4	95.9	84.2	97.5	99.6	99.3	96.7	98.8	79.4
1994	90.7	95.3	83.7	100	99.2	97.0	95.3	98.4	79.8
1995	94.7	98.2	86.0	100	96.7	96.4	74.9	90.8	72.4
1996	84.6	96.1	84.1	100	97.9	97.7	94.4	97.7	79.4
1997	89.3	98.3	82.6	97.3	97.1	96.9	98.3	98.2	79.0
1998	85.3	94.6	80.9	98.3	99.4	98.6	95.6	99.8	76.0
1999	98.4	98.3	90.4	97.9	98.1	97.9	96.2	99.4	85.1
2000	93.0	96.6	88.3	98.0	99.6	99.3	96.5	98.9	83.5
2001	87.4	91.5	90.6	97.7	99.8	99.6	93.1	93.3	82.4
2002	93.8	94.1	85.1	99.8	98.1	97.6	93.7	96.5	79.6
2003	77.4	85.1	80.5	98.1	99.6	99.1	91.9	93.5	72.6
2004	92.8	97.8	85.7	87.8	99.9	99.6	86.6	92.1	65.1
2005	97.3	89.6	83.5	98.0	99.7	99.4	89.1	99.5	72.9
2006	92.4	95.2	85.6	98.4	99.3	98.4	94.8	97.2	79.8
2007	73.6	97.5	73.7	97.9	99.5	98.7	96.6	99.1	69.7
Standard	90.0	85.0	92.0	98.0	97.0	93.0	90.0	95.0	81.0

6.3 Disease Monitoring

Rearing of the 2007 brood Wenatchee summer Chinook was similar to previous years with fish being held on well water before being transferred to Dryden Pond for final acclimation in March 2009. Fish were transferred to Dryden pond from 30 to 31 March. Increased mortality caused by
external fungus began to occur during the acclimation period at Dryden pond. Because of the close proximity to the scheduled release time, no treatment was suggested or initiated.
Results of adult broodstock bacterial kidney disease (BKD) monitoring indicated that most females (96.1\%) had ELISA values less than 0.199. About 95\% of females had ELISA values less than 0.120 , which would require about 5% of the progeny to be reared at densities not to exceed 0.06 fish per pound (Table 6.11).

Table 6.11. Proportion of bacterial kidney disease (BKD) titer groups for the Wenatchee summer Chinook broodstock, brood years 1997-2009. Also included are the proportions to be reared at either 0.125 fish per pound or 0.060 fish per pound.

Brood year $^{\mathbf{2}}$	Optical density values by titer group				Proportion at rearing densities (fish per pound, fpp)	
	Very Low $\mathbf{(\leq \mathbf { 0 . 0 9 9 })}$	Low $\mathbf{(0 . 1 - 0 . 1 9 9)}$	Moderate $(\mathbf{0 . 2 - 0 . 4 4 9)}$	High $(\geq \mathbf{0 . 4 5 0})$	$\leq \mathbf{0 . 1 2 5} \mathbf{\text { fpp }}$ $(<\mathbf{0 . 1 1 9)}$	$\leq \mathbf{0 . 0 6 0} \mathbf{~ f p p}$ $(>\mathbf{0 . 1 2 0}$
1997	0.7714	0.0857	0.0381	0.1048	0.8095	0.1905
1998	0.3067	0.2393	0.1656	0.2883	0.4479	0.5521
1999	0.9590	0.0123	0.0123	0.0164	0.9713	0.0287
2000	0.6268	0.1053	0.1627	0.1053	0.7321	0.2679
2001	0.6513	0.0263	0.0987	0.2237	0.6776	0.3224
2002	0.7868	0.0457	0.0711	0.0964	0.8325	0.1675
2003	0.9825	0.0000	0.0058	0.0117	0.9825	0.0175
2004	0.9593	0.0081	0.0163	0.0163	0.9675	0.0325
2005	0.9833	0.0056	0.0000	0.0111	0.9833	0.0167
2006	0.9134	0.0563	0.0000	0.0303	0.9351	0.0649
2007	0.9535	0.0078	0.0078	0.0310	0.9535	0.0465
2008	0.9868	0.0088	0.0044	0.0000	0.9868	0.0132
2009	0.9957	0.0000	0.0000	0.0043	0.9957	0.0043
Average	0.8367	0.0462	0.0448	0.0723	0.8673	0.1327

${ }^{\text {a }}$ Individual ELISA samples were not collected before the 1997 brood.

6.4 Natural Juvenile Productivity

During 2009, juvenile summer Chinook were sampled at the Lower Wenatchee Trap located at the West Monitor Bridge.

Emigrant Estimates

The Lower Wenatchee Trap operated nightly between 19 February and 5 August 2009. During that time period, trap 1 and trap 2 were inoperable for 13 and 35 days, respectively, because of high river flows, debris, snow/ice, or mechanical failure. During the six-month sampling period, a total of 37,568 wild subyearling Chinook were captured at the Lower Wenatchee Trap. Based on capture efficiencies estimated from the flow model, the total number of wild subyearling Chinook that emigrated past the Lower Wenatchee Trap was 4,699,396 ($\pm 2,860,918$). Most of these fish emigrated
during June (Figure 6.1). Monthly captures and mortalities of all fish collected at the Lower Wenatchee Trap are reported in Appendix B.

Figure 6.1. Numbers of wild subyearling Chinook captured at the Lower Wenatchee Trap during February to August, 2009.

6.5 Spawning Surveys

Surveys for Wenatchee summer Chinook redds were conducted from late September to midNovember, 2009, in the Wenatchee River and Icicle Creek. Both peak counts and total counts (based on expansion factors; Murdoch and Peven 2005) were conducted in the river (see Appendix G for more details).

Redd Counts

A peak count of 2,667 summer Chinook redds was estimated in 2009 based on ground surveys conducted in the Wenatchee River and Icicle Creek (Table 6.12). A total redd count of 3,420 redds was estimated in 2009 based on expanded peak counts and 2,919 based on the naïve expansion method in the Wenatchee Basin (Table 6.12).

Table 6.12. Peak and total numbers of redds counted in the Wenatchee River, 1989-2009; NA = not available. Total counts are based on two different methods: expanded peak counts and naïve expansion methods (see Appendix G for more information).

Survey year	Peak redd count	Total redd count	
		Peak expansion	Naïve expansion
1989	3,331	NA	NA
1990	2,479	NA	NA
1991	2,180	NA	NA

Survey year	Peak redd count	Total redd count	
		Peak expansion	Naïve expansion
1992	2,328	NA	NA
1993	2,334	NA	NA
1994	2,426	NA	NA
1995	1,872	NA	NA
1996	1,435	NA	NA
1997	1,388	NA	NA
1998	1,660	NA	NA
1999	2,188	NA	NA
2000	2,022	NA	NA
2001	2,857	NA	NA
2002	5,419	NA	NA
2003	4,328	NA	NA
2004	3,764	5,804	NA
2005	3,327	NA	NA
2006*	7,233	8,896	NA
2007*	1,870	1,970	NA
2008*	1,158	2,800	2,658
2009*	2,667	3,420	2,919
Average	2,775	4,578	2,789

* Peak and total counts include 68, 13, and 23 redds counted in Icicle Creek in 2006, 2007, and 2008, respectively.

Redd Distribution

Summer Chinook redds were not evenly distributed among reaches within the Wenatchee Basin in 2009 (Table 6.13; Figure 6.2). Most of the spawning occurred upstream from the Leavenworth Bridge in Reaches 6, 9, and 10. The highest density of redds occurred in Reach 6 near the confluence of the Icicle River.

Table 6.13. Peak and total numbers of summer Chinook redds counted in different reaches in the Wenatchee Basin during September through mid-November, 2009. Reach codes are described in Table 2.10.

Survey reach	Peak redd count	Total redd count	
		Peak expansion	Naïve expansion
Wenatchee 1	12	15	14
Wenatchee 2	58	98	59
Wenatchee 3	120	184	134
Wenatchee 4	70	116	116
Wenatchee 5	60	76	26
Wenatchee 6	841	1,076	949
Wenatchee 7	235	284	227
Wenatchee 8	183	243	267

Survey reach	Peak redd count	Total redd count	
		Peak expansion	Naïve expansion
Wenatchee 9	690	811	548
Wenatchee 10	378	517	579
Icicle Creek	NA	NA	NA
Totals	2,647	3,420	2,919

Wenatchee Summer Chinook Redds

Figure 6.2. Percent of the total number (based on peak expansion) of summer Chinook redds counted in different reaches in the Wenatchee Basin during September through mid-November, 2009. Reach codes are described in Table 2.10.

Spawn Timing

In 2009, spawning in the Wenatchee River began during the first week of October, peaked the second week of October, and ended in early November (Figure 6.3).

Figure 6.3. Number of new summer Chinook redds counted during different weeks in the Wenatchee River, September through mid-November 2009 (based on mapping counts).

Spawning Escapement

Spawning escapement for Wenatchee summer Chinook was calculated as the total (or peak) number of redds times the fish per redd ratio estimated from broodstock and fish sampled at adult trapping sites. The estimated fish per redd ratio for summer Chinook in 2009 was 2.42 . Multiplying this ratio by the number of redds counted in the Wenatchee Basin resulted in a total spawning escapement of 8,276 summer Chinook (Table 6.14).

Table 6.14. Spawning escapements for summer Chinook in the Wenatchee Basin, return years 19892009.

Return year	Fish/Redd	Redds	Total spawning escapement
1989	3.40	3,331	11,325
1990	3.50	2,479	8,677
1991	3.70	2,180	8,066
1992	4.00	2,328	9,312
1993	3.20	2,334	7,469
1994	3.30	2,426	8,006
1995	3.30	1,872	6,178
1996	3.40	1,435	4,879
1997	3.40	1,388	4,719
1998	2.40	1,660	3,984
1999	2.00	2,188	4,376
2000	2.17	2,022	4,388
2001	3.20	2,857	9,142

Return year	Fish/Redd	Redds	Total spawning escapement
2002	2.30	5,419	12,464
2003	2.24	4,328	9,695
2004	2.15	3,764	8,093
2005	2.46	3,327	8,184
2006	2.00	$8,896^{\mathrm{a}}$	17,792
2007	2.33	$1,970^{\mathrm{a}}$	4,590
2008	2.32	$2,800^{\mathrm{a}}$	6,496
2009	2.42	$3,420^{\mathrm{a}}$	8,276
Average	2.82	2,667	7,910

${ }^{\text {a }}$ These are total counts based on expanded peak counts. All others are peak counts.

6.6 Carcass Surveys

Surveys for Wenatchee summer Chinook carcasses were conducted during late September to midNovember, 2009, in the Wenatchee River and Icicle Creek.

Number sampled

A total of 1,026 summer Chinook carcasses were sampled during October through mid-November in the Wenatchee Basin in 2009 (Table 6.15).

Table 6.15. Numbers of summer Chinook carcasses sampled within each survey reach in the Wenatchee Basin, 1993-2009. Reach codes are described in Table 2.10.

Survey year	Number of summer Chinook carcasses											
	W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	W-10	Icicle	Total
1993	61	138	627	12	77	141	202	38	0	0	0	1,296
1994	0	6	22	1	17	48	18	47	125	1	0	285
1995	0	10	14	0	0	111	49	36	19	0	0	239
1996	0	5	67	39	9	190	26	30	41	0	0	407
1997	1	44	118	4	28	288	7	71	67	13	0	641
1998	6	74	141	3	0	248	28	346	324	59	0	1,229
1999	0	160	97	15	31	857	61	133	171	72	0	1,597
2000	7	109	165	7	79	651	75	111	159	193	0	1,556
2001	0	45	127	26	0	323	33	110	87	81	0	832
2002	0	238	170	0	196	809	0	306	520	155	6	2,400
2003	6	323	164	61	132	673	56	237	482	47	36	2,217
2004	8	141	181	157	158	975	87	312	428	366	5	2,818
2005	8	85	106	39	46	707	70	140	353	257	7	1,818
2006	22	140	160	64	112	953	435	343	703	658	18	3,608
2007	3	15	49	9	26	475	38	38	96	91	8	848
2008	10	34	63	36	36	678	47	42	103	143	8	1,200
2009	11	29	43	32	27	389	16	58	240	175	6	1,026

$\begin{aligned} & \text { Survey } \\ & \text { year } \end{aligned}$	Number of summer Chinook carcasses											
	W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	W-10	Icicle	Total
Averag e	8	94	136	30	57	501	73	141	230	136	6	1,413

Carcass Distribution and Origin

Summer Chinook carcasses were not evenly distributed among reaches within the Wenatchee Basin in 2009 (Table 6.15; Figure 6.4). Most of the carcasses in the Wenatchee Basin were found upstream from the Leavenworth Bridge. The highest percentage of carcasses (38\%) was sampled in Reach 6 near the confluence of the Icicle River.

Wenatchee Summer Chinook Carcasses

Figure 6.4. Percent of summer Chinook carcasses sampled within different reaches in the Wenatchee Basin during September through mid-November, 2009. Reach codes are described in Table 2.10.

Numbers of wild and hatchery origin summer Chinook carcasses sampled in 2009 will be available after analysis of CWTs and scales. Based on the available data (1993-2008), most fish, regardless of origin, were found in Reach 6 (Leavenworth Bridge to Icicle Road Bridge) (Table 6.16). However, a larger percentage of hatchery fish were found in that reach than were wild fish (Figure 6.5). In contrast, a larger percentage of wild fish were found in reaches upstream from the Icicle Road Bridge.

Table 6.16. Numbers of wild and hatchery summer Chinook carcasses sampled within different reaches in the Wenatchee Basin, 1993-2008.

Survey year	Origin	Survey reach											Total
		W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	W-10	Icicle	
1993	Wild	52	133	591	11	77	124	200	37	0	0	0	1,225
	Hatchery	9	5	36	1	0	17	2	1	0	0	0	71
1994	Wild	0	2	15	1	15	34	18	47	124	1	0	257
	Hatchery	0	4	7	0	2	14	0	0	1	0	0	28
1995	Wild	0	4	11	0	0	99	49	34	19	0	0	216
	Hatchery	0	6	3	0	0	12	0	2	0	0	0	23
1996	Wild	0	5	65	37	8	181	26	30	41	0	0	393
	Hatchery	0	0	2	2	1	9	0	0	0	0	0	14
1997	Wild	1	35	104	4	21	242	7	71	66	13	0	564
	Hatchery	0	9	14	0	7	46	0	0	1	0	0	77
1998	Wild	6	55	106	2	0	169	25	325	297	56	0	1,041
	Hatchery	0	19	35	1	0	79	3	21	27	3	0	188
1999	Wild	0	79	55	7	14	525	51	124	155	68	0	1,078
	Hatchery	0	81	42	8	17	332	10	9	16	4	0	519
2000	Wild	4	68	102	6	51	443	68	100	154	186	0	1,182
	Hatchery	3	41	63	1	28	208	7	11	5	7	0	374
2001	Wild	0	33	88	4	0	230	29	108	83	78	0	653
	Hatchery	0	12	39	22	0	93	4	2	4	3	0	179
2002	Wild	0	140	110	0	94	440	0	295	514	150	4	1,747
	Hatchery	0	98	60	0	102	369	0	11	6	5	2	653
2003	Wild	5	218	118	21	94	425	52	223	445	46	11	1,658
	Hatchery	1	105	46	40	38	248	4	14	37	1	25	559
2004	Wild	7	108	151	102	97	640	74	282	416	357	0	2,234
	Hatchery	1	33	30	55	61	335	13	30	12	9	5	584
2005	Wild	4	49	78	24	26	397	66	125	336	243	0	1,348
	Hatchery	4	36	28	15	20	310	4	15	17	14	7	470
2006	Wild	16	108	133	46	80	753	426	336	700	654	5	3,257
	Hatchery	6	32	27	18	32	200	9	7	3	4	13	351
2007	Wild	1	9	29	2	16	241	36	37	96	91	3	561
	Hatchery	2	6	20	7	10	234	2	1	0	0	5	287
2008	Wild	7	17	39	25	21	404	43	35	102	142	2	869
	Hatchery	3	17	24	11	15	272	4	7	2	1	6	130
Average	Wild	6	66	112	18	38	334	73	138	222	130	2	1,143
	Hatchery	2	32	30	11	21	174	4	8	8	3	4	282

Wenatchee Summer Chinook

Figure 6.5. Distribution of wild and hatchery produced carcasses in different reaches in the Wenatchee Basin, 1993-2008. Reach codes are described in Table 2.10.

Sampling Rate

If escapement is based on total numbers of redds (based on peak expansion), then about 12% of the total spawning escapement of summer Chinook in the Wenatchee Basin was sampled in 2009 (Table 6.17). Sampling rates among survey reaches varied from 2 to 31%.

Table 6.17. Number of redds and carcasses, total spawning escapement, and sampling rates for summer Chinook in the Wenatchee Basin, 2009.

Sampling reach	Total number of redds	Total number of carcasses	Total spawning escapement	Sampling rate
Wenatchee 1	15	11	36	0.31
Wenatchee 2	98	29	237	0.12
Wenatchee 3	184	43	445	0.10
Wenatchee 4	116	32	281	0.11
Wenatchee 5	76	27	184	0.15
Wenatchee 6	1,076	389	2,604	0.15
Wenatchee 7	284	16	687	0.02
Wenatchee 8	243	58	588	0.10
Wenatchee 9	811	240	1,963	0.12
Wenatchee 10	517	175	1,251	0.14
Icicle Creek	NA	6	NA	NA
Total	3,420	1,026	8,276	0.12

Length Data

Mean lengths ($\mathrm{POH}, \mathrm{cm}$) of male and female summer Chinook carcasses sampled during surveys in the Wenatchee Basin in 2009 are provided in Table 6.18. The average size of males and females sampled in the Wenatchee basin were 68 cm and 72 cm , respectively.
Table 6.18. Mean lengths (postorbital-to-hypural length; cm) and standard deviations (in parentheses) of male and female summer Chinook carcasses sampled in different streams/watersheds in the Wenatchee Basin, 2009.

Stream/watershed	Mean length (cm)	
	Male	Female
Wenatchee 1	70.0 (11.4)	69.2 (4.3)
Wenatchee 2	69.6 (11.4)	68.6 (6.5)
Wenatchee 3	70.4 (11.1)	71.2 (5.9)
Wenatchee 4	68.5 (13.9)	74.8 (4.1)
Wenatchee 5	67.6 (10.2)	71.2 (7.1)
Wenatchee 6	63.6 (11.5)	71.0 (5.9)
Wenatchee 7	69.8 (17.0)	72.5 (5.9)
Wenatchee 8	70.4 (8.4)	73.7 (4.4)
Wenatchee 9	69.2 (11.1)	73.4 (5.6)
Wenatchee 10	65.2 (11.2)	72.8 (4.6)
Icicle Creek	NA	NA
Total	68.4 (11.7)	71.8 (5.4)

6.7 Life History Monitoring

Life history characteristics of Wenatchee summer Chinook were assessed by examining carcasses on spawning grounds and fish collected or examined at broodstock collection sites, and by reviewing tagging data and fisheries statistics.

Migration Timing

Migration timing of hatchery and wild Wenatchee summer Chinook was determined from broodstock data and stock assessment data collected at Dryden Dam. Sampling at Dryden Dam occurs from early July through mid-October. During that period, wild summer Chinook arrived about 1-2 weeks before hatchery Chinook in 2009 (Table 6.19). This was true throughout the migration period. This pattern was also observed when data were pooled for the 2007-2009 survey period.

Table 6.19. The week that $10 \%, 50 \%$ (median), and 90% of the wild and hatchery summer Chinook salmon passed Dryden Dam, 2007-2009. The average week is also provided. Migration timing is based on collection of summer Chinook broodstock at Dryden Dam.

Survey year	Origin	Wenatchee Summer Chinook Migration Time (week)			Sample size	
		$\mathbf{1 0}$ Percentile	$\mathbf{5 0}$ Percentile	$\mathbf{9 0}$ Percentile		
2007	Wild	28	31	37	31	274
	Hatchery	30	33	41	35	305
2008	Wild	29	31	40	32	219
	Hatchery	32	37	41	37	576
2009	Wild	27	29	41	31	469
	Hatchery	28	34	42	35	382
Average	Wild	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 9}$	$\mathbf{3 1}$	$\mathbf{3 2 1}$
	Hatchery	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{4 1}$	$\mathbf{3 6}$	$\mathbf{4 2 1}$

Age at Maturity

Most of the wild and hatchery summer Chinook sampled during the period 1993-2008 in the Wenatchee Basin were age-5 fish (total age) (Table 6.20; Figure 6.6). A higher percentage of age-4 wild Chinook returned to the basin than did age-4 hatchery Chinook. In contrast, a higher proportion of age-6 hatchery fish returned than did age-6 wild fish. Thus, a higher percentage of hatchery fish returned at an older age than did wild fish.

Table 6.20. Proportions of wild and hatchery summer Chinook of different ages (total age) sampled on spawning grounds in the Wenatchee Basin, 1993-2008.

Sample year	Origin	Total age						
		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Sample size
1993	Wild	0.00	0.03	0.42	0.55	0.00	0.00	1,224
	Hatchery	0.00	0.03	0.91	0.06	0.00	0.00	69
1994	Wild	0.01	0.03	0.44	0.52	0.00	0.00	257
	Hatchery	0.00	0.00	0.12	0.88	0.00	0.00	25
1995	Wild	0.00	0.03	0.19	0.74	0.05	0.00	216
	Hatchery	0.00	0.00	0.00	0.05	0.95	0.00	22
1996	Wild	0.00	0.02	0.36	0.60	0.02	0.00	513
	Hatchery	0.00	0.00	0.45	0.18	0.27	0.09	22
1997	Wild	0.00	0.01	0.38	0.57	0.03	0.00	562
	Hatchery	0.00	0.05	0.20	0.66	0.08	0.00	74
1998	Wild	0.00	0.03	0.34	0.62	0.01	0.00	1,041
	Hatchery	0.00	0.03	0.51	0.40	0.06	0.00	187
1999	Wild	0.00	0.01	0.43	0.55	0.01	0.00	1,087
	Hatchery	0.00	0.01	0.16	0.81	0.03	0.00	512
2000	Wild	0.01	0.04	0.27	0.68	0.00	0.00	1,182

Sample year	Origin	Total age						Sample size
		2	3	4	5	6	7	
	Hatchery	0.00	0.07	0.12	0.65	0.15	0.00	342
2001	Wild	0.00	0.08	0.59	0.32	0.01	0.00	653
	Hatchery	0.00	0.05	0.76	0.15	0.04	0.00	182
2002	Wild	0.00	0.03	0.66	0.31	0.00	0.00	1,747
	Hatchery	0.00	0.01	0.19	0.78	0.02	0.00	643
2003	Wild	0.00	0.02	0.34	0.64	0.00	0.00	1,649
	Hatchery	0.00	0.06	0.11	0.75	0.09	0.00	522
2004	Wild	0.00	0.06	0.13	0.80	0.01	0.00	2,234
	Hatchery	0.00	0.09	0.57	0.25	0.09	0.00	561
2005	Wild	0.00	0.04	0.60	0.32	0.04	0.00	1,186
	Hatchery	0.00	0.02	0.10	0.86	0.02	0.00	451
2006	Wild	0.00	0.01	0.15	0.84	0.01	0.00	2,972
	Hatchery	0.00	0.02	0.17	0.26	0.55	0.00	299
2007	Wild	0.01	0.08	0.20	0.62	0.10	0.00	479
	Hatchery	0.00	0.01	0.15	0.76	0.06	0.03	275
2008	Wild	0.01	0.05	0.74	0.20	0.00	0.00	766
	Hatchery	0.01	0.01	0.16	0.72	0.10	0.00	331
Average	Wild	0.00	0.03	0.36	0.59	0.01	0.00	1,111
	Hatchery	0.00	0.04	0.25	0.61	0.10	0.00	282

Wenatchee Summer Chinook

Figure 6.6. Proportions of wild and hatchery summer Chinook of different total ages sampled at broodstock collection sites and on spawning grounds in the Wenatchee Basin for the combined years 1993-2008.

Size at Maturity

On average, hatchery summer Chinook were about 4 cm smaller than wild summer Chinook sampled in the Wenatchee Basin (Table 6.21). This is interesting given that a slightly higher percentage of hatchery fish returned as age-5 and 6 fish than did wild fish. Future analyses will compare sizes of hatchery and wild fish of the same age groups and gender.
Table 6.21. Mean lengths ($\mathrm{POH} ; \mathrm{cm}$) and variability statistics for wild and hatchery summer Chinook sampled in the Wenatchee Basin, 1993-2008; SD = 1 standard deviation.

Sample year	Origin	Sample size	Summer Chinook length (POH; cm)			
			Mean	SD	Minimum	Maximum
1993	Wild	1,344	73	8	33	94
	Hatchery	68	61	9	37	83
1994	Wild	276	73	8	31	89
	Hatchery	25	70	8	54	85
1995	Wild	225	75	7	48	87
	Hatchery	23	74	7	57	85
1996	Wild	210	74	7	43	92
	Hatchery	9	66	12	52	84
1997	Wild	615	74	8	29	99
	Hatchery	78	69	10	29	83
1998	Wild	1,179	73	8	28	97
	Hatchery	188	67	10	37	87
1999	Wild	1,218	72	8	29	95
	Hatchery	518	71	8	26	94
2000	Wild	1,302	71	10	24	94
	Hatchery	369	69	11	33	91
2001	Wild	730	70	9	30	93
	Hatchery	179	63	10	28	86
2002	Wild	1,914	72	8	39	94
	Hatchery	653	71	8	34	95
2003	Wild	1,950	74	9	24	105
	Hatchery	546	69	10	26	97
2004	Wild	2,571	72	9	32	98
	Hatchery	580	59	11	25	91
2005	Wild	1,352	69	7	41	92
	Hatchery	469	69	8	39	91
2006	Wild	3,249	74	6	29	99
	Hatchery	350	71	9	35	90
2007	Wild	566	73	9	29	92
	Hatchery	269	70	7	45	87
2008	Wild	836	69	8	29	89

Sample year	Origin	Sample size	Summer Chinook length (POH; cm)			
			Mean	SD	Minimum	Maximum
	Hatchery	363	70	9	24	94
Pooled	Wild	1,221	72	8	24	105
	Hatchery	293	68	9	24	97

Contribution to Fisheries

Most of the harvest on Wenatchee summer Chinook occurred in the ocean (Table 6.22). Ocean harvest has made up 50% to 100% of all Wenatchee summer Chinook harvested. Total harvest on early brood years (1990-1993) was lower than for later brood years (1997-2003).

Table 6.22. Estimated number and percent (in parentheses) of Wenatchee summer Chinook captured in different fisheries.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones $\mathbf{1 - 5})$	Recreational (sport)	
1989	$1,461(50)$	$1,432(49)$	$0(0)$	$20(1)$	2,913
1990	$30(100)$	$0(0)$	$0(0)$	$0(0)$	30
1991	$30(63)$	$0(0)$	$0(0)$	$18(38)$	48
1992	$151(79)$	$39(21)$	$0(0)$	$0(0)$	190
1993	$40(62)$	$25(38)$	$0(0)$	$0(0)$	65
1994	$650(91)$	$62(9)$	$2(0)$	$0(0)$	714
1995	$559(98)$	$9(2)$	$5(1)$	$0(0)$	573
1996	$195(96)$	$3(1)$	$0(0)$	$6(3)$	204
1997	$3,028(95)$	$45(1)$	$16(1)$	$106(3)$	3,195
1998	$4,973(92)$	$128(2)$	$16(0)$	$287(5)$	5,404
1999	$1,580(84)$	$168(9)$	$21(1)$	$105(6)$	1,874
2000	$7,939(73)$	$1,236(11)$	$447(4)$	$1,223(11)$	10,845
2001	$1,056(60)$	$238(14)$	$106(6)$	$362(21)$	1,762
2002	$1,489(57)$	$537(20)$	$189(7)$	$413(16)$	2,628
2003	$818(65)$	$128(10)$	$75(6)$	$240(19)$	1,261

Straying

Stray rates were determined by examining CWTs recovered on spawning grounds within and outside the Wenatchee Basin. Targets for strays based on return year (recovery year) and brood year should be less than 5\%.

On average, rates of Wenatchee summer Chinook straying into basins outside the Wenatchee have been low (Table 6.23). Although Wenatchee summer Chinook have strayed into other spawning areas, straying has generally been less than 5%. In four different years, Wenatchee strays have made up more than 5% of the spawning escapement in the Methow Basin and Chelan tailrace. Wenatchee
strays have made up more than 5\% of spawning escapement in the Entiat Basin in three different years.

Table 6.23. Number and percent of spawning escapements within other non-target basins that consisted of Wenatchee summer Chinook, return years 1994-2006. For example, for return year 2000, 3% of the summer Chinook escapement in the Methow Basin consisted of Wenatchee summer Chinook. Percent strays should be less than 5%.

Return year	Methow		Okanogan		Chelan		Entiat		Hanford Reach	
	Number	\%								
1994	0	0.0	75	1.9	-	-	-	-	-	-
1995	0	0.0	0	0.0	-	-	-	-	-	-
1996	0	0.0	0	0.0	-	-	-	-	-	-
1997	0	0.0	0	0.0	-	-	-	-	-	-
1998	25	3.7	0	0.0	0	0.0	0	0.0	0	0.0
1999	20	2.0	3	0.1	0	0.0	0	0.0	13	0.1
2000	36	3.0	13	0.4	0	0.0	0	0.0	0	0.0
2001	163	5.9	57	0.5	30	3.0	0	0.0	0	0.0
2002	153	3.3	53	0.4	40	6.9	74	14.8	0	0.0
2003	80	2.0	24	0.7	44	10.5	132	19.1	26	0.0
2004	113	5.2	42	0.6	30	7.1	0	0.0	0	0.0
2005	245	9.6	67	0.8	51	11.5	49	13.4	0	0.0
2006	170	6.2	12	0.1	12	2.9	18	3.1	0	0.0
Total	1,005	4.0	346	0.5	207	5.0	273	8.4	39	0.0

On average, about 11% of the Wenatchee summer Chinook returns have strayed into non-target spawning areas, exceeding the target of 5\% (Table 6.24). Depending on brood year, percent strays into non-target spawning areas have ranged from 0-19\%. In addition, on average, about 5.6% have strayed into non-target hatchery programs, but straying into non-target programs has declined steadily over time.

Table 6.24. Number and percent of Wenatchee summer Chinook that homed to target spawning areas and the target hatchery program, and number and percent that strayed to non-target spawning areas and non-target hatchery programs, by brood years 1989-2003. Percent stays should be less than 5\%.

$*$ Brood year	Homing				Straying			
	Number	\%	Number	\%	Number	\%	Number	\%
	1,352	62.9	60	2.8	75	3.5	662	30.8
1990	74	84.1	1	1.1	0	0.0	13	14.8
1991	14	60.9	1	4.3	0	0.0	8	34.8
1992	375	84.8	7	1.6	0	0.0	60	13.6
1993	67	72.8	9	9.8	4	4.3	12	13.0
1994	890	71.8	205	16.5	56	4.5	88	7.1

$*$ Brood year	Target stream				Target hatchery		Non-target streams				Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%				
1995	748	74.8	139	13.9	42	4.2	71	7.1				
1996	261	70.4	42	11.3	53	14.3	15	4.0				
1997	3,609	85.6	171	4.1	396	9.4	38	0.9				
1998	1,790	78.5	11	0.5	416	18.2	64	2.8				
1999	507	79.7	0	0.0	121	19.0	8	1.3				
2000	2,745	83.0	0	0.0	526	15.9	37	1.1				
2001	521	82.0	0	0.0	105	16.5	9	1.4				
2002	1,521	85.3	10	0.6	244	13.7	8	0.4				
2003	1,197	89.0	41	3.0	98	7.3	9	0.7				
Total	$\mathbf{1 5 , 6 7 1}$	79.9	$\mathbf{6 9 7}$	$\mathbf{3 . 6}$	$\mathbf{2 , 1 3 6}$	$\mathbf{1 0 . 9}$	$\mathbf{1 , 1 0 2}$	5.6				

Genetics

Tissue (operculum) samples were collected from 144 wild and 144 hatchery summer Chinook in the Wenatchee Basin in 2008. Results from genetic samples should be available in 2010.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 1989-2008, the PNI was consistently greater than 0.5 (Table 6.25). This indicates that the natural environment has a greater influence on adaptation of Wenatchee summer Chinook than does the hatchery environment.

Table 6.25. Proportionate natural influence (PNI) of the Wenatchee summer Chinook supplementation program for brood years 1989-2007. PNI was calculated as the proportion of naturally produced Chinook in the hatchery broodstock (pNOB) divided by the proportion of hatchery Chinook on the spawning grounds (pHOS) plus pNOB. NOS = number of natural origin Chinook on the spawning grounds; HOS = number of hatchery origin Chinook on the spawning grounds; NOB = number of natural origin Chinook collected for broodstock; and HOB = number of hatchery origin Chinook included in hatchery broodstock.

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1989	11,325	0	0.00	290	0	1.00	1.00
1990	8,677	0	0.00	57	0	1.00	1.00
1991	8,066	0	0.00	105	0	1.00	1.00
1992	9,312	0	0.00	274	0	1.00	1.00
1993	6,974	495	0.07	406	44	0.90	0.93
1994	6,673	1,333	0.17	333	54	0.86	0.84
1995	5,474	704	0.11	363	16	0.96	0.89
1996	4,748	131	0.03	263	3	0.99	0.97
1997	4,306	413	0.09	205	13	0.94	0.91
1998	3,321	663	0.17	299	78	0.79	0.83
1999	3,209	1,167	0.27	242	236	0.51	0.65
2000	3,521	867	0.20	275	180	0.60	0.75
2001	6,301	2,841	0.31	210	136	0.61	0.66
2002	9,368	3,096	0.25	409	10	0.98	0.80
2003	8,010	1,579	0.16	337	7	0.98	0.86
2004	6,993	1,099	0.14	424	2	1.00	0.88
2005	6,373	1,812	0.22	397	3	0.99	0.82
2006	16,064	1,728	0.10	433	4	0.99	0.91
2007	3,174	1,416	0.31	263	3	0.99	0.76
2008	4,798	1,698	0.26	378	69	0.85	0.76
Average	$\mathbf{6 , 8 3 4}$	$\mathbf{1 , 0 5 2}$	$\boldsymbol{0 . 1 3}$	298	43	$\boldsymbol{0 . 8 7}$	$\boldsymbol{0} 9.87$

Natural and Hatchery Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population (spawning escapement). For brood years 1989-2002, NRR for summer Chinook in the Wenatchee averaged 0.87 (range, 0.30-2.97) if harvested fish were not include in the estimate and 2.57 (range, 0.59-10.01) if harvested fish were included in the estimate (Table 6.26). NRRs for more recent brood years will be calculated as soon as all tag recoveries and sampling rates have been loaded into the database.

Hatchery replacement rates (HRR) are the hatchery adult-to-adult returns and were calculated as the ratio of hatchery origin recruits (HOR) to the parent broodstock collected. These rates should be greater than the NRRs and greater than or equal to 5.30 (the calculated target value in Murdoch and

Peven 2005). HRRs exceeded NRRs in 10 of the 14 years of data, regardless if harvest was or was not included in the estimate (Table 6.26). Hatchery replacement rates for Wenatchee summer Chinook have exceeded the estimated target value of 5.30 in three or five of the 14 years of data depending on if harvest was or was not included in the estimate.
Table 6.26. Broodstock collected, spawning escapements, natural and hatchery origin recruits (NOR and HOR), and natural and hatchery replacement rates (NRR and HRR; with and without harvest) for summer Chinook in the Wenatchee Basin, brood years 1989-2002.

Brood year	Broodstock Collected	Spawning Escapement $^{\mathbf{a}}$	HOR				NOR	HRR	NRR	HOR	NOR
1989	346		2,149	10,077	6.21	0.67	5,062	23,711	14.63	1.57	
1990	87	11,540	88	10,444	1.01	0.91	118	14,133	1.36	1.22	
1991	128	10,728	23	5,890	0.18	0.55	71	18,179	0.55	1.69	
1992	341	12,385	442	6,104	1.30	0.49	632	8,695	1.85	0.70	
1993	524	9,934	92	5,395	0.18	0.54	157	9,448	0.30	0.95	
1994	418	10,648	1,239	4,041	2.96	0.38	1,953	6,304	4.67	0.59	
1995	398	8,216	1,000	5,270	2.51	0.64	1,573	8,083	3.95	0.98	
1996	334	6,489	371	4,439	1.11	0.68	595	6,787	1.72	1.05	
1997	240	6,277	4,214	9,844	17.56	1.57	7,409	17,120	30.87	2.73	
1998	472	5,299	2,281	15,747	4.83	2.97	7,685	53,020	16.28	10.01	
1999	488	5,820	636	12,124	1.30	2.08	2,510	48,496	5.14	8.33	
2000	492	5,836	3,308	4,536	6.72	0.78	14,153	19,385	28.77	3.32	
2001	493	12,159	635	20,012	1.29	1.65	2,397	82,694	4.86	6.80	
2002	482	16,577	1,783	4,961	3.70	0.30	4,411	36,478	9.15	2.20	
Average	375	$\mathbf{9 , 7 8 4}$	$\mathbf{1 , 3 0 4}$	$\mathbf{8 , 4 9 2}$	3.48	$\mathbf{0 . 8 7}$	3,480	$\mathbf{2 5 , 1 8 1}$	$\mathbf{9 . 2 9}$	2.57	

${ }^{\text {a }}$ Spawning escapements presented here differ from those presented in Table 6.14, which identifies escapements based on peak ground counts. Escapements identified here represent expanded peak counts (peak counts time 1.33).

Smolt-to-Adult Survivals

Smolt-to-adult survival ratios (SARs) were calculated as the number of hatchery adults divided by the number of hatchery smolts released. SARs were based on CWT returns. For the available brood years, SARs have ranged from 0.00037 to 0.01696 for hatchery summer Chinook in the Wenatchee basin (Table 6.27).

Table 6.27. Smolt-to-adult ratios (SARs) for Wenatchee hatchery summer Chinook, brood years 1989-2003.

Brood year	Number of tagged smolts released	Estimated adult captures	SAR
1989	144,905	1,017	0.00702
1990	119,214	115	0.00096
1991	190,371	71	0.00037
1992	605,055	617	0.00102
1993	210,626	157	0.00075

Brood year	Number of tagged smolts released	Estimated adult captures	SAR
1994	452,340	1,928	0.00426
1995	668,409	1,539	0.00230
1996	585,590	567	0.00097
1997	434,645	7,371	0.01696
1998	641,109	7,610	0.01187
1999	988,328	2,487	0.00252
2000	903,368	13,801	0.01528
2001	596,618	2,382	0.00399
2002	805,919	4,282	0.00531
2003	639,381	2,568	0.00402
Average	532,392	3,101	$\mathbf{0 . 0 0 5 8 2}$

6.8 ESA/HCP Compliance

Broodstock Collection

Per the 2007 broodstock collection protocol, 492 natural-origin (adipose fin present) summer Chinook adults were targeted for collection at Dryden and Tumwater dams. Because of low wild fish abundance and low trap efficiency at Dryden Dam, the actual 2007 collection totaled 419 summer Chinook. Collection at Dryden Dam began 2 July 2007 and concluded 5 September 2007 and accounted for the entire 2007 BY broodstock collection.

Summer Chinook and steelhead broodstock collections occurred concurrently at Dryden Dam; therefore, steelhead and spring Chinook encounters at Dryden Dam during Wenatchee summer Chinook broodstock collection were attributable to steelhead broodstock collections authorized under ESA Permit 1395 take authorizations. No steelhead or spring Chinook takes were associated with the Wenatchee summer Chinook collection.

Consistent with impact minimization measures in ESA Permit 1347, all ESA-listed species handled during summer Chinook broodstock collection were subject to water-to-water transfers or anesthetized if removed from water during handling.

Hatchery Rearing and Release

The 2007 Wenatchee summer Chinook program released an estimated 456,805 smolts, representing 53% of the 864,000 programmed production and was within a 10% overage allowance identified in ESA permit 1347.

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery
facilities during the period 1 January 2009 through 31 December 2009. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2009 are provided in Appendix E.

Smolt and Emigrant Trapping

ESA-listed spring Chinook and steelhead were encountered during operation of the Lower Wenatchee Trap. ESA takes are reported in the steelhead (Section 3.8) and spring Chinook (Section 5.8) sections and are not repeated here.

Spawning Surveys

Summer Chinook spawning ground surveys conducted in the Wenatchee Basin during 2009 were consistent with ESA Section 10 Permit No. 1347. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

SECTION 7: METHOW SUMMER CHINOOK

7.1 Broodstock Sampling

This section focuses on results from sampling 2007-2008 Methow summer Chinook broodstock, which were collected in the East Ladder of Wells Dam. Summer Chinook adults collected at Wells Dam are also used in the Okanogan/Similkameen supplementation program. Complete information is not currently available for the 2009 return (this information will be provided in the 2010 annual report).

Origin of Broodstock

Both 2007 and 2008 broodstock consisted almost entirely of natural origin (adipose fin present) summer Chinook (Table 7.1). These fish were used for both the Methow and Okanogan supplementation programs. In 2008, to meet production goals, hatchery origin adults were collected in concert with natural origin fish. About 9% of the 2008 broodstock were comprised of hatchery origin fish (hatchery origin was determined by examination of scales and CWTs).
Table 7.1. Numbers of wild and hatchery summer Chinook collected for broodstock, numbers that died before spawning, and numbers of Chinook spawned for the Methow/Okanogan programs, 1989-2008. Unknown origin fish (i.e., undetermined by scale analysis, no CWT or fin clips, and no additional hatchery marks) were considered naturally produced. Mortality includes fish that died of natural causes typically near the end of spawning and were not needed for the program and surplus fish killed at spawning.

Brood year	Wild summer Chinook					Hatchery summer Chinook					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
$1989{ }^{\text {a }}$	1,419	72	-	1,297	-	341	17	-	312	-	1,609
$1990^{\text {a }}$	864	34	-	828	-	214	8	-	206	-	1,034
1991 ${ }^{\text {a }}$	1,003	59	-	924	-	341	20	-	314	-	1,238
$1992^{\text {a }}$	312	6	-	297	-	428	9	-	406	-	703
$1993{ }^{\text {a }}$	813	48	-	681	-	464	28	-	388	-	1,069
1994	385	33	11	341	12	266	15	7	244	1	585
1995	254	13	10	173	58	351	28	9	240	74	413
1996	316	15	11	290	0	234	2	9	223	0	513
1997	214	11	5	198	0	308	24	20	264	0	462
1998	239	28	58	153	0	348	18	119	211	0	364
1999	248	5	19	224	0	307	2	16	289	0	513
2000	184	15	5	164	0	373	17	17	339	0	503
2001	135	8	36	91	0	423	29	128	266	0	357
2002	270	2	21	247	0	285	11	33	241	0	488
2003	449	14	53	381	0	112	2	9	101	0	482
2004	541	23	12	506	0	17	0	1	16	0	522
2005	551	29	76	391	55	12	2	0	9	1	400
2006	579	50	10	500	19	12	2	0	10	0	510
2007	504	22	26	456	0	19	0	2	17	0	473
2008	418	5	9	404	0	41	0	0	41	0	445

Brood year	Wild summer Chinook					Hatchery summer Chinook					Total number spawned
	Number collected	Prespawn loss	Mortality	Number spawne d	Number released	Number collected	Prespawn loss	Mortality	Number spawned	Number released	
Average ${ }^{\text {b }}$	352	18	24	301	10	207	10	25	167	5	469

${ }^{\text {a }}$ Number of fish spawned and collected during these years included fish retained from the right- and left-bank ladder traps at Wells Dam and fish collected from the volunteer channel. There was no distinction made between fish collected at trap locations and program (i.e., aggregated population used for Wells, Methow, and Okanogan summer Chinook programs).
${ }^{\mathrm{b}}$ Because of bias from aggregating the spawning population from 1989-1993, averages are based on adult numbers collected from 1994-2006.

Age/Length Data

Ages of summer Chinook broodstock were determined from analysis of scales and/or CWTs. Broodstock collected from the 2007 return consisted primarily of age- 4 and age- 5 natural origin Chinook (78\%). Age-3 natural origin fish made up 15\% of the broodstock and age-2 and 6 natural origin fish collectively made up 6% of the broodstock (Table 7.2). The 19 hatchery Chinook included in the broodstock were primarily age- 5 fish. Note that according to broodstock protocol, age- 3 males are limited to no more than 10% of the total broodstock collection.
Broodstock collected from the 2008 return consisted primarily of age-3 and 4 natural origin Chinook (85%) and age-4 and 5 hatchery origin Chinook (95\%). Age-2, 5, and 6 natural origin fish collectively made up 15% of the broodstock (Table 7.2). Age-3 and 6 hatchery origin Chinook collectively made up 5\% of the broodstock.

Table 7.2. Percent of hatchery and wild summer Chinook of different ages (total age) collected from broodstock for the Methow/Okanogan programs, 1991-2008.

Return Year	Origin	Total age				
		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
1991		0.5	6.8	35.1	55.4	2.2
	Hatchery	0.5	5.1	36.2	49.0	9.2
1992	Wild	0.0	13.1	36.2	50.7	0.0
	Hatchery	0.0	0.0	0.0	0.0	0.0
1993	Wild	0.0	3.9	75.3	20.8	0.0
	Hatchery	0.0	1.0	85.9	13.1	0.0
1994	Wild	3.1	9.7	26.3	60.3	0.6
	Hatchery	0.0	14.7	11.3	74.0	0.0
1995	Wild	0.0	4.6	15.2	75.6	4.6
	Hatchery	0.0	0.4	13.0	25.6	61.0
1996	Wild	0.0	8.4	56.6	30.4	4.6
	Hatchery	0.0	3.0	31.0	47.0	19.0
1997	Wild	1.0	9.3	52.9	34.8	2.0
	Hatchery	0.0	20.7	10.8	62.0	6.5
1998	Wild	2.0	14.1	54.8	29.1	0.0
	Hatchery	2.3	18.5	56.6	15.9	6.7
1999	Wild	4.7	5.1	53.7	36.0	0.5
	Hatchery	0.3	3.6	28.0	66.1	2.0

Return Year	Origin	Total age				
		2	3	4	5	6
2000	Wild	0.6	14.0	28.7	56.1	0.6
	Hatchery	0.0	27.0	14.3	54.3	4.3
2001	Wild	7.1	26.0	52.0	11.8	3.1
	Hatchery	0.3	19.8	68.1	9.5	2.3
2002	Wild	0.4	17.4	66.0	16.2	0.0
	Hatchery	0.0	2.4	39.4	58.2	0.0
2003	Wild	0.7	3.9	65.9	29.5	0.0
	Hatchery	0.9	5.6	18.5	69.4	5.6
2004	Wild	0.8	15.3	11.6	72.1	0.2
	Hatchery	0.0	6.7	53.3	33.3	6.7
2005	Wild	0.0	17.2	69.9	11.0	1.9
	Hatchery	0.0	1.0	40.0	50.0	0.0
2006	Wild	1.6	3.0	41.0	52.9	1.5
	Hatchery	0.0	16.7	25.0	50.0	8.3
2007	Wild	1.8	15.3	8.2	70.2	4.5
	Hatchery	0.0	0.0	21.1	57.9	21.0
2008	Wild	0.3	17.1	67.8	13.6	1.2
	Hatchery	0.0	2.6	52.7	42.1	2.6
Average	Wild	1.4	11.3	45.4	40.4	1.5
	Hatchery	0.2	8.3	33.6	43.2	8.6

Mean lengths of natural origin summer Chinook of a given age differed little between 2007 and 2008 (Table 7.3). For all age groups, expect for age-6 fish in 2008, mean lengths of natural origin adults were larger than hatchery origin fish of the same age (Table 7.3). These differences may be related to the small sample size of hatchery origin fish (i.e., few hatchery fish were included in the broodstock).

Table 7.3. Mean fork length (cm) at age (total age) of hatchery and wild Methow/Okanogan summer Chinook collected from broodstock for the Methow/Okanogan programs, 1991-2008; $\mathrm{N}=$ sample size and SD = 1 standard deviation.

Return year	Origin	Summer Chinook fork length (cm)														
		Age-2			Age-3			Age-4			Age-5			Age-6		
		Mean	N	SD												
1991	Wild	47	1	-	68	15	6	82	78	10	94	12 3	8	97	5	5
	Hatchery	47	1	-	49	10	6	78	71	5	91	96	8	96	18	6
1992	Wild	-	0	-	55	9	5	69	25	6	78	35	6	-	0	-
	Hatchery	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-
1993	Wild	-	0	-	72	3	4	86	58	7	98	16	5	-	0	-
	Hatchery	-	0	-	42	1	-	76	85	8	88	13	6	-	0	-

Return year	Origin	Summer Chinook fork length (cm)														
		Age-2			Age-3			Age-4			Age-5			Age-6		
		Mean	N	SD												
1994	Wild	42	10	6	51	31	7	80	84	9	93	$\begin{gathered} 19 \\ 3 \end{gathered}$	8	104	2	13
	Hatchery	-	0	-	49	38	5	76	29	7	88	$\begin{gathered} 19 \\ 1 \end{gathered}$	7	-	0	-
1995	Wild	-	0	-	67	6	8	79	20	9	96	99	5	94	6	5
	Hatchery	-	0	-	52	1	-	73	32	9	89	63	9	95	15 0	8
1996	Wild	-	0	-	68	22	9	83	149	8	95	80	7	101	12	5
	Hatchery	-	0	-	52	7	10	77	72	7	90	$\begin{gathered} 10 \\ 9 \end{gathered}$	8	100	44	7
1997	Wild	36	2	6	60	19	7	85	108	8	96	71	7	98	4	11
	Hatchery	-	0	-	45	63	5	71	33	9	92	$\begin{gathered} 18 \\ 9 \end{gathered}$	7	97	20	7
1998	Wild	43	4	6	59	23	6	83	107	7	96	58	7	-	0	-
	Hatchery	42	8	7	50	64	6	74	190	8	92	54	8	98	23	5
1999	Wild	38	10	3	64	11	8	82	115	8	96	77	6	104	1	-
	Hatchery	37	1	-	53	11	9	75	92	7	91	$\begin{gathered} 20 \\ 4 \end{gathered}$	6	98	6	5
2000	Wild	39	1	-	66	23	7	83	47	6	96	92	5	95	1	-
	Hatchery	-	0	-	54	100	7	78	53	8	93	$\begin{gathered} 20 \\ 1 \end{gathered}$	6	99	16	6
2001	Wild	40	9	3	65	33	8	87	66	8	93	15	5	97	4	16
	Hatchery	44	1	-	51	79	7	78	271	8	93	38	7	102	9	5
2002	Wild	56	1	-	65	44	7	88	167	6	100	41	7	-	0	-
	Hatchery	-	0	-	45	6	5	76	100	7	95	$\begin{gathered} 14 \\ 8 \end{gathered}$	5	-	0	-
2003	Wild	43	3	6	61	16	6	87	268	7	99	$\begin{gathered} 12 \\ 0 \end{gathered}$	6	-	0	-
	Hatchery	49	1	-	55	6	9	73	20	8	91	75	7	102	6	9
2004	Wild	51	4	4	67	78	6	81	59	6	97	$\begin{gathered} 36 \\ 8 \end{gathered}$	7	99	1	-
	Hatchery	-	0	-	52	1	-	70	8	5	97	5	8	109	1	-
2005	Wild	-	0	-	68	89	6	83	363	8	94	57	6	101	10	7
	Hatchery	-	0	-	55	1	-	70	4	4	89	5	4	-	0	-
2006	Wild	48	9	3	69	16	4	88	222	7	97	$\begin{gathered} 28 \\ 6 \end{gathered}$	6	97	8	6
	Hatchery	-	0	-	52	2	0	80	3	3	88	6	7	94	1	-
2007	Wild	50	8	6	69	69	9	85	37	8	98	$\begin{gathered} 31 \\ 7 \end{gathered}$	6	96	20	8
	Hatchery	-	0	-	-	0	-	70	4	2	94	11	7	91	4	18
2008	Wild	52	1	-	70	67	6	87	265	6	95	53	7	103	5	7
	Hatchery	-	0	-	55	1	-	79	20	5	89	16	7	104	1	-

Sex Ratios

Male summer Chinook in the 2007 broodstock made up about 46% of the adults collected, resulting in an overall male to female ratio of 0.84:1.00 (Table 7.4.). In 2008, males made up about 49% of the adults collected, resulting in an overall male to female ratio of 0.94:1.00 (Table 7.4). The ratio for the 2007 broodstock was below the assumed 1:1 ratio goal in the broodstock protocol; the ratio for the 2008 broodstock was slightly below the assumed 1:1 ratio.
Table 7.4. Numbers of male and female wild and hatchery summer Chinook collected for broodstock at Wells Dam for the Methow/Okanogan programs, 1991-2008. Ratios of males to females are also provided.

Return year	Number of wild summer Chinook			Number of hatchery summer Chinook			$\begin{gathered} \text { Total M/F } \\ \text { ratio } \end{gathered}$
	Males (M)	Females (F)	M/F	Males (M)	Females (F)	M/F	
$1989{ }^{\text {a }}$	752	667	1.13:1.00	181	160	1.13:1.00	1.13:1.00
$1990^{\text {a }}$	381	482	0.79:1.00	95	120	0.79:1.00	0.79:1.00
$1991{ }^{\text {a }}$	443	559	0.79:1.00	151	191	0.79:1.00	0.79:1.00
$1992{ }^{\text {a }}$	349	318	1.10:1.00	38	35	1.09:1.00	1.10:1.00
$1993{ }^{\text {a }}$	513	300	1.71:1.00	293	171	1.71:1.00	1.71:1.00
1994	205	180	1.14:1.00	165	101	1.63:1.00	1.32:1.00
1995	103	149	0.69:1.00	158	197	0.80:1.00	0.75:1.00
1996	178	138	1.29:1.00	132	102	1.29:1.00	1.29:1.00
1997	102	112	0.91:1.00	174	134	1.30:1.00	1.12:1.00
1998	130	109	1.19:1.00	263	85	3.09:1.00	2.03:1.00
1999	138	110	1.25:1.00	161	146	1.10:1.00	1.17:1.00
2000	82	102	0.80:1.00	243	130	1.87:1.00	1.40:1.00
2001	89	46	1.93:1.00	311	112	2.78:1.00	2.53:1.00
2002	166	104	1.60:1.00	149	136	1.10:1.00	1.31:1.00
2003	255	194	1.31:1.00	61	51	1.20:1.00	1.29:1.00
2004	263	278	0.95:1.00	12	5	2.40:1.00	0.97:1.00
2005	365	186	1.96:1.00	6	6	1.00:1.00	1.93:1.00
2006	287	292	0.98:1.00	9	3	3.00:1.00	1.00:1.00
2007	228	276	0.83:1.00	11	8	1.38:1.00	0.84:1.00
2008	210	208	1.01:1.00	13	28	0.46:1.00	0.94:1.00
Total ${ }^{\text {b }}$	2,801	2,484	1.13:1.00	1,868	1,244	1.50:1.00	1.25:1.00

${ }^{a}$ Numbers and male to female ratios were derived from the aggregate population collected at Wells Fish Hatchery volunteer channel and left- and right-ladder traps at Wells Dam.
${ }^{\mathrm{b}}$ Total values were derived from 1994-present data to exclude aggregate population bias from 1989-1993 returns.

Fecundity

Fecundities for the 2007 and 2008 summer Chinook broodstock averaged 5,260 and 4,787 eggs per female, respectively (Table 7.5). These values are close to the overall average of 4,984 eggs per female. Mean observed fecundity for the 2007 return was slightly above the expected fecundity of 5,000 eggs per female assumed in the broodstock protocol; the 2008 return was slightly below the broodstock protocol.

Table 7.5. Mean fecundity of wild, hatchery, and all female summer Chinook collected for broodstock at Wells Dam for the Methow/Okanogan programs, 1989-2008; NA = not available.

Return year	Mean fecundity		
	Wild	Hatchery	Total
1989*	NA	NA	4,750
1990*	NA	NA	4,838
1991*	NA	NA	4,819
1992*	NA	NA	4,804
1993*	NA	NA	4,849
1994*	NA	NA	5,907
1995*	NA	NA	4,930
1996*	NA	NA	4,870
1997	5,166	5,296	5,237
1998	5,043	4,595	4,833
1999	4,897	4,923	4,912
2000	5,122	5,206	5,170
2001	5,040	4,608	4,735
2002	5,306	5,258	5,279
2003	5,090	4,941	5,059
2004	5,130	5,118	5,130
2005	4,545	4,889	4,553
2006	4,854	4,824	4,854
2007	5,265	5,093	5,260
2008	4,814	4,588	4,787
Average	5,023	4,945	4,984

* Individual fecundities were not assigned to females until 1997 brood.

7.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of 493,827 eggs are needed to meet the program release goal of 400,000 smolts. From 1989 through 2008, the egg take goal was reached in six of those years (Table 7.6).
Table 7.6. Numbers of eggs taken from summer Chinook broodstock collected at Wells Dam for the Methow/Okanogan programs, 1989-2008.

Return year	Number of eggs taken
1989	482,800
1990	464,097
1991	586,594

Return year	Number of eggs taken
1992	486,260
1993	531,490
1994	595,390
1995	491,000
1996	448,000
1997	401,162
1998	389,346
1999	483,726
2000	403,268
2001	279,272
2002	466,530
2003	473,681
2004	537,210
2005	305,826
2006	509,334
2007	549,802
2008	441,778
Average	466,328

Number of acclimation days

Rearing of the 2007 brood Methow summer Chinook was similar to previous years with fish being held on well water before being transferred to Carlton Pond for final acclimation on Methow River water in March 2009 (Table 7.7). Groups of the 1994 and 1995 broods were reared for longer durations at Methow FH on Methow River water.

Table 7.7. Number of days Methow summer Chinook were acclimated at Carlton Pond, brood years 19892007.

Brood year	Release year	Transfer date	Release date	Number of days
1989	1991	15-Mar	6-May	52
1990	1992	26-Feb	28-Apr	61
1991	1993	10-Mar	23-Apr	44
1992	1994	4-Mar	21-Apr	48
1993	1995	18-Mar	2-May	45
1994	1996	25-Sep	28-Apr	215
		19-Mar	28-Apr	40
1995	1997	22-Oct	8-Apr	168
		19-Mar	22-Apr	34

Brood year	Release year	Transfer date	Release date	Number of days
1996	1998	$9-\mathrm{Mar}$	$14-\mathrm{Apr}$	36
1997	1999	$10-\mathrm{Mar}$	$20-\mathrm{Apr}$	41
1998	2000	$19-\mathrm{Mar}$	$2-\mathrm{May}$	44
1999	2001	$18-\mathrm{Mar}$	$18-\mathrm{Apr}$	31
2000	2002	$28-\mathrm{Mar}$	$1-\mathrm{May}$	34
2001	2003	$27-\mathrm{Mar}$	$24-\mathrm{Apr}$	28
2002	2004	$16-\mathrm{Mar}$	$24-\mathrm{Apr}$	39
2003	2005	$18-\mathrm{Mar}$	$21-\mathrm{Apr}$	34
2004	2006	$12-\mathrm{Mar}$	$22-\mathrm{Apr}$	41
2005	2007	$12-\mathrm{Mar}$	$15-\mathrm{Apr}-8-\mathrm{May}$	$34-57$
2006	2008	$4-7-\mathrm{Mar}$	$16-\mathrm{Apr}-2 \mathrm{May}$	$40-59$
2007		$18-24-\mathrm{Mar}$	$21-\mathrm{Apr}$	$28-34$

Release Information

Numbers released

The 2007 brood Methow summer Chinook program achieved 108.3\% of the 400,000 target goal with about 433,256 fish being forcibly released on 21 April 2009 (Table 7.8). A volitional release was originally scheduled; however, because of concerns over inundation of the acclimation site with flood waters, which backed-up into the facility through the out-fall channel, fish were forced out of the facility.

Table 7.8. Numbers of Methow summer Chinook smolts released from the hatchery, brood years 1989-2007. The release target for Methow summer Chinook is 400,000 smolts.

Brood year	Release year	CWT mark rate	Number of smolts released
1989	1991	0.8529	420,000
1990	1992	0.9485	391,650
1991	1993	0.6972	540,900
1992	1994	0.9752	402,641
1993	1995	0.4623	433,375
1994	1996	0.9851	406,560
1995	1997	0.9768	353,182
1996	1998	0.9221	298,844
1997	1999	0.9884	384,909
1998	2000	0.9429	205,269
1999	2001	0.9955	424,363
2000	2002	0.9928	336,762
2001	2003	0.9902	248,595

Brood year	Release year	CWT mark rate	Number of smolts released				
2002	2004	0.9913	399,975				
2003	2005	0.9872	354,699				
2004	2006	0.9848	400,579				
2005	2007	0.9897	263,723				
2006	2008	0.9783	419,734				
2007	2009	0.9837	433,256				
Average						$\mathbf{0 . 9 2 8 7}$	$\mathbf{3 7 4 , 6 8 5}$

Numbers tagged

The 2007 brood Methow summer Chinook were 98.4% CWT and adipose fin-clipped, but were not PIT tagged (Table 7.8).

Fish size and condition at release

Fish were forcibly released as yearling smolts on 21 April 2009. Size at release of the acclimated population was 78.4% and 70.7% of the respective target fork length and weight goals (Table 7.9). This brood year exceeded the CV of length goal by 133\%.

Table 7.9. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Methow summer Chinook smolts released from the hatchery, brood years 1991-2007. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1991	1993	152	13.6	40.3	11
1992	1994	145	16.0	37.2	12
1993	1995	154	8.6	37.1	12
1994	1996	163	8.2	48.2	9
1995	1997	141	9.6	37.0	12
1996	1998	199	13.1	105.1	4
1997	1999	153	7.6	39.5	12
1998	2000	164	8.7	51.7	9
1999	2001	153	9.3	41.5	11
2000	2002	170	10.2	54.2	8
2001	2003	167	7.4	52.7	9
2002	2004	148	13.1	35.7	13
2003	2005	148	10.1	35.5	13
2004	2006	142	9.8	31.1	15
2005	2007	158	15	42.2	11
2006	2008	156	18	42.8	11
2007	2009	138	21	32.1	14
Targets		176	9.0	45.4	10

Survival Estimates

Overall survival of the Methow summer Chinook from green (unfertilized) egg to release was slightly above the standard set for the program (Table 7.10). Lower than anticipated survival at the fertilized to eyed-egg prevented the program from exceeding its target survival rate. Currently it is unknown if gamete viability is gender biased or is uniform between sexes and more influenced by between-year environmental variations.
It is important to note that the Methow summer Chinook program typically receives progeny from the highest ELISA females, while the lowest titer progeny are reserved for the Okanogan program. The inability to effectively manage BKD at Similkameen Pond during the winter months precludes an even mix of progeny for a given brood year between the two programs. As a result, poor survival performance at any level may be more directly related to this procedure than a function of the overall program.
Table 7.10. Hatchery life-stage survival rates (\%) for Methow summer Chinook, brood years 1989-2007. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	$\begin{gathered} \text { Eyed } \\ \text { egg- } \\ \text { ponding } \end{gathered}$		100 d after ponding	$\begin{aligned} & \text { Ponding } \\ & \text { to } \\ & \text { release } \end{aligned}$	Transport to release	Unfertilized egg-release
	Female	Male							
$1989{ }^{\text {a }}$	89.8	99.5	89.9	96.7	99.7	99.4	73.3	98.5	87.0
$1990{ }^{\text {a }}$	93.9	99.0	84.9	97.1	81.2	80.6	97.7	99.5	84.4
$1991{ }^{\text {a }}$	93.1	95.5	88.2	98.0	99.4	99.1	97.5	99.6	92.2
$1992{ }^{\text {a }}$	96.9	99.0	87.8	98.0	99.9	99.9	90.9	98.3	82.8
1993^{a}	82.2	99.4	85.4	97.6	99.8	99.5	92.0	99.4	81.5
1994	96.1	90.0	86.6	100.0	98.1	97.4	73.1	99.1	68.3
1995	91.9	96.2	98.2	84.1	96.5	96.2	92.7	89.6	71.9
1996	95.4	98.1	83.2	100.0	97.7	96.9	86.5	89.0	66.7
1997	91.9	94.6	86.1	98.4	98.7	98.3	98.8	99.7	95.9
1998	84.0	96.2	54.1	98.0	99.4	98.9	96.6	99.9	52.7
1999	98.8	98.7	92.9	96.9	98.0	97.6	96.9	99.9	87.7
2000	90.5	96.9	89.2	98.1	98.5	98.3	94.6	94.4	83.5
2001	96.2	92.3	89.1	97.6	97.2	97.1	97.5	99.8	89.0
2002	97.1	98.1	88.3	99.9	97.7	97.5	96.7	99.9	85.7
2003	96.7	97.5	82.8	98.2	99.7	99.2	93.7	99.9	74.9
2004	93.6	98.2	84.0	97.8	99.6	99.2	98.3	98.5	74.6
2005	97.0	89.6	88.0	95.5	99.6	98.9	96.6	99.9	86.2
2006	92.9	89.5	86.3	98.3	99.6	98.7	97.2	99.5	82.4
2007	92.6	99.6	84.1	98.5	99.7	99.5	98.9	99.8	81.9
Standard	90.0	85.0	92.0	98.0	97.0	93.0	90.0	95.0	81.0

${ }^{\text {a }}$ Survival rates were calculated from aggregate population collected at Wells Fish Hatchery volunteer channel and leftand right-ladder traps at Wells Dam.

7.3 Disease Monitoring

Increased mortalities because of fungus were observed in mid-April in the 2007 brood at Carlton Pond. There was insufficient time before release to initiate a formalin treatment. Therefore, fish were released untreated.

Results of adult broodstock bacterial kidney disease (BKD) monitoring indicated that most females (99.6\%) had ELISA values less than 0.199. About 93.5\% of females had ELISA values less than 0.120 , which would require about 6.5% of the progeny to be reared at densities not to exceed 0.06 fish per pound (Table 7.11).
Table 7.11. Proportion of bacterial kidney disease (BKD) titer groups for the Methow/Okanogan summer Chinook broodstock, brood years 1997-2009. Also included are the proportions to be reared at either 0.125 fish per pound or 0.060 fish per pound.

Brood year $^{\mathbf{a}}$	Optical density values by titer group				Proportion at rearing densities (fish per pound, fpp)	
	Very Low $(\leq \mathbf{0 . 0 9 9})$	Low $\mathbf{(0 . 1 - 0 . 1 9 9)}$	Moderate $(\mathbf{0 . 2 - 0 . 4 4 9)}$	High $(\geq \mathbf{0 . 4 5 0})$	$\leq \mathbf{0 . 1 2 5} \mathbf{f p p}$ $(<\mathbf{0 . 1 1 9)}$	$\leq \mathbf{0 . 0 6 0} \mathbf{f p p}$ $(>\mathbf{0 . 1 2 0}$
1997	0.6267	0.1333	0.0622	0.1778	0.6844	0.3156
1998	0.9632	0.0184	0.0123	0.0061	0.9816	0.0184
1999	0.9444	0.0198	0.0238	0.0119	0.9643	0.0357
2000	0.7476	0.0952	0.0238	0.1333	0.8000	0.2000
2001	0.9801	0.0199	0.0000	0.0000	1.0000	0.0000
2002	0.9567	0.0130	0.0130	0.0173	0.9740	0.0260
2003	0.9620	0.0127	0.0169	0.0084	0.9747	0.0253
2004	0.9585	0.0151	0.0075	0.0189	0.9736	0.0264
2005	0.9884	0.0000	0.0000	0.0116	0.9884	0.0116
2006	0.9962	0.0038	0.0000	0.0000	0.9962	0.0038
2007	0.9202	0.0266	0.0152	0.0380	0.9354	0.0646
2008	1.0000	0.0000	0.0000	0.0000	1.0000	0.0000
2009	0.9891	0.0073	0.0037	0.0000	0.9927	0.0073
Average	0.9256	0.0281	0.0137	0.0326	0.9435	0.0565
a						

${ }^{\text {a }}$ Individual ELISA samples were not collected before the 1997 brood.

7.4 Spawning Surveys

Surveys for Methow summer Chinook redds were conducted from late September to mid-November, 2009, in the Methow River. Total redd counts (not peak counts) were conducted in the river (see Appendix J for more details).

Redd Counts

A total of 692 summer Chinook redds were counted in the Methow River in 2009 (Table 7.12). This was higher than the overall average of 602 redds.

Table 7.12. Total number of redds counted in the Methow River, 1989-2009.

Survey year	Total redd count
1989	167^{*}
1990	409^{*}
1991	153
1992	107
1993	154
1994	310
1995	357
1996	181
1997	205
1998	225
1999	448
2000	500
2001	675
2002	2,013
2003	1,624
2004	973
2005	874
2006	1,353
2007	620
2008	599
2009	692
Average	602
Par	

* Total counts based on expanded aerial counts.

Redd Distribution

Summer Chinook redds were not evenly distributed among the seven reaches in the Methow River. Most redds (75\%) were located in reaches downstream from the town of Twisp and in Reach 5 between Methow Valley Irrigation Diversion (MVID) and the Winthrop Bridge (Table 7.13; Figure 7.1). Few summer Chinook spawned upstream from the Winthrop Bridge in Reaches 6 and 7.

Table 7.13. Total number of summer Chinook redds counted in different reaches on the Methow River during September through early November, 2009. Reach codes are described in Table 2.11.

Survey reach	Total redd count	Percent
Methow 1	186	26.9
Methow 2	127	18.4
Methow 3	203	29.3
Methow 4	43	6.2
Methow 5	127	18.4
Methow 6	6	0.9

Survey reach	Total redd count	Percent
Methow 7	0	0.0
Totals	692	$\mathbf{1 0 0 . 0}$

Methow Summer Chinook Redds

Figure 7.1. Percent of the total number of summer Chinook redds counted in different reaches on the Methow River during September through mid-November, 2009. Reach codes are described in Table 2.11.

Spawn Timing

Spawning in 2009 began the first week of October, peaked the second week of October, and ended after the second week of November (Figure 7.2). Stream temperatures in the Methow River, when spawning began, varied from $4.5-11.0^{\circ} \mathrm{C}$. Peak spawning occurred in the upper reaches of the Methow River during the second week of October and in the lower reaches the following week.

Methow Summer Chinook

Figure 7.2. Number of new summer Chinook redds counted during different weeks in the Methow River, September through mid-November 2009.

Spawning Escapement

Spawning escapement for Methow summer Chinook was calculated as the total number of redds times the fish per redd ratio estimated from fish sampled at Wells Dam. The estimated fish per redd ratio for Methow summer Chinook in 2009 was 2.54 . Multiplying this ratio by the number of redds counted in the Methow River resulted in a total spawning escapement of 1,758 summer Chinook (Table 7.14).
Table 7.14. Spawning escapements for summer Chinook in the Methow River for return years 19892009.

Return year	Fish/Redd	Redds	Total spawning escapement
1989^{*}	3.30	167	551
1990^{*}	3.40	409	1,391
1991^{*}	3.70	153	566
1992^{*}	4.30	107	460
1993^{*}	3.30	154	508
1994^{*}	3.50	310	1,085
1995^{*}	3.40	357	1,214
1996^{*}	3.40	181	615
1997^{*}	3.40	205	697
1998	3.00	225	675
1999	2.20	448	986
2000	2.40	500	1,200
2001	4.10	675	2,768

Return year	Fish/Redd	Redds	Total spawning escapement
2002	2.30	2,013	4,630
2003	2.42	1,624	3,930
2004	2.25	973	2,189
2005	2.93	874	2,561
2006	2.02	1,353	2,733
2007	2.20	620	1,364
2008	3.25	599	1,947
2009	2.54	692	1,758
Average	$\mathbf{3 . 0 1}$	$\mathbf{6 0 2}$	$\mathbf{1 , 6 1 1}$

* Spawning escapement was calculated using the "Modified Meekin Method" (i.e., $3.1 \times$ jack multiplier).

7.5 Carcass Surveys

Surveys for Methow summer Chinook carcasses were conducted during late September to midNovember, 2009, in the Methow River (see Appendix J for more details).

Number sampled

A total of 591 summer Chinook carcasses were sampled during September through mid-November in the Methow River (Table 7.15).

Table 7.15. Numbers of summer Chinook carcasses sampled within each survey reach on the Methow River, 1991-2009. Reach codes are described in Table 2.11.

Survey year	Number of summer Chinook carcasses							
	$\mathbf{M - 1}$	$\mathbf{M - 2}$	$\mathbf{M - 3}$	$\mathbf{M}-\mathbf{4}$	$\mathbf{M}-\mathbf{5}$	$\mathbf{M}-\mathbf{6}$	$\mathbf{M}-\mathbf{7}$	Total
1991	0	12	8	4	2	0	0	$\mathbf{2 6}$
1992	8	8	19	0	17	1	0	$\mathbf{5 3}$
1993	19	25	14	2	5	0	0	$\mathbf{6 5}$
$1994^{\text {a }}$	43	33	20	5	13	0	0	$\mathbf{1 1 4}$
1995	14	33	58	7	7	0	0	$\mathbf{1 1 9}$
1996	6	30	46	5	2	0	0	$\mathbf{8 9}$
1997	6	12	38	2	19	1	0	$\mathbf{7 8}$
1998	90	84	99	17	30	0	0	$\mathbf{3 2 0}$
1999	47	144	232	32	37	12	2	$\mathbf{5 0 6}$
2000	62	118	105	9	99	5	0	$\mathbf{3 9 8}$
2001	392	275	88	14	76	11	1	$\mathbf{8 5 7}$
2002	551	318	518	164	219	34	10	$\mathbf{1 , 8 1 4}$
2003	115	383	317	115	128	5	0	$\mathbf{1 , 0 6 3}$
2004	40	173	187	82	92	2	1	$\mathbf{5 7 7}$
2005	154	173	182	42	112	3	0	$\mathbf{6 6 6}$
2006	121	149	111	56	146	3	1	$\mathbf{5 8 7}$
2007	135	131	108	27	55	0	0	$\mathbf{4 5 6}$

Survey year	Number of summer Chinook carcasses								
	M-1	$\mathbf{M - 2}$	$\mathbf{M - 3}$	$\mathbf{M - 4}$	$\mathbf{M - 5}$	$\mathbf{M - 6}$	$\mathbf{M - 7}$	Total	
2008	64	128	197	33	57	3	0	$\mathbf{4 8 2}$	
2009	144	158	159	36	94	0	0	$\mathbf{5 9 1}$	
Average	$\mathbf{1 0 6}$	$\mathbf{1 2 6}$	$\mathbf{1 3 2}$	$\mathbf{3 4}$	$\mathbf{6 4}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{4 6 6}$	

${ }^{\text {a }}$ An additional 113 carcasses were sampled, but reach was not identified.

Carcass Distribution and Origin

Summer Chinook carcasses were not evenly distributed among reaches within the Methow River in 2009 (Table 7.15; Figure 7.3). Most of the carcasses in the Methow River were found downstream from Twisp.

Methow Summer Chinook Carcasses

Figure 7.3. Percent of summer Chinook carcasses sampled within different reaches on the Methow River during September through mid-November, 2009. Reach codes are described in Table 2.11.

Numbers of wild and hatchery origin summer Chinook carcasses sampled in 2009 will be available after analysis of CWTs and scales. Based on the available data (1991-2008), hatchery and wild summer Chinook carcasses were not distributed equally among the reaches in the Methow River (Table 7.16). A larger percentage of hatchery carcasses occurred in the lower reaches, while a larger percentage of wild summer Chinook carcasses occurred in upstream reaches (Figure 7.4).

Table 7.16. Numbers of wild and hatchery summer Chinook carcasses sampled within different reaches on the Methow River, 1991-2008.

Survey year	Origin	Survey reach							Total
		M-1	M-2	M-3	M-4	M-5	M-6	M-7	
1991	Wild	0	12	8	4	2	0	0	26
	Hatchery	0	0	0	0	0	0	0	0
1992	Wild	8	8	19	0	17	1	0	53
	Hatchery	0	0	0	0	0	0	0	0
1993	Wild	11	15	9	0	3	0	0	38
	Hatchery	8	7	5	2	2	0	0	24
1994	Wild	21	17	8	4	9	0	0	59
	Hatchery	20	15	11	0	3	0	0	49
1995	Wild	6	9	27	7	5	0	0	54
	Hatchery	7	24	25	0	1	0	0	57
1996	Wild	1	20	29	4	2	0	0	56
	Hatchery	5	7	11	1	0	0	0	24
1997	Wild	5	5	28	1	17	0	0	56
	Hatchery	1	4	7	1	2	1	0	16
1998	Wild	41	46	70	9	23	0	0	189
	Hatchery	48	36	28	6	5	0	0	123
1999	Wild	27	79	110	14	17	4	2	253
	Hatchery	15	57	102	17	13	7	0	211
2000	Wild	23	78	74	7	72	3	0	257
	Hatchery	37	33	20	1	16	2	0	109
2001	Wild	49	102	54	9	66	11	1	292
	Hatchery	330	157	32	4	6	0	0	529
2002	Wild	124	163	362	129	183	34	9	1,004
	Hatchery	412	141	138	24	22	0	1	738
2003	Wild	33	123	176	63	85	3	0	483
	Hatchery	80	122	127	38	36	2	0	405
2004	Wild	14	108	144	61	73	1	0	401
	Hatchery	24	52	28	17	12	1	1	135
2005	Wild	62	99	133	33	107	3	0	437
	Hatchery	92	74	49	9	5	0	0	229
2006	Wild	68	103	83	49	131	3	1	438
	Hatchery	53	46	28	7	15	0	0	149
2007	Wild	52	71	62	19	45	0	0	249
	Hatchery	93	60	47	9	10	0	0	219
2008	Wild	15	69	158	29	54	2	0	327
	Hatchery	49	59	39	4	3	1	0	155
Average	Wild	31	63	86	25	51	4	1	260
	Hatchery	71	50	39	8	8	1	0	176

Methow Summer Chinook

Figure 7.4. Distribution of wild and hatchery produced carcasses in different reaches on the Methow River, 1993-2008. Reach codes are described in Table 2.11.

Sampling Rate

Overall, 34% of the total spawning escapement of summer Chinook in the Methow Basin was sampled in 2009 (Table 7.17). Sampling rates among survey reaches varied from 0 to 49%.

Table 7.17. Number of redds and carcasses, total spawning escapement, and sampling rates for summer Chinook in the Methow Basin, 2009. Reach codes are described in Table 2.11.

Survey reach	Total number of redds	Total number of carcasses	Total spawning escapement	Sampling rate
Methow 1	186	144	472	0.30
Methow 2	127	158	323	0.49
Methow 3	203	159	516	0.31
Methow 4	43	36	109	0.33
Methow 5	127	94	323	0.29
Methow 6	6	0	15	0.00
Methow 7	0	0	0	--
Total	$\mathbf{6 9 2}$	$\mathbf{1 , 7 5 8}$	$\mathbf{0 . 3 4}$	

Length Data

Mean lengths ($\mathrm{POH}, \mathrm{cm}$) of male and female summer Chinook carcasses sampled during surveys on the Methow River in 2009 are provided in Table 7.18. The average size of males and females sampled in the Methow River were 63 cm and 73 cm , respectively.

Table 7.18. Mean lengths (postorbital-to-hypural length; cm) and standard deviations (in parentheses) of male and female summer Chinook carcasses sampled in different reaches on the Methow River, 2009. Reach codes are described in Table 2.11.

Stream/watershed	Mean length (cm)	
	Male	Female
Methow 1	$62.9(12.5)$	$71.5(5.2)$
Methow 2	$63.1(12.6)$	$73.6(4.7)$
Methow 3	$58.9(14.6)$	$72.5(6.3)$
Methow 4	$65.7(14.7)$	$70.4(5.8)$
Methow 5	$68.5(10.7)$	$74.5(5.9)$
Methow 6	--	--
Methow 7	--	--
Total	$\mathbf{6 2 . 7}(\mathbf{1 3 . 4})$	72.7 (5.7)

7.6 Life History Monitoring

Life history characteristics of Methow summer Chinook were assessed by examining carcasses on spawning grounds and fish collected or examined at broodstock collection sites, and by reviewing tagging data and fisheries statistics.

Migration Timing

Migration timing of hatchery and wild Methow/Okanogan summer Chinook was determined from broodstock data collected at Wells Dam. Counting of summer/fall Chinook at Wells Dam occurs from 29 June to 15 November. Broodstock collection at the Dam occurs from early July (week 27) to mid-September (week 37) (Table 2.1). Based on broodstock sampling, both wild and hatchery summer Chinook arrived at Wells Dam about the same time (Table 7.19). This was true throughout most of the migration period. This pattern was also observed when data were pooled for the 20072009 survey period.

Table 7.19. The week that $10 \%, 50 \%$ (median), and 90% of the wild and hatchery summer Chinook salmon passed Wells Dam, 2007-2009. The average week is also provided. Migration timing is based on collection of summer Chinook broodstock at Wells Dam.

Survey year	Origin	Methow/Okanogan Summer Chinook Migration Time (week)				Sample size
		10 Percentile	50 Percentile	90 Percentile	Mean	
2007	Wild	27	30	34	30	485
	Hatchery	27	30	33	30	433
2008	Wild	28	30	34	30	542
	Hatchery	28	30	36	31	884
2009	Wild	27	29	34	30	585
	Hatchery	27	29	33	29	708
Average	Wild	27	30	34	30	537
	Hatchery	27	30	34	30	675

Age at Maturity

Most of the wild and hatchery summer Chinook sampled during the period 1993-2008 in the Methow River were age-4 and 5 fish (total age) (Table 7.20; Figure 7.5). A higher percentage of age-4 wild Chinook returned to the basin than did age-4 hatchery Chinook. In contrast, a higher proportion of age- 5 and 6 hatchery fish returned than did age- 5 and 6 wild fish. Thus, a higher percentage of hatchery fish returned at an older age than did wild fish.
Table 7.20. Proportions of wild and hatchery summer Chinook of different ages (total age) sampled on spawning grounds in the Methow River, 1993-2008.

Survey year	Origin	Total age						Sample size
		2	3	4	5	6	7	
1993	Wild	0.00	0.05	0.34	0.58	0.03	0.00	38
	Hatchery	0.00	0.00	1.00	0.00	0.00	0.00	20
1994	Wild	0.01	0.02	0.53	0.44	0.00	0.00	101
	Hatchery	0.00	0.00	0.07	0.93	0.00	0.00	111
1995	Wild	0.00	0.02	0.07	0.89	0.02	0.00	54
	Hatchery	0.00	0.02	0.04	0.43	0.52	0.00	56
1996	Wild	0.00	0.04	0.46	0.41	0.09	0.00	56
	Hatchery	0.00	0.00	0.04	0.48	0.43	0.04	23
1997	Wild	0.00	0.00	0.36	0.63	0.02	0.00	56
	Hatchery	0.00	0.13	0.06	0.56	0.25	0.00	16
1998	Wild	0.00	0.13	0.52	0.34	0.00	0.00	188
	Hatchery	0.00	0.02	0.52	0.42	0.03	0.00	123
1999	Wild	0.00	0.02	0.59	0.39	0.01	0.00	253
	Hatchery	0.00	0.00	0.07	0.90	0.03	0.00	209
2000	Wild	0.00	0.05	0.15	0.80	0.00	0.00	257
	Hatchery	0.00	0.10	0.22	0.57	0.11	0.00	97
2001	Wild	0.01	0.15	0.59	0.24	0.02	0.00	292
	Hatchery	0.00	0.11	0.60	0.26	0.04	0.00	528
2002	Wild	0.00	0.04	0.66	0.29	0.00	0.00	1,004
	Hatchery	0.00	0.01	0.41	0.57	0.01	0.00	733
2003	Wild	0.00	0.01	0.43	0.55	0.00	0.00	483
	Hatchery	0.00	0.02	0.07	0.88	0.03	0.00	394
2004	Wild	0.00	0.04	0.08	0.86	0.01	0.00	401
	Hatchery	0.00	0.08	0.29	0.30	0.33	0.00	134
2005	Wild	0.00	0.03	0.58	0.34	0.05	0.00	410
	Hatchery	0.00	0.08	0.30	0.61	0.01	0.00	220
2006	Wild	0.00	0.02	0.18	0.78	0.02	0.00	379
	Hatchery	0.00	0.00	0.22	0.48	0.29	0.00	129

Survey year	Origin	Total age						Sample size
		2	3	4	5	6	7	
2007	Wild	0.02	0.08	0.19	0.64	0.07	0.00	209
	Hatchery	0.00	0.04	0.14	0.73	0.08	0.01	189
2008	Wild	0.02	0.11	0.72	0.14	0.01	0.00	302
	Hatchery	0.09	0.13	0.42	0.23	0.13	0.00	151
Average	Wild	0.00	0.05	0.45	0.47	0.01	0.00	280
	Hatchery	0.00	0.05	0.32	0.56	0.07	0.00	195

Methow Summer Chinook

Figure 7.5. Proportions of wild and hatchery summer Chinook of different total ages sampled at broodstock collection sites and on spawning grounds in the Methow River for the combined years 1993-2008.

Size at Maturity

On average, hatchery summer Chinook were about 4 cm smaller than wild summer Chinook sampled in the Methow Basin (Table 7.21). This is interesting given that a slightly higher percentage of hatchery fish returned as age-5 and 6 fish than did wild fish. Future analyses will compare sizes of hatchery and wild fish of the same age groups and gender.

Table 7.21. Mean lengths ($\mathrm{POH} ; \mathrm{cm}$) and variability statistics for wild and hatchery summer Chinook sampled in the Methow Basin, 1993-2008; SD = 1 standard deviation.

Survey year	Origin	Sample size	Summer Chinook length (POH; cm)			
			Mean	SD	Minimum	Maximum
1993	Wild	41	74	9	51	89
	Hatchery	24	62	8	36	80
1994	Wild	112	69	8	35	87
	Hatchery	114	67	5	43	77
1995	Wild	62	74	6	52	88
	Hatchery	57	73	7	46	85
1996	Wild	64	70	11	34	91
	Hatchery	23	72	7	58	85
1997	Wild	62	76	9	35	90
	Hatchery	16	68	15	33	87
1998	Wild	196	67	10	38	97
	Hatchery	123	63	10	37	87
1999	Wild	293	66	8	43	99
	Hatchery	211	66	7	26	89
2000	Wild	288	74	8	37	89
	Hatchery	109	68	12	24	87
2001	Wild	328	67	10	29	86
	Hatchery	529	63	10	31	87
2002	Wild	1,076	70	8	37	94
	Hatchery	738	67	9	33	87
2003	Wild	543	71	8	35	88
	Hatchery	405	69	8	35	89
2004	Wild	442	73	7	38	89
	Hatchery	135	65	12	34	85
2005	Wild	437	69	8	45	86
	Hatchery	229	64	9	36	79
2006	Wild	438	73	7	35	92
	Hatchery	149	69	8	38	91
2007	Wild	249	72	11	33	89
	Hatchery	219	69	9	22	84
2008	Wild	384	69	8	30	90
	Hatchery	210	63	15	23	86
Pooled	Wild	313	71	9	29	99
	Hatchery	206	67	9	22	91

Contribution to Fisheries

Most of the harvest on Methow summer Chinook occurred in the Ocean (Table 7.22). Ocean harvest has made up 13% to 99% of all Methow summer Chinook harvested. Brood years 1989 and 1998 provided the largest harvests, while brood years 1996 and 1999 provided the lowest.
Table 7.22. Estimated number and percent (in parentheses) of Methow summer Chinook captured in different fisheries, brood years 1989-2003.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational (sport)	
1989	$1,056(53)$	$884(44)$	$0(0)$	$66(3)$	2,006
1990	$64(61)$	$41(39)$	$0(0)$	$0(0)$	105
1991	$12(20)$	$49(80)$	$0(0)$	$0(0)$	61
1992	$17(55)$	$14(45)$	$0(0)$	$0(0)$	31
1993	$14(58)$	$8(33)$	$2(8)$	$0(0)$	24
1994	$153(81)$	$34(18)$	$1(1)$	$1(1)$	189
1995	$73(99)$	$0(0)$	$1(1)$	$0(0)$	74
1996	$13(93)$	$1(7)$	$0(0)$	$0(0)$	14
1997	$221(89)$	$7(3)$	$0(0)$	$21(8)$	249
1998	$1,770(84)$	$101(5)$	$14(1)$	$234(11)$	2,119
1999	$2(13)$	$13(87)$	$0(0)$	$0(0)$	15
2000	$359(71)$	$88(17)$	$27(5)$	$34(7)$	507
2001	$324(52)$	$97(16)$	$43(7)$	$160(26)$	624
2002	$288(52)$	$69(13)$	$61(11)$	$132(24)$	550
2003	$50(66)$	$2(3)$	$7(9)$	$17(22)$	76

Straying

Stray rates were determined by examining CWTs recovered on spawning grounds within and outside the Methow Basin. Targets for strays based on return year (recovery year) and brood year should be less than 5\%.

Rates of Methow summer Chinook straying into basins outside the Methow have been very low (Table 7.23). Although a few Methow summer Chinook have strayed into the Okanogan Basin, Chelan tailrace, and Hanford Reach, staying has consistently been less than 5%.

Table 7.23. Number and percent of spawning escapements within other non-target basins that consisted of Methow summer Chinook, return years 1994-2006. For example, for return year 2002, 0.4% of the summer Chinook escapement in the Okanogan Basin consisted of Methow summer Chinook. Percent strays should be less than 5%.

Return year	Wenatchee		Okanogan		Chelan		Entiat		Hanford Reach	
	Number	\%								
1994	0	0.0	72	1.8	-	-	-	-	-	-
1995	0	0.0	9	0.3	-	-	-	-	-	-
1996	0	0.0	0	0.0	-	-	-	-	-	-
1997	0	0.0	0	0.0	-	-	-	-	-	-
1998	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1999	0	0.0	6	0.2	0	0.0	0	0.0	7	0.0
2000	0	0.0	3	0.1	0	0.0	0	0.0	0	0.0
2001	0	0.0	0	0.0	0	0.0	0	0.0	7	0.0
2002	0	0.0	54	0.4	0	0.0	0	0.0	0	0.0
2003	0	0.0	1	0.0	6	1.4	0	0.0	0	0.0
2004	0	0.0	7	0.1	3	0.7	0	0.0	0	0.0
2005	0	0.0	25	0.3	0	0.0	0	0.0	0	0.0
2006	0	0.0	12	0.1	0	0.0	0	0.0	0	0.0
Total	0	0.0	188	0.3	9	0.2	0	0.0	14	0.0

On average, about 4.0% of the returns have strayed into non-target spawning areas, falling below the target of 5% (Table 7.24). Depending on brood year, percent strays into non-target spawning areas have ranged from 0-9.4\%. Few ($<2 \%$ on average) have strayed into non-target hatchery programs.

Table 7.24. Number and percent of Methow summer Chinook that homed to target spawning areas and the target hatchery program, and number and percent that strayed to non-target spawning areas and non-target hatchery programs, by brood years 1989-2003. Percent stays should be less than 5\%.

| $*$
 Brood
 year | Homing | | | | Straying | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Number | \% | Number | \% | Number | $\mathbf{\%}$ | Number | \% |
| 1989 | 773 | 55.7 | 459 | 33.0 | 81 | 5.8 | 76 | 5.5 |
| 1990 | 199 | 70.6 | 81 | 28.7 | 0 | 0.0 | 2 | 0.7 |
| 1991 | 82 | 65.6 | 43 | 34.4 | 0 | 0.0 | 0 | 0.0 |
| 1992 | 68 | 63.0 | 40 | 37.0 | 0 | 0.0 | 0 | 0.0 |
| 1993 | 25 | 65.8 | 10 | 26.3 | 3 | 7.9 | 0 | 0.0 |
| 1994 | 419 | 79.7 | 94 | 17.9 | 13 | 2.5 | 0 | 0.0 |
| 1995 | 126 | 81.8 | 28 | 18.2 | 0 | 0.0 | 0 | 0.0 |
| 1996 | 57 | 93.4 | 4 | 6.6 | 0 | 0.0 | 0 | 0.0 |
| 1997 | 379 | 93.8 | 7 | 1.7 | 18 | 4.5 | 0 | 0.0 |

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1998	1,653	94.7	32	1.8	60	3.4	0	0.0
1999	18	100.0	0	0.0	0	0.0	0	0.0
2000	239	93.0	4	1.6	14	5.4	0	0.0
2001	272	88.3	6	1.9	29	9.4	1	0.3
2002	316	95.2	4	1.2	12	3.6	0	0.0
2003	117	99.2	1	0.8	0	0.0	0	0.0
Total	4,743	80.9	813	13.9	230	3.9	79	1.3

Genetics

Tissue (operculum) samples were collected from 144 wild and 144 hatchery summer Chinook in the Methow Basin in 2008. Results should be available in 2010.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 1989-2008, the PNI was equal to or greater than 0.5 in all but three years (Table 7.25). This indicates that the natural environment has a greater influence on adaptation of Methow summer Chinook than does the hatchery environment.

Table 7.25. Proportionate natural influence (PNI) of the Methow summer Chinook supplementation program for brood years 1989-2007. PNI was calculated as the proportion of naturally produced Chinook in the hatchery broodstock (pNOB) divided by the proportion of hatchery Chinook on the spawning grounds (pHOS) plus pNOB. NOS = number of natural origin Chinook on the spawning grounds; HOS = number of hatchery origin Chinook on the spawning grounds; $\mathrm{NOB}=$ number of natural origin Chinook collected for broodstock; and $\mathrm{HOB}=$ number of hatchery origin Chinook included in hatchery broodstock.

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1989	551	0	0.00	1,297	312	0.81	1.00
1990	1,391	0	0.00	828	206	0.80	1.00
1991	566	0	0.00	924	314	0.75	1.00
1992	460	0	0.00	297	406	0.42	1.00
1993	310	198	0.39	681	388	0.64	0.62

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1994	574	511	0.47	341	244	0.58	0.55
1995	565	649	0.53	173	240	0.42	0.44
1996	424	192	0.31	290	223	0.57	0.64
1997	513	184	0.26	198	264	0.43	0.62
1998	432	243	0.36	153	211	0.42	0.54
1999	536	449	0.46	224	289	0.44	0.49
2000	838	362	0.30	164	339	0.33	0.52
2001	1,052	1,716	0.62	91	266	0.25	0.29
2002	2,512	2,118	0.46	247	241	0.51	0.53
2003	2,231	1,699	0.43	381	101	0.79	0.65
2004	1,609	580	0.26	506	16	0.97	0.79
2005	1,673	888	0.35	391	9	0.98	0.74
2006	2040	693	0.25	500	10	0.98	0.79
2007	763	601	0.44	456	17	0.96	0.69
2008	1,294	652	0.34	404	41	0.91	0.73
Average	$\mathbf{1 , 0 1 7}$	587	$\mathbf{0 . 3 7}$	427	207	0.67	$\boldsymbol{0 . 6 5}$

Natural and Hatchery Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population (spawning escapement). For brood years 1989-2002, NRR for summer Chinook in the Methow averaged 1.02 (range, 0.23-4.84) if harvested fish were not include in the estimate and 2.44 (range, 0.63-10.75) if harvested fish were included in the estimate (Table 7.26). NRRs for more recent brood years will be calculated as soon as all tag recoveries and sampling rates have been loaded into the database.

Hatchery replacement rates (HRR) are the hatchery adult-to-adult returns and were calculated as the ratio of hatchery origin recruits (HOR) to the parent broodstock collected. These rates should be greater than the NRRs and greater than or equal to 5.30 (the calculated target value in Murdoch and Peven 2005). HRRs exceeded NRRs in seven out of the 14 years of data, regardless if harvest was or was not included in the estimate (Table 7.26). Hatchery replacement rates for Methow summer Chinook have exceeded the estimated target value of 5.30 in two of the 14 years of data, regardless if harvest is or is not included in the estimate.

Table 7.26. Broodstock collected, spawning escapements, natural and hatchery origin recruits (NOR and HOR), and natural and hatchery replacement rates (NRR and HRR; with and without harvest) for wild summer Chinook in the Methow Basin, brood years 1989-2002.

Brood year	Broodstock Collected	Spawning Escapement	Harvest not included				Harvest included			
			HOR	NOR	HRR	NRR	HOR	NOR	HRR	NRR
1989	202	551	1,389	915	6.88	1.66	3,395	2,226	16.81	4.04
1990	202	1,391	282	991	1.40	0.71	387	1,354	1.92	0.97
1991	266	566	125	284	0.47	0.50	186	425	0.70	0.75
1992	214	460	108	622	0.50	1.35	139	803	0.65	1.75
1993	234	508	38	427	0.16	0.84	62	697	0.26	1.37
1994	280	1,085	526	513	1.88	0.47	715	685	2.55	0.63
1995	256	1,214	154	1,153	0.60	0.95	228	1,601	0.89	1.32
1996	220	615	61	409	0.28	0.67	75	491	0.34	0.80
1997	209	697	404	1,472	1.93	2.11	653	2,363	3.12	3.39
1998	235	675	1,745	3,266	7.43	4.84	3,864	7,258	16.44	10.75
1999	222	986	18	2,815	0.08	2.85	33	5,165	0.15	5.24
2000	222	1,200	257	812	1.16	0.68	764	2,483	3.44	2.07
2001	223	2,768	308	2,874	1.38	1.04	932	9,709	4.18	3.51
2002	222	4,630	332	1,072	1.50	0.23	882	7,053	3.97	1.52
Average	229	1,239	411	1,259	1.79	1.02	880	3,022	3.84	2.44

Smolt-to-Adult Survivals

Smolt-to-adult survival ratios (SARs) were calculated as the number of hatchery adults divided by the number of hatchery smolts released. SARs were based on CWT returns. For the available brood years, SARs have ranged from 0.00008 to 0.01891 for hatchery summer Chinook in the Methow Basin (Table 7.27).
Table 7.27. Smolt-to-adult ratios (SARs) for Methow summer Chinook, brood years 1989-2003.

Brood year	Number of tagged smolts released	Estimated adult captures	SAR
1989	358,237	2,881	0.00804
1990	371,483	370	0.00100
1991	377,097	130	0.00034
1992	392,636	138	0.00035
1993	200,345	62	0.00031
1994	400,488	710	0.00177
1995	344,974	225	0.00065
1996	289,880	74	0.00026
1997	380,430	649	0.00171
1998	202,559	3,830	0.01891

Brood year	Number of tagged smolts released	Estimated adult captures	SAR
1999	422,473	33	0.00008
2000	334,337	763	0.00228
2001	246,159	927	0.00377
2002	310,846	879	0.00283
2003	353,495	194	0.00055
Average	$\mathbf{3 3 2 , 3 6 3}$	$\mathbf{7 9 1}$	$\mathbf{0 . 0 0 2 3 8}$

7.7 ESA/HCP Compliance

Broodstock Collection

Summer Chinook adults collected at Wells Dam are used for both the Methow and Okanogan supplementation programs. Per the 2007 broodstock collection protocol, 556 natural-origin (adipose fin present) adults were targeted for collection between 1 July and 14 September at the East Ladder of Wells Dam. Actual collections occurred between 2 July and 10 September and totaled 523 summer Chinook. ESA Permit 1347 provides authorization to collect Methow and Okanogan summer Chinook at Wells Dam three days per week and up to 16 hours per day from July through November. During 2007, broodstock collection activities encompassed a total of 23 days, representing 70% of the allowable trapping days allowed under ESA Permit 1347.
Collection of Methow and Okanogan summer Chinook broodstock at Wells Dam occurred concurrently with collection of summer steelhead for the Wells steelhead program authorized under ESA Section 10 Permit 1395. Encounters with steelhead and spring Chinook during Methow and Okanogan summer Chinook broodstock collections did not result in takes that were outside those authorized in Permit 1347 and in Permit 1395 for the Wells Steelhead program. Steelhead encountered during summer Chinook collections that were not required for steelhead broodstock were passed at the trap site and were not physically handled. Any spring Chinook encountered during summer Chinook broodstock activities were also passed without handling.

Hatchery Rearing and Release

The 2007 brood Methow/Okanogan summer Chinook reared throughout their juvenile life-stages at Eastbank Fish Hatchery and the Carlton Acclimation pond without incident (see Section 7.2). The 2007 brood smolt release totaled 433,256 summer Chinook, representing 108\% of the production objective and was compliant with the 10% overage allowable in ESA Section 10 Permit 1347.

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery facilities during the period 1 January 2009 through 31 December 2009. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2009 are provided in Appendix E.

Spawning Surveys

Summer Chinook spawning ground surveys conducted in the Methow Basin during 2009 were consistent with ESA Section 10 Permit No. 1347. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

SECTION 8: OKANOGAN/SIMILKAMEEN SUMMER CHINOOK

8.1 Broodstock Sampling

Summer Chinook broodstock for the Okanogan/Similkameen and Methow programs is collected in the East Ladder of Wells Dam. Refer to Section 7.1 for information on the origin, age and length, sex ratios, and fecundity of summer Chinook broodstock collected at Wells Dam.

8.2 Hatchery Rearing

Rearing History

Number of eggs taken

Based on the unfertilized egg-to-release survival standard of 81%, a total of 711,111 eggs are required to meet the program release goal of 576,000 smolts. From 1989 through 2008, the egg take goal was reached in 11 of those years (Table 8.1).

Table 8.1. Numbers of eggs taken from summer Chinook broodstock collected at Wells Dam for the Okanogan program, 1989-2008.

Return year	Number of eggs taken
1989	724,200
1990	696,144
1991	879,892
1992	729,389
1993	797,234
1994	893,086
1995	736,500
1996	672,000
1997	601,744
1998	584,018
1999	725,589
2000	645,403
2001	418,907
2002	718,599
2003	710,521
2004	805,814
2005	452,928
2006	757,350
2007	824,703
2008	662,668
Average	701,834

Number of acclimation days

Summer Chinook were released volitionally from Similkameen Pond as yearling smolts beginning in April 2009. Fish acclimated at Similkameen were held for 182 to 205 days (Table 8.2). Summer Chinook at Bonaparte Pond were released volitionally between 10 and 22 April. Fish acclimated at Bonaparte Pond were held for 157-170 days before release.

Table 8.2. Number of days Okanogan summer Chinook broods were acclimated at Similkameen and Bonaparte ponds, brood years 1989-2007.

Brood year	Release year	Rearing facility	Transfer date	Release date	Number of days
1989	1991	Similkameen	29-Oct	7-May	190
1990	1992	Similkameen	5-Nov	25-Apr	171
1991	1993	Similkameen	1-Nov	9-Apr	159
1992	1994	Similkameen	2-Nov	1-Apr	150
			26-Feb	1-Apr	34
1993	1995	Similkameen	24-Oct	1-Apr	159
			24-Feb	1-Apr	36
1994	1996	Similkameen	30-Oct	6-Apr	158
			14-Mar	6-Apr	23
1995	1997	Similkameen	1-Oct	1-Apr	182
1996	1998	Similkameen	10-Oct	15-Mar	156
1997	1999	Similkameen	7-Oct	19-Apr	194
1998	2000	Similkameen	5-Oct	19-Apr	196
1999	2001	Similkameen	5-Oct	18-Apr	195
2000	2002	Similkameen	10-Oct	8-Apr	180
2001	2003	Similkameen	1-Oct	29-Apr	210
2002	2004	Similkameen	9-Nov	23-Apr	165
2003	2005	Similkameen	19-Oct	28-Apr	191
2004	2006	Similkameen	26-Oct	23-Apr	179
2005	2007	Bonaparte	6-Nov	11-Apr	156
		Similkameen	25-Oct	18-Apr - 9-May	179-200
2006	2008	Similkameen	15-17-Oct	16-Apr - 7-May	182-205
2007	2009	Bonaparte	3-4-Nov	10-22-Apr	157-170
		Similkameen	20-24-Oct	14-Apr - 9-May	172-201

Release Information

Numbers released

The 2007 Okanogan summer Chinook program achieved 106.8% of the 576,000 target goal with about 615,138 fish being released volitionally in the Similkameen and Okanogan rivers. About 102,099 summer Chinook were released volitionally from the Bonaparte Pond between 10 and 22 April, while 513,039 fish were released volitionally from the Similkameen facility between 14 April and 9 May (Table 8.3).

Table 8.3. Numbers of Okanogan summer Chinook smolts released from the Similkameen and Bonaparte ponds, brood years 1989-2007; NA = not available. The release target for Okanogan summer Chinook is 576,000 smolts.

Brood year	Release year	Rearing facility	CWT mark rate	Number of smolts released
1989	1991	Similkameen	0.5732	352,600
1990	1992	Similkameen	0.6800	540,000
1991	1993	Similkameen	0.5335	675,500
1992	1994	Similkameen	0.9819	548,182
1993	1995	Similkameen	0.6470	586,000
1994	1996	Similkameen	0.4176	536,299
1995	1997	Similkameen	0.9785	587,000
1996	1998	Similkameen	0.9769	507,913
1997	1999	Similkameen	0.9711	589,591
1998	2000	Similkameen	0.9825	293,191
1999	2001	Similkameen	0.9689	630,463
2000	2002	Similkameen	0.9928	532,453
2001	2003	Similkameen	0.9877	26,642
2002	2004	Similkameen	0.9204	388,589
2003	2005	Similkameen	0.9929	579,019
2004	2006	Similkameen	0.9425	703,359
2005	2007	Bonaparte	0	0 (assumed)
2005	2007	Similkameen	0.9862	275,919
		Bonaparte	NA	NA
2006	2008	Similkameen	0.9878	604,035
2007	2009	Bonaparte	0.9920	102,099
		Similkameen	0.9914	513,039
Average			0.8732	503,784

Numbers tagged

The 2007 brood Okanogan summer Chinook from the Similkameen and Bonaparte facilities were respectively 99.1% and 99.2% CWT and adipose fin-clipped (Table 8.3).

In 2009, a total of 11,400 summer Chinook from the 2008 brood were PIT tagged at Ringold Springs Hatchery during 26-28 October 2009. Fish were tagged in two groups of 5,700 per group. One group consisted of IHOT (high density) and the other HCP (low density) fish. These fish were transferred to the Bonaparte Pond. As of the end of January 2010, a total of 2,167 summer Chinook have died (955 from the IHOT group and 1,212 from the HCP group), leaving 9,233 tagged summer Chinook alive at Bonaparte Pond. These fish will be released into the Okanogan River in spring of 2010.

Fish size and condition at release

Size at release of the Similkameen population was 70.5% and 48.2% of the target fork length and weight, respectively. The target CV for fork length was exceeded by 40% (Table 8.4). No information was available for the Bonaparte acclimation group.
Table 8.4. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Okanogan summer Chinook smolts released from the hatchery, brood years 1989-2007. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1989	1991	-	-	41.3	11
1990	1992	143	9.5	37.8	12
1991	1993	125	15.5	22.4	20
1992	1994	120	15.4	20.7	22
1993	1995	132	-	23.2	20
1994	1996	136	16.0	29.6	15
1995	1997	137	8.2	32.8	14
1996	1998	127	12.8	26.2	17
1997	1999	144	9.9	36.0	13
1998	2000	148	5.9	41.0	11
1999	2001	141	15.7	35.4	13
2000	2002	121	13.4	20.4	22
2001	2003	132	8.2	25.7	18
2002	2004	119	13.4	20.8	22
2003	2005	133	10.6	28.9	16
2004	2006	132	9.9	29.8	15
2005	2007	132	9.6	25.9	18
2006	2008	120	12.3	20.9	22
2007	2009	124	12.6	21.9	21
Targets		176	9.0	45.4	10

Survival Estimates

Overall survival of Okanogan summer Chinook from green (unfertilized) egg to release was below the standard set for the program (Table 8.5). Lower than expected green egg-to-eye survival had the greatest effect on the overall survival performance. Currently, it is unknown if gamete viability is
gender biased or is uniform between sexes and more influenced by between-year environmental variations.
Table 8.5. Hatchery life-stage survival rates (\%) for Okanogan summer Chinook, brood years 1989-2007. Survival standards or targets are provided in the last row of the table.

Brood year	Rearing facility	Collection to spawning		Unfertilized egg-eyed	Eyed eggponding	$30 \mathrm{~d}$ after ponding	100 d after ponding	$\begin{gathered} \text { Ponding } \\ \text { to } \\ \text { release } \end{gathered}$	Transport to release	Unfertilized egg-release
		Female	Male							
$1989{ }^{\text {a }}$	Similkameen	89.8	99.5	89.9	96.7	99.7	99.4	73.3	57.4	48.7
$1990^{\text {a }}$	Similkameen	93.9	99.0	84.9	97.1	81.2	80.6	97.7	98.6	77.6
$1991{ }^{\text {a }}$	Similkameen	93.1	95.5	88.2	97.1	99.4	99.1	98.4	97.1	76.8
$1992{ }^{\text {a }}$	Similkameen	96.9	99.0	87.0	98.0	99.9	99.9	91.7	92.6	75.2
$1993{ }^{\text {a }}$	Similkameen	82.2	99.4	85.4	97.6	99.8	99.5	92.0	90.2	73.5
1994	Similkameen	96.1	90.0	86.6	100.0	98.1	97.4	73.1	89.8	60.1
1995	Similkameen	91.9	96.2	98.2	84.1	96.5	96.2	92.7	98.2	79.7
1996	Similkameen	95.4	98.1	83.2	100.0	97.7	96.9	86.5	92.5	75.6
1997	Similkameen	91.9	94.6	86.1	98.4	98.7	98.3	98.8	99.4	98.0
1998	Similkameen	84.0	96.2	54.1	98.0	99.4	98.9	96.6	99.6	50.2
1999	Similkameen	98.8	98.7	92.9	96.9	98.0	97.6	96.9	99.0	86.9
2000	Similkameen	90.5	96.9	89.2	98.5	98.2	98.0	93.6	97.2	82.5
2001	Similkameen	96.2	92.3	89.1	97.6	99.7	99.5	7.4	11.9	6.4
2002	Similkameen	97.1	98.1	89.8	98.0	99.7	99.5	51.6	52.2	54.1
2003	Similkameen	96.7	97.5	86.8	97.6	99.3	98.5	98.0	98.8	81.5
2004	Similkameen	93.6	98.2	84.0	97.6	99.6	99.3	97.8	98.8	80.2
	Bonaparte	93.6	98.2	84.0	97.6	99.6	99.3	97.9	98.9	80.3
2005	Similkameen	97.0	89.6	88.0	99.5	99.5	99.0	93.5	94.6	81.8
	Bonaparte	97.0	89.6	88.0	99.5	99.5	99.0	0.0	0.0	0.0
2006	Similkameen	92.9	89.5	86.3	98.3	99.6	99.3	94.1	95.5	79.8
2007	Similkameen	92.6	99.6	80.8	99.1	99.5	99.1	97.0	98.1	77.7
	Bonaparte	92.6	99.6	80.8	99.1	99.5	99.1	95.6	96.7	76.6
Standard		90.0	85.0	92.0	98.0	97.0	93.0	90.0	95.0	81.0

${ }^{\text {a }}$ Survival rates were calculated from the aggregate population collected at Wells Fish Hatchery volunteer channel and left- and right-ladder traps at Wells Dam.

8.3 Disease Monitoring

Rearing of the 2007 brood Okanogan summer Chinook was similar to previous years with fish being held on well water before being transferred for final acclimation on Similkameen or Okanogan river water. The Similkameen and Bonaparte groups were transferred in late October and early November, respectively. The Bonaparte group began developing bacterial gill and cold water disease infections in mid-February 2009. No further issue developed after treatment. No disease concerns were detected or observed in fish acclimating at the Similkameen facility. No additional disease-related problems were noted before the fish were released.
Results of adult broodstock bacterial kidney disease (BKD) monitoring for Methow/Okanogan summer Chinook are shown in Table 7.11 in Section 7.3.

8.4 Spawning Surveys

Surveys for Okanogan/Similkameen summer Chinook redds were conducted from late September to mid-November, 2009, in the Okanogan and Similkameen rivers. Total redd counts (not peak counts) were conducted in the rivers (see Appendix J for more details).

Redd Counts

A total of 2,970 summer Chinook redds were counted in the Okanogan Basin in 2009 (Table 8.6). This was greater than the overall average of 1,703 redds.
Table 8.6. Total number of redds counted in the Okanogan Basin, 1989-2009.

Survey year	Number of summer Chinook redds		
	Okanogan River	Similkameen River	Total count
1989	165	370	535
1990	108	147	255
1991	64	91	155
1992	53	57	110
1993	162	288	450
1994	375	777	1,152
1995	267	616	883
1996	116	419	535
1997	158	486	644
1998	88	276	364
1999	369	1,275	1,644
2000	549	993	1,542
2001	1,108	1,540	2,648
2002	2,667	3,358	6,025
2003	1,035	378	1,413
2004	1,327	1,660	2,987
2005	1,611	1,423	3,034
2006	2,592	1,666	4,258
2007	1,301	707	2,008
2008	1,146	1,000	2,146
2009	1,672	1,298	2,970
Average	806	896	1,703

Redd Distribution

Summer Chinook redds were not evenly distributed among the survey reaches in the Okanogan Basin. Most redds (91\%) were located in the upper Okanogan and lower Similkameen reaches (reaches upstream of the Riverside Bridge) (Table 8.7; Figure 8.1). Relatively few summer Chinook spawned downstream of the Riverside Bridge on the Okanogan River (Reaches 1-4).

Table 8.7. Total number of summer Chinook redds counted in different reaches in the Okanogan Basin during September through mid-November, 2009. Reach codes are described in Table 2.11.

Survey reach	Total redd count	Percent
Okanogan 1	3	0.00
Okanogan 2	32	0.01
Okanogan 3	91	0.03
Okanogan 4	138	0.05
Okanogan 5	621	0.21
Okanogan 6	787	0.26
Similkameen 1	1,091	0.37
Similkameen 2	207	0.07
Totals	2,970	$\mathbf{1 . 0 0}$

Okan/Similk Summer Chinook Redds

Figure 8.1. Percent of the total number of summer Chinook redds counted in different reaches in the Okanogan Basin during September through mid-November, 2009. Reach codes are described in Table 2.11.

Spawn Timing

Spawning in 2009 began the first week of October in the Similkameen and Okanogan rivers, and peaked during the second week of October in both rivers (Figure 8.2). Spawning began when stream temperature varied from $7-16^{\circ} \mathrm{C}$.

Okan/Similk Summer Chinook

Figure 8.2. Number of new summer Chinook redds counted during different weeks in the Okanogan Basin, September through mid-November, 2009.

Spawning Escapement

Spawning escapement for Okanogan/Similkameen summer Chinook was calculated as the total number of redds times the fish per redd ratio estimated from fish sampled at Wells Dam. The estimated fish per redd ratio for Okanogan/Similkameen summer Chinook in 2009 was 2.54. Multiplying this ratio by the number of redds counted in the Okanogan and Similkameen rivers resulted in a total spawning escapement of 7,544 summer Chinook (Table 8.8).
Table 8.8. Spawning escapements for summer Chinook in the Okanogan and Similkameen rivers for return years 1989-2009.

Return year	Fish/Redd	Spawning escapement		
		Okanogan	Similkameen	Total
1989^{*}	3.30	544	1,221	1,765
1990^{*}	3.40	368	500	868
1991^{*}	3.70	237	337	574
1992^{*}	4.30	228	245	473
1993^{*}	3.30	535	950	1,485
1994^{*}	3.50	1,313	2,720	4,033
1995^{*}	3.40	908	2,094	3,002
1996^{*}	3.40	394	1,425	1,819
1997^{*}	3.40	537	1,652	2,189
1998	3.00	264	828	1,092
1999	2.20	812	2,805	3,617
2000	2.40	1,318	2,383	3,701

Return year	Fish/Redd	Spawning escapement		
		Okanogan	Similkameen	Total
2001	4.10	4,543	6,314	10,857
2002	2.30	6,134	7,723	13,857
2003	2.42	2,505	915	3,420
2004	2.25	2,986	3,735	6,721
2005	2.93	4,720	4,169	8,889
2006	2.02	5,236	3,365	8,601
2007	2.20	2,862	1,555	4,417
2008	3.25	3,725	3,250	6,975
2009	2.54	4,247	3,297	7,544
Average	3.01	2,115	2,452	4,567

* Spawning escapement was calculated using the "Modified Meekin Method" (i.e., 3.1 x jack multiplier).

8.5 Carcass Surveys

Surveys for summer Chinook carcasses were conducted during late September to mid-November, 2009, in the Okanogan and Similkameen rivers (see Appendix J for more details).

Number sampled

A total of 1,772 summer Chinook carcasses were sampled during September through mid-November in the Okanogan Basin (Table 8.9). A total of 920 were sampled in the Okanogan River and 852 in the Similkameen River.

Table 8.9. Numbers of summer Chinook carcasses sampled within each survey reach in the Okanogan Basin, 1993-2009. Reach codes are described in Table 2.11.

Survey year	Number of summer Chinook carcasses								
	Okanogan						Similkameen		Total
	O-1	O-2	O-3	O-4	O-5	O-6	S-1	S-2	
1993^{a}	0	2	3	0	23	13	73	1	115
$1994^{\text {b }}$	0	4	4	0	27	5	318	60	418
1995	0	0	2	0	30	0	239	15	286
1996	0	0	0	2	5	2	226	0	235
1997	0	0	2	0	9	3	225	1	240
1998	0	1	8	1	7	7	340	4	368
1999	0	0	3	2	23	53	766	48	895
2000	0	2	20	15	47	16	727	41	868
2001	0	26	75	10	127	112	1,141	105	1,596
2002	10	32	83	35	204	573	1,265	259	2,461
$2003{ }^{\text {c }}$	0	0	26	0	15	208	180	8	437
2004	0	4	31	24	146	283	1,392	298	2,178

Survey year	Number of summer Chinook carcasses								
	Okanogan						Similkameen		Total
	O-1	O-2	O-3	O-4	O-5	O-6	S-1	S-2	
2005	0	8	93	37	371	431	731	276	1,947
2006	4	3	31	16	120	291	513	100	1,078
2007	2	1	48	1	459	519	657	29	1,716
2008	4	10	40	36	248	665	859	157	2,019
2009	2	7	31	32	348	500	702	150	1,772
Average	1	6	29	12	130	217	609	91	1,096

${ }^{\text {a }} 25$ additional carcasses were sampled on the Similkameen and 46 on the Okanogan without any reach designation.
${ }^{\mathrm{b}}$ One additional carcasses was sampled on the Similkameen without any reach designation.
${ }^{\text {c }} 793$ carcasses were sampled on the Similkameen before initiation of spawning (pre-spawn mortality) and an additional 40 carcasses were sampled on the Okanogan. The cause of the high mortality (Ichthyophthirius multifilis and Flavobacterium columnarae) was exacerbated by high river temperatures.

Carcass Distribution and Origin

Summer Chinook carcasses were not evenly distributed among reaches within the Okanogan Basin in 2009 (Table 8.9; Figure 8.3). Most of the carcasses in the basin were found in the upper Okanogan River and lower Similkameen River. The highest percentage of carcasses (40\%) was sampled in Reach 1 on the Similkameen River between the Driscoll Channel and Oroville Bridge.

Okan/Similk Summer Chinook Carcasses

Figure 8.3. Percent of summer Chinook carcasses sampled within different reaches in the Okanogan Basin during September through mid-November, 2009. Reach codes are described in Table 2.11.
Numbers of wild and hatchery origin summer Chinook carcasses sampled in 2009 will be available after analysis of CWTs and scales. Based on the available data (1991-2008), most fish, regardless of
origin, were found in Reach 1 on the Similkameen River (Driscoll Channel to Oroville Bridge) (Table 8.10). However, a slightly larger percentage of hatchery fish were found in reaches on the Similkameen River than were wild fish (Figure 8.4). In contrast, a larger percentage of wild fish were found in reaches on the Okanogan River.

Table 8.10. Numbers of wild and hatchery summer Chinook carcasses sampled within different reaches in the Okanogan Basin, 1993-2008.

Survey year	Origin	Survey reach								Total
		O-1	O-2	O-3	O-4	O-5	O-6	S-1	S-2	
1993	Wild	0	0	3	0	13	4	48	1	69
	Hatchery	0	2	0	0	10	9	25	0	46
1994	Wild	0	0	1	0	8	1	113	22	145
	Hatchery	0	4	3	0	19	4	205	38	273
1995	Wild	0	0	1	0	10	0	66	4	81
	Hatchery	0	0	1	0	20	0	173	11	205
1996	Wild	0	0	0	1	3	1	53	0	58
	Hatchery	0	0	0	1	2	1	173	0	177
1997	Wild	0	0	1	0	0	2	83	0	86
	Hatchery	0	0	1	0	9	0	142	1	153
1998	Wild	0	1	3	1	6	5	162	4	182
	Hatchery	0	0	5	0	1	2	178	0	186
1999	Wild	0	0	0	0	9	24	298	10	341
	Hatchery	0	0	3	2	14	29	468	38	554
2000	Wild	0	0	8	8	24	11	189	4	244
	Hatchery	0	2	12	7	23	5	538	37	624
2001	Wild	0	10	23	5	67	42	390	54	591
	Hatchery	0	16	52	5	60	70	751	51	1,005
2002	Wild	6	14	20	10	81	212	340	72	755
	Hatchery	4	18	63	25	123	360	925	187	1,705
2003	Wild	0	0	13	0	12	149	221	116	511
	Hatchery	0	0	15	0	5	91	364	257	732
2004	Wild	0	2	19	19	108	225	1,126	260	1,759
	Hatchery	0	2	12	5	38	58	266	38	419
2005	Wild	0	5	51	21	256	364	532	176	1,405
	Hatchery	0	3	42	16	115	67	199	100	542
2006	Wild	2	2	23	11	110	271	70	78	567
	Hatchery	2	1	8	5	10	20	443	22	511
2007	Wild	1	0	33	1	303	347	441	21	1,147
	Hatchery	1	0	22	0	150	172	217	8	570
2008	Wild	2	1	16	11	121	341	361	44	897
	Hatchery	2	9	24	25	127	324	498	113	1,122
Average	Wild	1	2	13	6	71	125	281	54	552
	Hatchery	1	4	16	6	45	76	348	56	552

Okan/Similk Summer Chinook

Figure 8.4. Distribution of wild and hatchery produced carcasses in different reaches in the Okanogan Basin, 1993-2008. Reach codes are described in Table 2.11.

Sampling Rate

Overall, 24% of the total spawning escapement of summer Chinook in the Okanogan Basin was sampled in 2009 (Table 8.11). This was above the target of 20%. Sampling rates among survey reaches varied from 9 to 29%.

Table 8.11. Number of redds and carcasses, total spawning escapement, and sampling rates for summer Chinook in the Okanogan Basin, 2009.

Sampling reach	Total number of redds	Total number of carcasses	Total spawning escapement	Sampling rate
Okanogan 1	3	2	8	0.26
Okanogan 2	32	7	81	0.09
Okanogan 3	91	31	231	0.13
Okanogan 4	138	32	351	0.09
Okanogan 5	621	348	1,577	0.22
Okanogan 6	787	500	1,999	0.25
Similkameen 1	1,091	702	5,771	0.25
Similkameen 2	207	150	$\mathbf{5 , 7 7 2}$	0.29
Total	2,970			$\mathbf{0 . 2 4}$

Length Data

Mean lengths ($\mathrm{POH}, \mathrm{cm}$) of male and female summer Chinook carcasses sampled during surveys on the Okanogan and Similkameen rives in 2009 are provided in Table 8.12. The average size of males and females sampled in the Okanogan Basin were 67 cm and 72 cm , respectively.
Table 8.12. Mean lengths (postorbital-to-hypural length; cm) and standard deviations (in parentheses) of male and female summer Chinook carcasses sampled in different reaches in the Okanogan Basin, 2009.

Stream/watershed	Mean length (cm)	
	Male	Female
Okanogan 1	$67.0(0.0)$	$75.0(0.0)$
Okanogan 2	$68.3(7.1)$	$68.0(0.0)$
Okanogan 3	$63.8(12.8)$	$70.7(4.6)$
Okanogan 4	$67.2(7.8)$	$71.9(4.6)$
Okanogan 5	$65.5(11.5)$	$72.1(4.5)$
Okanogan 6	$64.1(11.2)$	$70.5(4.6)$
Similkameen 1	$69.4(9.2)$	$72.8(4.3)$
Similkameen 2	$69.1(10.7)$	72.7 (4.3)
Total	$\mathbf{6 6 . 6}(10.7)$	$72.0(4.5)$

8.6 Life History Monitoring

Life history characteristics of Okanogan/Similkameen summer Chinook were assessed by examining carcasses on spawning grounds and fish collected or examined at broodstock collection sites, and by reviewing tagging data and fisheries statistics.

Migration Timing

Migration timing for Okanogan/Similkameen summer Chinook is described in Section 7.6.

Age at Maturity

Most of the wild and hatchery summer Chinook sampled during the period 1993-2008 in the Okanogan Basin were age-4 and 5 fish (total age) (Table 8.13; Figure 8.5). A higher percentage of age- 3 and 4 wild Chinook returned to the basin than did age- 3 and 4 hatchery Chinook. In contrast, a higher proportion of age- 5 and 6 hatchery fish returned than did age- 5 and 6 wild fish. Thus, a higher percentage of hatchery fish returned at an older age than did wild fish.
Table 8.13. Proportions of wild and hatchery summer Chinook of different ages (total age) sampled on spawning grounds in the Okanogan Basin, 1993-2008.

Sample year	Origin	Total age						
1993	Wild	0.00	0.00	0.76	0.24	0.00	0.00	63
	Hatchery	0.00	0.02	0.97	0.02	0.00	0.00	61
1994	Wild	0.00	0.03	0.42	0.55	0.00	0.00	135

Sample year	Origin	Total age						Sample size
		2	3	4	5	6	7	
	Hatchery	0.00	0.02	0.09	0.89	0.00	0.00	292
1995	Wild	0.00	0.01	0.26	0.72	0.00	0.00	68
	Hatchery	0.00	0.01	0.16	0.35	0.48	0.00	204
1996	Wild	0.00	0.14	0.50	0.36	0.00	0.00	36
	Hatchery	0.00	0.02	0.21	0.55	0.20	0.01	177
1997	Wild	0.00	0.00	0.05	0.66	0.29	0.00	73
	Hatchery	0.00	0.00	0.03	0.86	0.12	0.00	153
1998	Wild	0.00	0.03	0.64	0.34	0.00	0.00	151
	Hatchery	0.01	0.05	0.50	0.23	0.22	0.00	185
1999	Wild	0.00	0.00	0.33	0.66	0.00	0.00	275
	Hatchery	0.00	0.00	0.12	0.86	0.01	0.00	545
2000	Wild	0.01	0.07	0.28	0.63	0.02	0.00	216
	Hatchery	0.00	0.12	0.03	0.75	0.10	0.00	545
2001	Wild	0.02	0.15	0.75	0.07	0.00	0.00	531
	Hatchery	0.00	0.05	0.88	0.02	0.05	0.00	1,005
2002	Wild	0.01	0.11	0.65	0.23	0.00	0.00	692
	Hatchery	0.00	0.01	0.21	0.78	0.00	0.00	1,681
2003	Wild	0.01	0.02	0.76	0.21	0.00	0.00	478
	Hatchery	0.00	0.03	0.06	0.79	0.12	0.00	653
2004	Wild	0.00	0.12	0.11	0.76	0.01	0.00	1,529
	Hatchery	0.00	0.01	0.32	0.46	0.21	0.00	381
2005	Wild	0.00	0.08	0.76	0.14	0.02	0.00	1,282
	Hatchery	0.00	0.03	0.13	0.69	0.14	0.00	526
2006	Wild	0.00	0.01	0.47	0.51	0.01	0.00	839
	Hatchery	0.01	0.06	0.26	0.27	0.40	0.00	112
2007	Wild	0.01	0.07	0.10	0.80	0.02	0.00	1,061
	Hatchery	0.01	0.21	0.31	0.45	0.02	0.01	519
2008	Wild	0.01	0.31	0.63	0.04	0.01	0.00	848
	Hatchery	0.01	0.02	0.60	0.35	0.02	0.00	1,108
Average	Wild	0.01	0.10	0.46	0.42	0.01	0.00	517
	Hatchery	0.00	0.04	0.33	0.55	0.08	0.00	509

Okan/Similk Summer Chinook

Figure 8.5. Proportions of wild and hatchery summer Chinook of different total ages sampled at broodstock collection sites and on spawning grounds in the Okanogan Basin for the combined years 1993-2008.

Size at Maturity

On average, hatchery summer Chinook were about 2 cm smaller than wild summer Chinook sampled in the Okanogan Basin (Table 8.14). This is interesting given that a slightly higher percentage of hatchery fish returned as age-5 and 6 fish than did wild fish. Future analyses will compare sizes of hatchery and wild fish of the same age groups and gender.

Table 8.14. Mean lengths ($\mathrm{POH} ; \mathrm{cm}$) and variability statistics for wild and hatchery summer Chinook sampled in the Okanogan Basin, 1993-2008; SD = 1 standard deviation.

Sample year	Origin	Sample size	Summer Chinook length (POH; cm)			
			Mean	SD	Minimum	Maximum
1993	Wild	69	73	7	52	90
	Hatchery	59	62	6	47	75
1994	Wild	164	71	7	40	86
	Hatchery	300	69	8	30	84
1995	Wild	81	75	6	54	87
	Hatchery	201	73	8	39	87
1996	Wild	22	68	14	22	85
	Hatchery	26	75	8	60	88
1997	Wild	87	71	7	44	85
	Hatchery	148	74	6	48	88
1998	Wild	182	70	8	45	94
	Hatchery	186	65	12	30	87
1999	Wild	340	73	7	56	91

Sample year	Origin	Sample size	Summer Chinook length ($\mathrm{POH} ; \mathbf{c m}$)			
			Mean	SD	Minimum	Maximum
	Hatchery	554	71	7	23	84
2000	Wild	241	70	10	32	86
	Hatchery	624	69	12	24	92
2001	Wild	579	67	9	26	90
	Hatchery	997	61	8	32	90
2002	Wild	755	69	9	28	91
	Hatchery	1,705	70	8	33	87
2003	Wild	533	68	9	30	93
	Hatchery	732	69	10	26	90
2004	Wild	1,757	71	10	33	94
	Hatchery	416	66	9	41	92
2005	Wild	1,407	66	7	41	99
	Hatchery	542	68	8	31	85
2006	Wild	940	72	6	31	91
	Hatchery	138	70	10	33	86
2007	Wild	1,147	75	9	27	99
	Hatchery	570	63	13	30	85
2008	Wild	897	65	9	29	86
	Hatchery	1,122	65	8	32	89
Pooled	Wild	575	70	8	22	99
	Hatchery	520	68	9	23	92

Contribution to Fisheries

Most of the harvest on Okanogan/Similkameen summer Chinook occurred in the Ocean (Table 8.15). Ocean harvest has made up $51-100 \%$ of all Okanogan/Similkameen summer Chinook harvested. Brood years 1989, 1997-2000, and 2002-2003 provided the largest harvests, while brood year 1996 provided the lowest.

Table 8.15. Estimated number and percent (in parentheses) of Okanogan/Similkameen summer Chinook captured in different fisheries, brood years 1989-2003.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational (sport)	
1989	$2,379(80)$	$553(19)$	$0(0)$	$42(1)$	2,974
1990	$356(89)$	$34(8)$	$0(0)$	$12(3)$	402
1991	$218(85)$	$37(15)$	$0(0)$	$0(0)$	255
1992	$439(92)$	$28(6)$	$2(0)$	$10(2)$	479
1993	$24(80)$	$6(20)$	$0(0)$	$0(0)$	30

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational (sport)	
1994	$385(92)$	$23(6)$	$2(0)$	$7(2)$	417
1995	$656(93)$	$9(1)$	$12(2)$	$25(4)$	702
1996	$5(100)$	$0(0)$	$0(0)$	$0(0)$	5
1997	$6,658(92)$	$133(2)$	$39(1)$	$416(6)$	7,246
1998	$4,357(89)$	$251(5)$	$45(1)$	$219(4)$	4,872
1999	$1,356(68)$	$224(11)$	$31(2)$	$383(19)$	1,994
2000	$3,127(69)$	$533(12)$	$222(5)$	$662(15)$	4,544
2001	$183(57)$	$81(25)$	$31(10)$	$24(8)$	319
2002	$680(57)$	$186(16)$	$90(8)$	$228(19)$	1,184
2003	$656(51)$	$123(10)$	$116(9)$	$391(30)$	1,286

Straying

Stray rates were determined by examining CWTs recovered on spawning grounds within and outside the Okanogan Basin. Targets for strays based on return year (recovery year) and brood year should be less than 5\%.

Rates of Okanogan summer Chinook straying into basins outside the Okanogan have been very low (Table 8.16). Although a few Okanogan summer Chinook have strayed into other spawning areas, straying, on average, has been less than 5\%. The Chelan tailrace has received the largest number of Okanogan strays.
Table 8.16. Number and percent of spawning escapements within other non-target basins that consisted of Okanogan summer Chinook, return years 1994-2006. For example, for return year 2002, 1% of the summer Chinook spawning escapement in the Entiat Basin consisted of Okanogan summer Chinook. Percent strays should be less than 5%.

Return year	Wenatchee		Methow		Chelan		Entiat		Hanford Reach	
	Number	\%								
1994	0	0.0	0	0.0	-	-	-	-	-	-
1995	0	0.0	0	0.0	-	-	-	-	-	-
1996	0	0.0	0	0.0	-	-	-	-	-	-
1997	0	0.0	0	0.0	-	-	-	-	-	-
1998	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1999	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2000	0	0.0	6	0.5	30	4.5	0	0.0	3	0.0
2001	12	0.1	0	0.0	10	1.0	0	0.0	0	0.0
2002	0	0.0	3	0.1	4	0.7	5	1.0	0	0.0
2003	0	0.0	8	0.2	22	5.3	14	2.0	0	0.0
2004	0	0.0	0	0.0	5	1.2	0	0.0	0	0.0
2005	5	0.1	27	1.1	36	8.1	7	1.9	8	0.0

Return year	Wenatchee		Methow		Chelan		Entiat		Hanford Reach	
	Number	\%								
2006	0	0.0	5	0.2	4	1.0	2	0.3	0	0.0
Total	17	0.0	49	0.2	111	2.7	28	0.9	11	0.0

On average, less than 1% of the returns have strayed into non-target spawning areas, falling below the target of 5\% (Table 8.17). Depending on brood year, percent strays into non-target spawning areas have ranged from $0-4.2 \%$. Few ($<1 \%$ on average) have strayed into non-target hatchery programs.
Table 8.17. Number and percent of Okanogan summer Chinook that homed to target spawning areas and the target hatchery, and number and percent that strayed to non-target spawning areas and non-target hatchery programs, by brood years 1989-2003. Percent stays should be less than 5%.

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1989	3,132	69.7	1,328	29.6	2	0.0	31	0.7
1990	729	71.4	291	28.5	0	0.0	1	0.1
1991	1,125	71.3	453	28.7	0	0.0	0	0.0
1992	1,264	68.5	572	31.0	8	0.4	1	0.1
1993	54	62.1	32	36.8	0	0.0	1	1.1
1994	924	80.8	203	17.7	16	1.4	1	0.1
1995	1,883	85.4	271	12.3	50	2.3	0	0.0
1996	27	100.0	0	0.0	0	0.0	0	0.0
1997	11,659	97.1	309	2.6	35	0.3	2	0.0
1998	2,784	95.5	99	3.4	31	1.1	2	0.1
1999	828	96.7	18	2.1	10	1.2	0	0.0
2000	2,090	93.8	29	1.3	94	4.2	15	0.7
2001	104	98.1	2	1.9	0	0.0	0	0.0
2002	701	96.3	17	2.3	10	1.4	0	0.0
2003	1,508	96.4	44	2.8	12	0.8	0	0.0
Total	28,812	87.8	3,668	11.2	268	0.8	54	0.2

Genetics

Tissue (operculum) samples were collected from 144 wild and 144 hatchery summer Chinook in the Okanogan Basin in 2008. Results should be available in 2010.

Proportion of Natural Influence

Another method for assessing the genetic risk of a supplementation program is to determine the influence of the hatchery and natural environments on the adaptation of the composite population. This is estimated by the proportion of natural origin fish in the hatchery broodstock (pNOB) and the proportion of hatchery origin fish in the natural spawning escapement (pHOS). The ratio $\mathrm{pNOB} /(\mathrm{pHOS}+\mathrm{pNOB})$ is the Proportion of Natural Influence (PNI). The larger the ratio (PNI), the greater the strength of selection in the natural environment relative to that of the hatchery environment. In order for the natural environment to dominate selection, PNI should be greater than 0.5 (HSRG/WDFW/NWIFC 2004).

For brood years 1989-2008, the PNI was equal to or greater than 0.5 in 11 out of the 20 years (Table 8.18). This indicates that in those years the natural environment has had a relatively greater influence on adaptation of Okanogan/Similkameen summer Chinook than has the hatchery environment.

Table 8.18. Proportionate natural influence (PNI) of the Okanogan/Similkameen summer Chinook supplementation program for brood years 1989-2007. PNI was calculated as the proportion of naturally produced Chinook in the hatchery broodstock (pNOB) divided by the proportion of hatchery Chinook on the spawning grounds (pHOS) plus pNOB. NOS = number of natural origin Chinook on the spawning grounds; HOS = number of hatchery origin Chinook on the spawning grounds; NOB $=$ number of natural origin Chinook collected for broodstock; and $\mathrm{HOB}=$ number of hatchery origin Chinook included in hatchery broodstock.

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
1989	1,782	0	0.00	1,297	312	0.81	1.00
1990	881	0	0.00	828	206	0.80	1.00
1991	574	0	0.00	924	314	0.75	1.00
1992	473	0	0.00	297	406	0.42	1.00
1993	915	570	0.38	681	388	0.64	0.63
1994	1,323	2,710	0.67	341	244	0.58	0.46
1995	979	2,023	0.67	173	240	0.42	0.39
1996	568	1,251	0.69	290	223	0.57	0.45
1997	862	1,327	0.61	198	264	0.43	0.41
1998	600	492	0.45	153	211	0.42	0.48
1999	1,275	2,342	0.65	224	289	0.44	0.40
2000	1,175	2,527	0.68	164	339	0.33	0.33
2001	4,306	6,551	0.60	91	266	0.25	0.29
2002	4,358	9,499	0.69	247	241	0.51	0.43
2003	1,932	1,488	0.44	381	101	0.79	0.64
2004	5,356	1,424	0.21	506	16	0.97	0.82
2005	6,441	2,448	0.28	391	9	0.98	0.78
2006	5,508	3,094	0.36	500	10	0.98	0.73
2007	2,983	1,434	0.32	456	17	0.96	0.75
2008	2,999	3,977	0.57	404	41	0.91	0.61

Brood year	Spawners			Broodstock			PNI
	NOS	HOS	pHOS	NOB	HOB	pNOB	
Average	2,265	2,158	0.49	427	227	0.67	0.58

Natural and Hatchery Replacement Rates

Natural replacement rates (NRR) were calculated as the ratio of natural origin recruits (NOR) to the parent spawning population (spawning escapement). For brood years 1989-2002, NRR for summer Chinook in the Okanogan averaged 0.79 (range, 0.29-3.61) if harvested fish were not include in the estimate and 2.17 (range, 0.39-9.66) if harvested fish were included in the estimate (Table 8.19). NRRs for more recent brood years will be calculated as soon as all tag recoveries and sampling rates have been loaded into the database.

Hatchery replacement rates (HRR) are the hatchery adult-to-adult returns and were calculated as the ratio of hatchery origin recruits (HOR) to the parent broodstock collected. These rates should be greater than the NRRs and greater than or equal to 5.30 (the calculated target value in Murdoch and Peven 2005). HRRs exceeded NRRs in 11 of the 14 years of data, regardless if harvest was or was not included in the estimate (Table 8.19). Hatchery replacement rates for Okanogan summer Chinook have exceeded the estimated target value of 5.30 in six or eight of the 14 years of data depending on if harvest was or was not included in the estimate.

Table 8.19. Broodstock collected, spawning escapements, natural and hatchery origin recruits (NOR and HOR), and natural and hatchery replacement rates (NRR and HRR; with and without harvest) for wild summer Chinook in the Okanogan Basin, brood years 1989-2002.

Brood year	Broodstock Collected	Spawning Escapement	Harvest not included				Harvest included			
			HOR	NOR	HRR	NRR	HOR	NOR	HRR	NRR
1989	304	1,765	4,493	1,885	14.78	1.07	7,467	3,142	24.56	1.78
1990	288	868	1,021	1,402	3.55	1.62	1,423	1,961	4.94	2.26
1991	364	574	1,578	787	4.34	1.37	1,833	914	5.04	1.59
1992	304	473	1,845	962	6.07	2.03	2,324	1,216	7.64	2.57
1993	328	1,485	87	431	0.27	0.29	117	579	0.36	0.39
1994	302	4,033	1,144	1,418	3.79	0.35	1,561	1,932	5.17	0.48
1995	385	3,002	2,204	1,302	5.72	0.43	2,906	1,715	7.55	0.57
1996	330	1,819	27	665	0.08	0.37	32	767	0.10	0.42
1997	313	2,189	12,005	4,179	38.35	1.91	19,251	6,729	61.50	3.07
1998	352	1,092	2,916	3,946	8.28	3.61	7,788	10,551	22.13	9.66
1999	333	3,617	856	6,347	2.57	1.75	2,850	21,086	8.56	5.83
2000	334	3,701	2,228	1,717	6.67	0.46	6,772	5,235	20.28	1.41
2001	335	10,857	106	8,477	0.32	0.78	425	34,600	1.27	3.19
2002	333	13,857	728	5,530	2.19	0.40	1,912	16,458	5.74	1.19
Average	329	3,524	2,231	2,789	6.78	0.79	4,047	7,635	12.30	2.17

Smolt-to-Adult Survivals

Smolt-to-adult survival ratios (SARs) were calculated as the number of hatchery adults divided by the number of hatchery smolts released. SARs were based on CWT returns. For the available brood years, SARs have ranged from 0.00006 to 0.03272 for hatchery summer Chinook in the Okanogan Basin (Table 8.21).
Table 8.21. Smolt-to-adult ratios (SARs) for Okanogan/Similkameen summer Chinook, brood years 19892003.

Brood year	Number of tagged smolts released	Estimated adult captures	SAR
1989	202,125	4,298	0.02126
1990	367,207	973	0.00265
1991	360,380	977	0.00271
1992	537,190	2,299	0.00428
1993	379,139	117	0.00031
1994	217,818	1,538	0.00706
1995	574,197	2,855	0.00497
1996	487,776	31	0.00006
1997	572,531	18,731	0.03272
1998	287,948	7,684	0.02669
1999	610,868	2,779	0.00455
2000	528,639	6,746	0.01276
2001	26,315	424	0.01611
2002	245,997	1,906	0.00775
2003	574,908	2,838	0.00494
Average	398,203	3,613	0.00907

8.7 ESA/HCP Compliance

Broodstock Collection

Because summer Chinook adults collected at Wells Dam are used for both the Methow and Okanogan supplementation programs, please refer to Section 7.7 for information on ESA compliance during broodstock collection.

Hatchery Rearing and Release

The 2007 brood Okanogan/Similkameen summer Chinook reared throughout their juvenile lifestages at Eastbank Fish Hatchery and Similkameen Acclimation ponds without incident; although there was minor mortality associated with bacterial cold-water disease and bacterial gill disease (see Section 8.3). The 2006 brood smolt release from the Similkameen pond totaled 615,138 summer

Chinook, representing 107\% of the production objective for the Okanogan/Similkameen program and was compliant with the 10% overage in production allowable in ESA Section 10 Permit 1347.

Hatchery Effluent Monitoring

Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery facilities during the period 1 January 2009 through 31 December 2009. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2009 are provided in Appendix E.

Spawning Surveys

Summer Chinook spawning ground surveys conducted in the Okanogan Basin during 2009 were consistent with ESA Section 10 Permit No. 1347. Because of the difficulty of quantifying the level of take associated with spawning ground surveys, the Permit does not specify a take level associated with these activities, even though it does authorize implementation of spawning ground surveys. Therefore, no take levels are reported. However, to minimize potential impacts to established redds, wading was restricted to the extent practical, and extreme caution was used to avoid established redds when wading was required.

SECTION 9: TURTLE ROCK SUMMER CHINOOK

9.1 Broodstock Sampling

Broodstock for the Turtle Rock programs (yearling and sub-yearling) are collected as part of the Wells summer Chinook volunteer program. Refer to Snow et al. (2007) for information related to adults collected for these programs.

9.2 Hatchery Rearing

Rearing History

Number of eggs taken

Broodstock for the Turtle Rock summer Chinook are collected at Wells Dam and consist of volunteers to the hatchery. In recent years some naturally produced fish have been incorporated into the brood. Eyed eggs are transferred from Wells FH to Eastbank FH for rearing. As such, the number of green (unfertilized) eggs collected for this program is reported as egg inventory and distribution reports provided by Wells FH personnel.

Disease

Within the normal and accelerated subyearling program, the primary cause of mortality in the early life stages (swim-up to early ponding) continues to be coagulated yolk as a result of lack of chilled water during incubation. No additional significant health concerns were encountered with the two subyearling groups during rearing and no treatments were recommended. The yearling program had no significant health concerns during rearing and no treatments were recommended.

Number of acclimation days

Rearing of the 2007-brood normal and accelerated subyearling Turtle Rock summer Chinook was similar to previous years with fish being held on well water before being transferred to Turtle Rock for final acclimation in May 2008. Both rearing groups were released on 20 June 2008 after 31 days of acclimation on Columbia River water. One group of yearling Turtle Rock summer Chinook was released on 7 May 2009, after 175 days of acclimation on Columbia River water. The Chelan River net pen group was released on 29 May, after 34 days of acclimation on Chelan River water.

Release Information

Numbers released

The 2007 subyearling Turtle Rock summer Chinook program achieved 54.3\% of the 810,000 target goal with about 439,806 fish being released (Table 9.1). The 2007 accelerated subyearling summer Chinook program achieved 48.4% of the 810,000 target goal with about 392,024 fish being released (Table 9.2). The 2007 yearling summer Chinook program achieved 86.8% of the 200,000 target goal with about 173,607 fish being released (61,003 from Turtle Rock and 112,604 from the Chelan River net pens) (Table 9.3).

Table 9.1. Numbers of Turtle Rock summer Chinook subyearlings released from the hatchery, 1995-2008. The release target for Turtle Rock summer Chinook subyearlings is 810,000 fish.

Brood year	Release year	CWT mark rate	Number of subyearlings released
1995	1996	0.1873	$1,074,600$
1996	1997	0.9653	385,215
1997	1998	0.9780	508,060
1998	1999	0.6453	301,777
1999	2000	0.9556	369,026
2000	2001	0.3678	604,892
2001	2002	0.9871	214,059
2002	2003	0.3070	656,399
2003	2004	0.4138	491,480
2004	2006	0.4591	411,707
2005	2007	0.4337	490,074
2006	2008	0.3388	538,392
2007	2009	0.4385	439,806
2008		0.6355	309,003
			485,321

Table 9.2. Numbers of Turtle Rock summer Chinook accelerated subyearlings released from the hatchery, 1995-2008. The release target for Turtle Rock summer Chinook accelerated subyearlings is 810,000 fish.

Brood year	Release year	CWT mark rate	Number of subyearlings released
1995	1996	0.9834	169,000
1996	1997	0.4163	477,300
1997	1998	0.3767	521,480
1998	1999	0.6033	307,571
1999	2000	0.9748	347,946
2000	2001	0.4331	449,329
2001	2002	0.4086	480,584
2002	2003	0.5492	364,461
2003	2004	0.6414	289,696
2004	2005	0.5471	364,453
2005	2007	0.9783	457,340
2006	2008	0.5510	342,273
2007	2009	0.4745	392,024
2008		0.5295	372,320
			381,128

Table 9.3. Numbers of Turtle Rock summer Chinook yearling smolts released from the hatchery, 1995-2007. The release target for Turtle Rock summer Chinook is 200,000 smolts.

Brood year	Release year	Acclimation facility	CWT mark rate	Number of smolts released
1995	1997	Turtle Rock	0.9688	150,000
1996	1998	Turtle Rock	0.9582	202,727
1997	1999	Turtle Rock	0.9800	202,989
1998	2000	Turtle Rock	0.9337	217,797
1999	2001	Turtle Rock	0.9824	285,707
2000	2002	Turtle Rock	0.9948	165,935
2001	2003	Turtle Rock	0.9824	203,279
2002	2004	Turtle Rock	0.9799	195,851
2003	2005	Turtle Rock	0.9258	215,366
2004	2006	Turtle Rock	0.9578	206,734
2005	2007	Turtle Rock	0.9810	204,644
2006	2008	Chelan	0.9752	99,271
		Turtle Rock	0.9752	43,943
2007	2009	Chelan	0.9426	112,604
		Turtle Rock	0.9426	61,003
Average				197,527

Numbers tagged

About 47.5% of the Turtle Rock accelerated subyearling Chinook and 43.9% of the normal subyearling Chinook were adipose fin-clipped and CWT. The remaining fish were released untagged and unmarked. The yearling Chinook were 94.3\% CWT and adipose fin-clipped. No 2007 brood Turtle Rock summer Chinook were PIT tagged.

In 2009, a total of 20,202 yearling summer Chinook from the 2008 brood were PIT tagged at Eastbank Hatchery during 14-16 and 28-30 September. Fish were tagged in two groups of about 11,100 per group. One group came from a circular-reuse rearing pond (treatment group) and the other from a standard raceway (control group). As of the end of January 2010, a total of 28 summer Chinook have died (15 from the standard raceway and 13 from the circular-reuse pond). An additional two fish have shed their tags, all from the standard raceway. A total of 22,172 tagged Chinook were alive at the end of January. These fish are rearing at the Chelan Tailrace net pens.
Table 9.4 summarizes the number of yearling summer Chinook that have been PIT-tagged and released from the Turtle Rock Program.

Table 9.4. Summary of PIT-tagging activities for Turtle Rock yearling summer Chinook, brood years 20072008.

Brood year	Release year	Raceway	Number of fish tagged	Number of tagged fish that died	Number of tags shed	Number of tagged fish released
	2009	Circular Reuse	10,104	128	1	9,975
		10,102	162	3	9,937	
2008	2010	Circular Reuse	11,100	-	-	-
		Standard	11,102	-	-	-

Fish size and condition at release

Size at release of the normal subyearling Turtle Rock summer Chinook was 70.5% and 49.1% of the target fork length and weight, respectively. This brood year was below the target CV for length by 18\% (Table 9.5).

Table 9.5. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Turtle Rock summer Chinook subyearlings released from the hatchery, 1995-2007. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	$\mathbf{C V}$	Grams (g)	Fish/pound
1995	1996	102	6.3	12.6	36
1996	1997	87	8.0	7.4	62
1997	1998	98	6.2	10.2	45
1998	1999	96	6.3	10.7	43
1999	2000	90	9.0	9.8	46
2000	2001	100	7.1	11.3	40
2001	2002	104	7.2	13.4	34
2002	2003	97	7.3	11.8	39
2003	2004	101	8.0	12.0	43
2004	2005	100	7.8	11.4	40
2005	2006	100	6.5	12.5	36
2006	2007	95	7.2	9.5	48
2007	2008	79	7.4	5.6	81
	$\boldsymbol{1 1 2}$	$\mathbf{9 . 0}$	$\mathbf{1 1 . 4}$	40	

Size at release of the accelerated subyearling Turtle Rock Chinook was 84.8% and 87.7% of the target fork length and weight, respectively. This brood year was below the target CV for length by 14\% (Table 9.6).

Table 9.6. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Turtle Rock summer Chinook accelerated subyearlings released from the hatchery, 1995-2007. Size targets are provided in the last row of the table.

Brood year	Release year	Fork length (mm)		Mean weight	
		Mean	CV	Grams (g)	Fish/pound
1995	1996	129	7.1	27.3	17
1996	1997	107	6.5	15.6	29
1997	1998	117	6.0	18.9	24
1998	1999	119	8.0	18.9	24
1999	2000	114	6.7	19.0	24
2000	2001	111	7.0	16.8	27
2001	2002	117	8.4	19.5	23
2002	2003	116	11.3	21.2	21
2003	2004	113	14.9	17.0	30
2004	2005	117	11.3	20.1	23
2005	2006	119	9.1	22.2	21
2006	2007	118	8.3	19.1	24
2007	2008	95	7.7	10.0	45
	$\mathbf{1 1 2}$	9.0	11.4	40	

Size at release of the yearling summer Chinook was 86.9% and 100.6% of the target fork length and weight, respectively, for the Chelan Falls group. This group also exceeded the target CV for length by 209%. The Turtle Rock group was 94.9% and 108.6% of the target fork length and weight, respectively, and exceeded the target CV for length by 162\% (Table 9.7).

Table 9.7. Mean lengths (FL, mm), weight (g and fish/pound), and coefficient of variation (CV) of Turtle Rock summer Chinook yearlings released from the hatchery, 1995-2007. Size targets are provided in the last row of the table.

Brood year	Release year	Acclimation facility	Fork length (mm)		Mean weight	
			$\mathbf{C V}$	Grams (g)	Fish/pound	
1995	1997	Turtle Rock	-	-	-	-
1996	1998	Turtle Rock	166	14.2	60.9	7
1997	1999	Turtle Rock	198	4.6	91.3	5
1998	2000	Turtle Rock	161	11.9	53.9	8
1999	2001	Turtle Rock	164	18.6	59.0	8
2000	2002	Turtle Rock	170	15.3	59.0	8
2001	2003	Turtle Rock	154	22.3	48.6	9
2002	2004	Turtle Rock	157	16.7	44.0	12
2003	2005	Turtle Rock	173	13.8	54.7	8
2004	2006	Turtle Rock	176	20.6	45.3	7
2005	2007	Turtle Rock	158	11.0	43.5	10
2006	2008	Chelan	172	14.5	58.4	8
	Turtle Rock	157	25.8	54.1	8	
2007	2009	Chelan	153	18.8	45.7	10

Brood year	Release year	Acclimation facility	Fork length (mm)		Mean weight	
			CV	Grams (g)	Fish/pound	
	Turtle Rock	167	14.6	49.3	9	
Targets			176	9.0	45.4	10

Survival Estimates

Normal subyearling releases

Overall survival of the normal subyearling Turtle Rock summer Chinook program from green egg to release was below the standard set for the program (Table 9.8). Lower than expected survival at ponding and post-ponding (because of coagulated yolk) reduced the overall program performance.
Table 9.8. Hatchery life-stage survival rates (\%) for Turtle Rock subyearling (zero program) summer Chinook, brood years 2004-2007. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0} \mathbf{d}$ after ponding	$\mathbf{1 0 0 ~ d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	NA	NA		74.4	93.9	91.4	90.8	99.7	63.1
2005	NA	NA	94.4	87.9	85	84.8	84.2	99.4	69.8
2006	NA	NA	97.8	87.9	85.0	84.8	84.2	99.4	72.4
2007	NA	NA	92.7	84.9	88.5	86.7	84.8	99.6	66.7
Standard	$\mathbf{9 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{9 2 . 0}$	$\mathbf{9 8 . 0}$	$\mathbf{9 7 . 0}$	$\mathbf{9 3 . 0}$	$\mathbf{9 0 . 0}$	$\mathbf{9 5 . 0}$	$\mathbf{8 1 . 0}$

Accelerated subyearling releases

Overall survival of the accelerated subyearling Turtle Rock summer Chinook program from green egg to release was below the standard set for the program (Table 9.9). Lower than expected survival between fertilization and post-ponding (because of coagulated yolk) reduced the overall program performance.
Table 9.9. Hatchery life-stage survival rates (\%) for Turtle Rock subyearling (accelerated program) summer Chinook, brood years 2004-2007. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed egg- ponding	$\mathbf{3 0 ~ d}$ after ponding	$\mathbf{1 0 0 ~ d}$ after ponding	Ponding to release	Transport to release	Unfertilized egg-release
	Nemale	Male		92.5	98.3	93.4	92.4	90.0	97.8
2005	NA	NA	93.8	94.6	83.7	83.4	81.7	98.8	72.8
2006	NA	NA	86.1	94.6	83.7	83.4	81.7	98.8	66.5
2007	NA	NA	93.4	95.4	78.4	77.5	76.3	98.9	67.9
Standard	$\mathbf{9 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{9 2 . 0}$	$\mathbf{9 8 . 0}$	$\mathbf{9 7 . 0}$	$\mathbf{9 3 . 0}$	$\mathbf{9 0 . 0}$	$\mathbf{9 5 . 0}$	$\mathbf{8 1 . 0}$

Yearling releases

Overall survival of the yearling Turtle Rock summer Chinook program from green egg to release was below the standard set for the program (Table 9.10). Lower than expected survival between the unfertilized-to-egg stage reduced the overall program performance.
Table 9.10. Hatchery life-stage survival rates (\%) for Turtle Rock yearling summer Chinook, brood years 2004-2007. Survival standards or targets are provided in the last row of the table.

Brood year	Collection to spawning		Unfertilized egg-eyed	Eyed eggponding	30 d after ponding	100 d after ponding	Ponding to release	Transport to release	Unfertilized eggrelease
	Female	Male							
2004	NA	NA	92.9	97.7	96.8	96.4	95.5	99.6	86.7
2005	NA	NA	89.1	97.5	98.1	97.8	96.6	99.1	83.9
2006	NA	NA	86.2	78.8	97.6	97.1	95.2	98.7	64.8
2007 (Turtle Rock)	NA	NA	80.3	97.6	98.8	98.2	95.4	99.1	74.8
2007 (Chelan Falls)	NA	NA	80.3	97.6	98.8	98.2	94.9	97.1	74.4
Standard	90.0	85.0	92.0	98.0	97.0	93.0	90.0	95.0	81.0

9.3 Life History Monitoring

Life history characteristics of Turtle Rock summer Chinook were assessed by examining carcasses on spawning grounds and by reviewing tagging data and fisheries statistics.

Contribution to Fisheries

Normal subyearling releases

Most of the harvest on Turtle Rock summer Chinook (normal subyearling releases) occurred in the Ocean (Table 9.11). Most of the harvest on Turtle Rock summer Chinook occurred in ocean fisheries (10-100\% of the fish harvested). Brood year 1995 and 1999 provided the largest total harvests, while brood year 1997 and 1998 provided the lowest.
Table 9.11. Estimated number and percent (in parentheses) of Turtle Rock summer Chinook (normal subyearling releases) captured in different fisheries, brood years 1995-2003.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational (sport)	
1995	$693(84)$	$106(13)$	$11(1)$	$16(2)$	826
1996	$74(80)$	$0(0)$	$5(5)$	$13(14)$	92
1997	$10(100)$	$0(0)$	$0(0)$	$0(0)$	10
1998	$21(100)$	$0(0)$	$0(0)$	$0(0)$	21
1999	$584(76)$	$81(10)$	$6(1)$	$102(13)$	773
2000	$36(55)$	$8(12)$	$8(12)$	$14(21)$	66
2001	$164(64)$	$30(12)$	$20(8)$	$44(17)$	258
2002	$23(21)$	$33(29)$	$3(3)$	$53(47)$	112

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational (sport)	
2003	$9(10)$	$55(61)$	$2(2)$	$24(27)$	90

Accelerated subyearling releases

Most of the harvest on Turtle Rock summer Chinook (accelerated subyearling releases) occurred in ocean fisheries (Table 9.12). Ocean harvest has made up 59% to 100% of all Turtle Rock summer Chinook harvested (no fish from the 2003 brood year were harvested). Brood year 2001 provided the largest total harvest, while brood years 1995, 1997, and 2003 provided the lowest.

Table 9.12. Estimated number and percent (in parentheses) of Turtle Rock summer Chinook (accelerated subyearling releases) captured in different fisheries, brood years 1995-2003.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational (sport)	
1995	$3(100)$	$0(0)$	$0(0)$	$0(0)$	3
1996	$77(89)$	$5(6)$	$5(6)$	$0(0)$	87
1997	$3(100)$	$0(0)$	$0(0)$	$0(0)$	3
1998	$97(95)$	$2(2)$	$3(3)$	$41(26)$	102
1999	$99(63)$	$14(9)$	$2(1)$	$0(0)$	156
2000	$117(100)$	$0(0)$	$0(0)$	$80(23)$	347
2001	$205(59)$	$49(14)$	$13(4)$	$0(0)$	9
2002	$9(100)$	$0(0)$	$0(0)$	$0(0)$	0
2003	$0(0)$	$0(0)$	$0(0)$		

Yearling releases

Most of the harvest on Turtle Rock summer Chinook (yearling releases) occurred in ocean fisheries (Table 9.13). Ocean harvest has made up 49\% to 95% of all Turtle Rock summer Chinook harvested. Brood year 1998 provided the largest harvest, while brood year 1995 provided the lowest.

Table 9.13. Estimated number and percent (in parentheses) of Turtle Rock summer Chinook (yearling releases) captured in different fisheries, brood years 1995-2003.

Brood year	Ocean fisheries	Columbia River Fisheries			Total
		Tribal	Commercial (Zones 1-5)	Recreational (sport)	
1995	$471(78)$	$51(8)$	$32(5)$	$50(8)$	604
1996	$770(95)$	$14(2)$	$2(0)$	$21(3)$	807
1997	$2,840(92)$	$61(2)$	$27(1)$	$164(5)$	3,092
1998	$4,299(90)$	$224(5)$	$16(0)$	$228(5)$	4,767
1999	$1,659(73)$	$234(10)$	$7(0)$	$382(17)$	2,282
2000	$1,123(73)$	$129(8)$	$48(3)$	$244(16)$	1,544
2001	$1,917(59)$	$454(14)$	$178(5)$	$723(22)$	3,272
2002	$1,007(51)$	$384(20)$	$112(6)$	$466(24)$	1,969
2003	$778(49)$	$420(26)$	$68(4)$	$327(21)$	1,593

Straying

Normal subyearling releases

Rates of Turtle Rock summer Chinook (normal subyearling releases) straying into spawning areas in the upper basin have been low (Table 9.14). Although a few Turtle Rock summer Chinook have strayed into other spawning areas, straying, on average, has been less than 5\%. The Chelan tailrace has received the largest number of Turtle Rock strays.

Table 9.14. Number (No.) and percent of spawning escapements within other non-target basins that consisted of Turtle Rock summer Chinook (normal subyearling releases), return years 1998-2006. For example, for return year 2003, 0.6% of the summer Chinook spawning escapement in the Okanogan Basin consisted of Turtle Rock summer Chinook. Percent strays should be less than 5\%.

Return year	Wenatchee		Methow		Okanogan		Chelan		Entiat		Hanford Reach	
	No.	\%										
1998	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1999	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2000	8	0.2	3	0.3	13	0.4	63	9.5	0	0.0	0	0.0
2001	0	0.0	5	0.2	13	0.1	0	0.0	0	0.0	0	0.0
2002	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2003	0	0.0	26	0.7	19	0.6	13	3.1	7	1.0	9	0.0
2004	5	0.1	8	0.4	0	0.0	8	1.9	0	0.0	0	0.0
2005	5	0.1	0	0.0	5	0.1	0	0.0	2	0.5	0	0.0
2006	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Total	18	0.0	42	0.2	50	0.1	84	2.0	9	0.3	9	0.0

On average, about 34\% of the brood year returns have strayed into spawning areas in the upper basin (Table 9.15). Depending on brood year, percent strays into spawning areas have ranged from 0 100%. Few (0.9% on average) have strayed into non-target hatchery programs.
Table 9.15. Number and percent of Turtle Rock summer Chinook (normal subyearling releases) that homed to the target hatchery and strayed to non-target spawning areas and non-target hatchery programs, by brood years 1995-2003.

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1995	-	-	197	74.1	64	24.1	5	1.9
1996	-	-	54	54.5	44	44.4	1	1.0
1997	-	-	2	28.6	5	71.4	0	0.0
1998	-	-	0	0.0	24	100.0	0	0.0
1999	-	-	79	54.1	67	45.9	0	0.0
2000	-	-	5	50.0	5	50.0	0	0.0
2001	-	-	56	77.8	16	22.2	0	0.0
2002	-	-	10	100.0	0	0.0	0	0.0
2003	-	-	27	100.0	0	0.0	0	0.0
Total	-	-	430	65.1	225	34.0	6	0.9

Accelerated subyearling releases

Rates of Turtle Rock summer Chinook (accelerated subyearling releases) straying into spawning areas in the upper basin have been very low (Table 9.16). Although a few Turtle Rock summer Chinook have strayed into other spawning areas, straying, on average, has been less than 1%. The Chelan tailrace, Okanogan Basin, and Methow Basin have received the largest number of Turtle Rock strays.
Table 9.16. Number (No.) and percent of spawning escapements within other non-target basins that consisted of Turtle Rock summer Chinook (accelerated subyearling releases), return years 1998-2006. For example, for return year 2001, 1.7% of the summer Chinook spawning escapement in the Methow Basin consisted of Turtle Rock summer Chinook. Percent strays should be less than 5%.

Return year	Wenatchee		Methow		Okanogan		Chelan		Entiat		Hanford Reach	
	No.	\%										
1998	3	0.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
1999	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2000	7	0.2	0	0.0	0	0.0	24	3.6	0	0.0	0	0.0
2001	0	0.0	12	0.4	31	0.3	0	0.0	0	0.0	0	0.0
2002	0	0.0	5	0.1	7	0.1	0	0.0	0	0.0	0	0.0
2003	4	0.0	4	0.1	0	0.0	3	0.7	0	0.0	0	0.0
2004	0	0.0	0	0.0	7	0.1	3	0.7	0	0.0	18	0.0

Return year	Wenatchee		Methow		Okanogan		Chelan		Entiat		Hanford Reach	
	No.	\%										
2005	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2006	0	0.0	0	0.0	0	0.0	0	0.0	2	0.35	0	0.0
Total	14	0.0	21	0.1	45	0.1	30	0.7	2	0.1	18	0.0

On average, about 48\% of the brood year returns have strayed into spawning areas in the upper basin (Table 9.17). Depending on brood year, percent strays into spawning areas have ranged from 0-83\%. None of these fish have strayed into non-target hatchery programs.
Table 9.17. Number and percent of Turtle Rock summer Chinook (accelerated subyearling releases) that homed to the target hatchery and strayed to non-target spawning areas and non-target hatchery programs, by brood years 1995-2003.

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1995	-	-	7	70.0	3	30.0	0	0.0
1996	-	-	33	32.4	69	67.6	0	0.0
1997	-	-	6	100.0	0	0.0	0	0.0
1998	-	-	2	16.7	10	83.3	0	0.0
1999	-	-	21	42.9	28	57.1	0	0.0
2000	-	-	12	40.0	18	60.0	0	0.0
2001	-	-	57	96.6	2	3.4	0	0.0
2002	-	-	0	0.0	0	0.0	0	0.0
2003	-	-	3	100.0	0	0.0	0	0.0
Total	-	-	141	52.0	130	48.0	0	0.0

Yearling releases

Rates of Turtle Rock summer Chinook (yearling releases) straying into spawning areas in the upper basin have varied widely depending on spawning area (Table 9.18). Most of these fish strayed to spawning areas within the Chelan tailrace, Entiat Basin, and Methow Basin. Relatively few, on average, have strayed to spawning areas in the Okanogan Basin, Wenatchee Basin, and Hanford Reach.

Table 9.18. Number (No.) and percent of spawning escapements within other non-target basins that consisted of Turtle Rock summer Chinook (yearling releases), return years 1998-2006. For example, for return year 2003, 4.3% of the summer Chinook spawning escapement in the Methow Basin consisted of Turtle Rock summer Chinook. Percent strays should be less than 5\%.

Return year	Wenatchee		Methow		Okanogan		Chelan		Entiat		Hanford Reach	
	No.	\%										
1998	0	0.0	2	0.3	0	0.0	0	0.0	0	0.0	0	0.0
1999	3	0.1	2	0.2	0	0.0	0	0.0	0	0.0	0	0.0
2000	18	0.4	57	4.8	167	4.5	73	11.0	0	0.0	10	0.0
2001	109	1.2	523	18.9	334	3.1	316	32.1	0	0.0	7	0.0
2002	92	0.7	437	9.4	194	1.4	191	32.8	136	27.2	0	0.0
2003	64	0.7	170	4.3	14	0.4	165	39.4	180	26.0	9	0.0
2004	10	0.1	51	2.3	116	1.7	75	17.9	0	0.0	0	0.0
2005	5	0.1	73	2.9	73	0.8	88	19.8	42	11.4	0	0.0
2006	0	0.0	100	3.7	25	0.3	64	15.2	9	1.6	0	0.0
Total	301	0.4	1,415	6.5	923	1.5	972	23.3	367	11.2	26	0.0

On average, about 67% of the brood year returns have strayed into spawning areas in the upper basin (Table 9.19). Depending on brood year, percent strays into spawning areas have ranged from 36$86 \%$. Few ($<1 \%$ on average) have strayed into non-target hatchery programs.
Table 9.19. Number and percent of Turtle Rock summer Chinook (yearling releases) that homed to the target hatchery and strayed to non-target spawning areas and non-target hatchery programs, by brood years 19952003.

Brood year	Homing				Straying			
	Target stream		Target hatchery		Non-target streams		Non-target hatcheries	
	Number	\%	Number	\%	Number	\%	Number	\%
1995	-	-	180	39.3	278	60.7	0	0.0
1996	-	-	218	27.2	583	72.8	0	0.0
1997	-	-	254	14.1	1,539	85.7	3	0.2
1998	-	-	166	16.1	866	83.8	1	0.1
1999	-	-	181	42.7	243	57.3	0	0.0
2000	-	-	89	27.4	236	72.6	0	0.0
2001	-	-	389	59.8	261	40.2	0	0.0
2002	-	-	303	57.8	219	41.8	1	0.2
2003	-	-	357	63.5	204	36.3	1	0.2
Total	-	-	2,137	32.5	4,429	67.4	6	0.1

Smolt-to-Adult Survivals

Subyearling-to-adult and smolt-to-adult survival ratios (SARs) were calculated as the number of hatchery adults divided by the number of hatchery subyearling or yearling Chinook released. SARs were based on CWT returns.

Normal subyearling releases

For the available brood years, SARs for normal subyearling-released Chinook have ranged from 0.000034 to 0.004619 (Table 9.20).

Table 9.20. Subyearling-to-adult ratios (SARs) for Turtle Rock normal subyearling-released summer Chinook, brood years 1995-2003.

Brood year	Number released	Estimated adult captures	SAR
1995	201,230	205	0.001019
1996	371,848	190	0.000511
1997	496,904	17	0.000034
1998	194,723	28	0.000144
1999	192,665	890	0.004619
2000	222,460	28	0.000126
2001	211,306	330	0.001562
2002	200,163	37	0.000185
2003	203,410	49	0.000241
Average	$\mathbf{2 5 4 , 9 6 8}$	$\mathbf{1 9 7}$	$\mathbf{0 . 0 0 0 7 7 3}$

Accelerated subyearling releases

For the available brood years, SARs for accelerated subyearling-released Chinook have ranged from 0.000011 to 0.001026 (Table 9.21).

Table 9.21. Subyearling-to-adult ratios (SARs) for Turtle Rock accelerated subyearling-released summer Chinook, brood years 1995-2003.

Brood year	Number released	Estimated adult captures	SAR
1995	166,203	13	0.000078
1996	198,720	79	0.000398
1997	196,459	3	0.000015
1998	185,551	69	0.000372
1999	197,793	203	0.001026
2000	194,603	63	0.000324
2001	196,355	167	0.000851
2002	200,165	5	0.000025
2003	185,834	2	0.000011
Average	$\mathbf{1 9 1 , 2 9 8}$	$\mathbf{6 7}$	$\mathbf{0 . 0 0 0 3 5 1}$

Yearling releases

For the available brood years, SARs for yearling-released Chinook have ranged from 0.007184 to 0.026799 (Table 9.22).

Table 9.22. Smolt-to-adult ratios (SARs) for Turtle Rock yearling-released summer Chinook, brood years 1995-2003.

Brood year	Number released	Estimated adult captures	SAR
1995	145,318	1,044	0.007184
1996	194,251	1,557	0.008015
1997	198,924	4,814	0.024200
1998	215,646	5,779	0.026799
1999	280,683	2,673	0.009523
2000	165,072	1,868	0.011316
2001	199,694	3,879	0.019425
2002	192,234	2,465	0.012823
2003	199,386	2,899	0.010071
Average	199,023	0.014564	

9.4 ESA/HCP Compliance

Broodstock Collection

The 2007 brood Turtle Rock summer Chinook program is supported through adult collections at the volunteer trap at Wells Fish Hatchery and in conjunction with the Wells summer Chinook collections. During 2007, broodstock collections at the volunteer trap were consistent with the 2007 Upper Columbia River Salmon and Steelhead Broodstock Objectives and site-based broodstock collection protocols as required in ESA permit 1347. The 2007 collection totaled 1,281 summer Chinook (combined Wells Fish Hatchery and Turtle Rock Fish Hatchery programs), representing 100.5% of the targeted 1,274 broodstock collection objective. The minor overage in adult broodstock was a result of enumeration errors during collection.

Hatchery Rearing and Release

Brood year 2007 releases totaled 1,005,437 fish, including yearling, regular subyearling, and accelerated subyearling releases (173,607, 439,806, and 392,024 juveniles, respectively). These releases represented 86.8% and 51.3% of the Rocky Reach HCP and ESA Section 10 Permit 1347 production for Turtle Rock yearling and subyearling production, respectively.

Consistent with ESA Permit 1347, a total of 378,870 normal and accelerated subyearling Chinook were adipose fin clipped and coded-wire tagged, representing 94.7% of the 400,000 adipose clipped and CWT target for sub-yearling production. The remainder of the subyearling production was released untagged and unmarked. The yearling Chinook were 94.3% CWT and adipose fin-clipped.

About 20,202 2007 brood Turtle Rock yearling summer Chinook were PIT tagged. See Section 9.2 for specific rearing, tagging, and release information related to the 2006 brood Turtle Rock summer Chinook program.

Hatchery Effluent Monitoring
Per ESA Permits 1196, 1347, and 1395, permit holders shall monitor and report hatchery effluents in compliance with applicable National Pollution Discharge Elimination Systems (NPDES) (EPA 1999) permit limitations. There were no NPDES violations reported at Chelan PUD Hatchery facilities during the period 1 January 2009 through 31 December 2009. NPDES monitoring and reporting for Chelan PUD Hatchery Programs during 2009 are provided in Appendix E.

SECTION 10: REFERENCES

Blankenship, S. M., J. Von Bargen, K. I Warheit, and A R. Murdoch. 2007. Assessing the genetic diversity of natural Chiwawa River spring Chinook salmon and evaluating the effectiveness of its supportive hatchery supplementation program. WDFW Molecular Genetics Lab, Olympia, WA.

Environmental Protection Agency (EPA). 1999. National pollutant discharge elimination systems (NPDES) permit program.

Hays, S., T. Hillman, T. Kahler, R. Klinge, R. Langshaw, B. Lenz, A. Murdoch, K. Murdoch, and C. Peven. 2006. Analytical framework for monitoring and evaluating PUD hatchery programs. Final report to the HCP Hatchery Committee, Wenatchee, WA.

Hillman, T., J. Mullan, and J. Griffith. 1992. Accuracy of underwater counts of juvenile Chinook salmon, coho salmon, and steelhead. North American Journal of Fisheries Management 12:589-603.

Hillman, T. and M. Miller. 2004. Abundance and total numbers of Chinook salmon and trout in the Chiwawa River Basin, Washington, 2004. BioAnalysts, Inc. Report to Chelan County PUD, Wenatchee, WA.
HSRG/WDFW/NWIFC. 2004. Integrated hatchery programs. HSRG/WDFW/NWIFC Technical discussion paper \#1, 21 June 2004, Portland, OR.

Hyatt, K., M. Stockwell, H. Wright, K. Long, J. Tamblyn, and M. Walsh. 2006. Fish and water management tool project assessments: Okanogan adult sockeye salmon (Oncorhynchus nerka) abundance and biological traits in 2005. Draft report to JSID-SRe 3-05, Salmon and Freshwater Ecosystems Division, Fisheries and Oceans Canada, Nanaimo, B.C.

Miller, T. 2008. 2007 Chiwawa and Wenatchee River smolt estimates. Technical memorandum from Todd Miller, WDFW to the HCP Hatchery Committee, 13 February 2008, Wenatchee, WA.

Miller, T. and M. Tonseth. 2008. The integrated status and effectiveness monitoring program: expansion of smolt trapping and steelhead spawning survey. Annual report to the U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife, Portland, OR.

Murdoch, A. and C. Peven. 2005. Conceptual approach to monitoring and evaluating the Chelan County Public Utility District hatchery programs. Final report. Prepared for the Chelan PUD Habitat Conservation Plan's Hatchery Committee, Wenatchee, WA.

Murdoch, A., T. Pearsons, T. Maitland, M. Ford, and K. Williamsons. 2006. Monitoring the reproductive success of naturally spawning hatchery and natural spring Chinook salmon in the Wenatchee River. BPA Project No. 2003-039-00, Department of Energy, Bonneville Power Administration, Portland, OR.

Murdoch, A., T. Pearsons, T. Maitland, C. Deason, M. Ford, and K. Williamsons. 2007. Monitoring the reproductive success of naturally spawning hatchery and natural spring Chinook salmon in the Wenatchee River. BPA Project No. 2003-039-00, Contract No. 00020391, Department of Energy, Bonneville Power Administration, Portland, OR.

Murdoch, A., T. Pearsons, T. Maitland, M. Ford, and K. Williamsons. 2008. Monitoring the reproductive success of naturally spawning hatchery and natural spring Chinook salmon in the Wenatchee River. BPA Project No. 2003-039-00, Contract No. 00032138, Department of Energy, Bonneville Power Administration, Portland, OR.

NMFS (National Marine Fisheries Service). 2003. Section 10(a)(1)(b) Permit for takes of endangered/threatened species. Incidental Take Permit 1347 for the artificial propagation of unlisted salmon. Portland, OR.

NMFS (National Marine Fisheries Service). 2004. Biological Opinion and Magnuson-Stevens Fishery Conservation and Management Act Consultation Interim Protection Plan for Operation of the Priest Rapids Hydroelectric Project FERC Project No. 2114 Columbia River, Grant and Kittitas Counties, Washington Action Agency: Federal Energy Regulatory Commission Consultation Conducted by: NOAA Fisheries Northwest Region Hydropower Division NOAA Fisheries Log Number: 1999/01878. May 3, 2004.

Peven, C. 2007. Chelan County PUD Hatchery monitoring and evaluation implementation plan, 2008. Chelan County Public Utility District. Prepared for the Chelan PUD Habitat Conservation Plan's Hatchery Committee, Wenatchee, WA.
Snow, C. 2007. Wells Hatchery summer Chinook salmon production; 1997 brood year summary report. Washington Department of Fish and Wildlife. Prepared for Douglas County Public Utility District, East Wenatchee, WA.
Truscott, K. 2005. Memo to Habitat Conservation Plan (HCP) Hatchery Committee (HC). Brood year 2005-2013 Upper Columbia steelhead stocking allotments for releases in the Wenatchee River basin. February 28, 2005 memo from K. Truscott, Washington Department of Fish and Wildlife, Wenatchee, WA.

Washington Department of Fish and Wildlife (WDFW). 2006. Memo to Habitat Conservation Plan (HCP) Hatchery Committee (HC). 2006 Upper Columbia River salmon and steelhead broodstock objectives and site-based broodstock collection protocols. Memo from K. Truscott, Washington Department of Fish and Wildlife, Wenatchee, WA.

SECTION 11: APPENDICES

Appendix A: Abundance and Total Numbers of Chinook Salmon and Trout in the Chiwawa River Basin, Washington, 2009.

Appendix B: Fish Trapping at the Chiwawa, Upper Wenatchee, and Lower Wenatchee Smolt Traps during 2009.

Appendix C: Summary of ISEMP PIT Tagging Activities in the Wenatchee Basin, 2009.

Appendix D: Wenatchee Steelhead Spawning Ground Surveys, 2009.

Appendix E: NPDES Hatchery Effluent Monitoring, 2009.

Appendix F: Steelhead Stock Assessment at Priest Rapids Dam, 2009.

Appendix G: Wenatchee Sockeye and Summer Chinook Spawning Ground Surveys, 2009.

Appendix H: Genetic Diversity of Wenatchee Sockeye Salmon.

Appendix I: Genetic Diversity of Natural Chiwawa River Spring Chinook Salmon.

Appendix J: Summer Chinook Spawning Ground Surveys in the Methow and Okanogan Basin, 2009.

APPENDIX A

Abundance and Total Numbers of Chinook Salmon and Trout in the Chiwawa River Basin, Washington, 2009.

January 3, 2010

TO: HCP Hatchery Committee
FROM: Tracy Hillman
Subject: Abundance and Total Numbers of Chinook Salmon and Trout in the Chiwawa River Basin, Washington, 2009

The Chelan County Public Utility District (PUD) hatchery program is operated through a habitat conservation program (HCP) that was incorporated into the PUD's license in 2004. The HCP directed the signatories to develop a monitoring and evaluation plan within one year of the effective date. This study will help the HCP Hatchery Committee determine if it is meeting Objective 7 in the monitoring and evaluation plan (Murdoch and Peven 2005).
Objective 7: Determine if the proportion of hatchery fish on the spawning grounds affects the freshwater productivity (i.e., number of juveniles per redd) of supplemented streams when compared to non-supplemented streams.

We estimated densities and total numbers of age-0 spring Chinook salmon Oncorhynchus tshawytscha, trout Oncorhynchus sp., and char Salvelinus sp. in the Chiwawa River Basin, Washington, in August 2009. This was the $17^{\text {th }}$ year of an ongoing study to assess the freshwater productivity (juveniles/redd) of Chinook salmon in the Chiwawa Basin. We used landscape classification to stratify streams in the basin that supported juvenile Chinook salmon (Hillman and Miller 2004). Classification "explained" most of the variability in fish numbers caused by geology, land type, valley bottom type, stream state condition, and habitat type. We identified ten reaches on the lower 31 miles (50 km) of the Chiwawa River and one reach in each of Phelps, Rock, Chikamin, Big Meadow, Alder, Brush, Clear, Y, and Peven ${ }^{1}$ creeks (Figure 1). Each reach consisted of several combinations of state-type and habitat-type strata. We used classification to find reference areas for reaches in the Chiwawa River. We matched Reach 3 and Reach 8 of the Chiwawa River with a moderately-confined section of Nason Creek (RM 0.621.70) and an unconfined area of the Little Wenatchee River (RM 4.39-8.55), respectively (Hillman and Miller 2004). Following methods described in Hillman and Miller (2004), we used

[^3]underwater observations to estimate numbers of fish in 197 randomly selected sites.
During sampling in August 2009, discharge in the Chiwawa River averaged 176 cubic feet per second (cfs) and ranged from 118 to 288 cfs (Figure 2). Stream temperatures for the study period ranged from 10.0 to $18.0^{\circ} \mathrm{C}$. Fish species observed in the Chiwawa Basin and reference areas during the 1992-2009 survey period ${ }^{2}$ included: spring Chinook salmon, coho salmon O. kisutch, sockeye salmon O. nerka (in the Little Wenatchee River reference area), steelhead/rainbow trout O. mykiss (hatchery rainbow were present only in 1992 and 1993), cutthroat trout O. clarki lewisi, bull trout S. confluentus, brook trout S. fontinalis, mountain whitefish Prosopium williamsoni, dace Rhinichthys sp., suckers Catostomus sp., and sculpin Cottus sp. The age-0 spring Chinook that we observed in the Chiwawa Basin during the 2009 survey were produced from 689 redds counted in the fall of 2008 (Hillman et al. 2009). Assuming a mean fecundity of 4,592 eggs per female Chinook (from females collected for broodstock), and that no female produced more than one redd (Murdoch et al. 2009), we estimated that the Chiwawa River Basin was seeded with $3,163,888$ eggs in 2008 (Appendix A).

In 2009, riffles made up the largest fraction of habitat types in reaches of the Chiwawa Basin (54% of the total stream surface area) (Table 1). Pools (22%), glides (8%), and multiple channels (15%) constituted the remaining 46% of the stream surface area. We consistently found woody debris associated with multiple-channel habitat.

Chinook Salmon Abundance

Chinook salmon were the most abundant salmonid in the Chiwawa Basin. We estimated, based on surface area, that age-0 Chinook salmon numbered 106,705 ($\pm 20 \%$ of the estimated total) in the Chiwawa River Basin in August 2009 (Table 2). Extrapolating based on volume of habitat types, age-0 Chinook numbered 110,670 ($\pm 30 \%$) in the Chiwawa Basin. About 5% of the juvenile Chinook were in tributaries to the Chiwawa River. During the 1992-2009 surveys, numbers of age-0 Chinook ranged from 5,815 to 134,874 in the Chiwawa Basin (Figure 3; Appendix B). Most of the difference in juvenile numbers among years resulted from different seeding levels (Figure 4). Numbers of Chinook redds in the Chiwawa Basin during 1992-2009 ranged from 13 to 1,046 , resulting in seeding levels of 66,248 to $4,836,704$ eggs (Appendix A).

As in most years, age-0 Chinook in 2009 were distributed contagiously among reaches in the Chiwawa River (Table 2). In the Chiwawa River, densities of age-0 Chinook were highest in the upper reaches (Reaches 7-10). The highest densities in the Chiwawa Basin were in tributaries to the Chiwawa River (Table 2). Age-0 Chinook were most abundant in multiple channels and least abundant in glides. We found the majority of the Chinook associated with woody debris in multiple channels (multiple channel use index $=2.80)^{3}$. These sites (multiple channels) made up

[^4]15% of the total area of the Chiwawa Basin, but they provided habitat for 51% of all the age- 0 Chinook in the basin in 2009 (Appendix C). In contrast, riffles made up 54% of the total area, but provided habitat for only 11% of all age- 0 Chinook in the Chiwawa Basin (riffle use index $=$ 0.25). Pools made up 22% of the total area and provided habitat for 36% of all age-0 Chinook in the basin (pool use index = 1.49). Few Chinook used glides that lacked woody debris (glide use index $=0.26$).

We assumed that the Chiwawa River was seeded with $3,163,888$ Chinook eggs (689 redds times 4,592 eggs/female) in fall, 2008, and that at least 106,705 of those survived to August 2009. This means that the egg-to-parr survival was at least 3.4% (95% confidence bound 2.7-4.0\%). During 1992-2009, egg-to-parr survival averaged 5.7\% (range 2.8-19.1\%) in the Chiwawa Basin (Appendix A). This survival rate comports with those from other streams. For example, Mullan et al. (1992) estimated an egg-to-parr survival rate of 9.8% for spring Chinook salmon in Icicle Creek, a tributary of the Wenatchee River. Using a Beverton and Holt model, Hubble (1993) estimated that egg-to-parr survival of Chinook in the Chewuck River, a tributary to the Methow River, ranged between 13% and 32%, depending on percent seeding level in the basin. Kiefer and Forster (1991) estimated a mean egg-to-parr survival rate of 5.5\% (range 5.1-6.7\%) for naturally-spawning spring Chinook salmon in the entire upper Salmon River. They also noted that egg-to-parr survival of natural spawners and adult outplants in the headwater streams of the upper Salmon River averaged 24.4\% (range 16.1-32.0\%). Petrosky (1990) reported an egg-toparr survival range of 1.2-29.0\% for Chinook in the upper Salmon River, Idaho. Konopacky et al. (1986) estimated egg-to-parr survival of Chinook in Bear Valley Creek, Idaho, as 8.1-9.4\%. Work by Richards and Cernera (1987) in Bear Valley Creek indicated an egg-to-parr survival of 2.1\%.

Mean densities of age-0 Chinook salmon in two reaches of the Chiwawa River were generally less than those in corresponding reference areas (Figure 5). Within both the Chiwawa River and its reference areas, pools and multiple channels consistently had the highest densities of age-0 Chinook.

We estimated a total of 54 ($\pm 69 \%$ of the estimated total) age- $1+$ Chinook salmon in the Chiwawa Basin in August 2009 (Table 3). In August 1992-2009, numbers of age-1+ Chinook ranged from 5 to 563 in the Chiwawa River Basin (Figure 3; Appendix B). These fish occurred throughout the Chiwawa River. We found relatively few age-1+ Chinook in tributaries. Age-1+ Chinook were most abundant in multiple channels and pools.

Juvenile Chinook Salmon Productivity (Fish/Redd)

Freshwater productivity of juvenile Chinook salmon was estimated as the number of parr (age-0 Chinook) per redd in the Chiwawa Basin. Theoretically, the relationship between number of parr and redds can be explained mathematically provided the relationship between the two parameters goes through the origin, increases monotonically at low spawning levels, and shows some level of density dependence at high spawning levels. We identified five alternative hypotheses that may explain the relationship between spawning level (redds) and numbers of age-0 Chinook:

1. The first hypothesis assumed that because of low spawner escapements, the number of juvenile Chinook increases linearly with increasing numbers of redds. This hypothesis assumes that there is no density dependence because of low seeding levels. This hypothesis was modeled with a density-independent function that took the form:

$$
J=\alpha \boldsymbol{R},
$$

where \boldsymbol{J} is the number of juvenile (age-0) Chinook, \boldsymbol{R} is the number or redds, and $\boldsymbol{\alpha}$ is the increase in numbers of juveniles with each incremental increase in redds.
2. The second hypothesis assumed that the number of juveniles increases constantly toward an asymptote as the number of redds increases. After the asymptote is reached, the number of juveniles neither increases nor decreases. The asymptote represents the maximum number of juveniles the system can support (i.e., carrying capacity for the system). This hypothesis was modeled with a Beverton-Holt curve that took the form:

$$
J=(\alpha R) /(\beta+R),
$$

where \boldsymbol{J} and \boldsymbol{R} are as above, $\boldsymbol{\alpha}$ is the maximum number of juveniles produced, and $\boldsymbol{\beta}$ is the number of redds needed to produce (on average) juveniles equal to one-half the maximum number of juveniles.
3. The third hypothesis, like the second, assumed that the number of juveniles increases toward an asymptote (carrying capacity) as the number of redds increases. After the carrying capacity is reached, the number of juveniles neither increases nor decreases. The carrying capacity represents the maximum number of juveniles the system can support. This hypothesis was modeled with a smooth hockey stick function that took the form:

$$
J=J_{\infty}\left(1-e^{-(\alpha / J \infty) R}\right),
$$

where \boldsymbol{J} and \boldsymbol{R} are as above, $\boldsymbol{\alpha}$ is the slope at the origin of the spawner-recruitment curve, and \boldsymbol{J}_{∞} is the carrying capacity of juveniles.
4. The fourth hypothesis assumed that the number of juveniles increases to a maximum and then declines as the number or redds increases. In this case, mortality rate of juveniles (or eggs) is proportional to the initial number of redds. Higher mortality rate is associated with density-dependent growth coupled with size-dependent predation. This hypothesis was modeled with a Ricker curve that took the form:

$$
J=\alpha \operatorname{Re}^{-\beta R},
$$

where \boldsymbol{J} and \boldsymbol{R} are as above, $\boldsymbol{\alpha}$ is the number of juveniles per redd at low spawning levels, and $\boldsymbol{\beta}$ describes how quickly the juveniles per redd drop as the number of redds increases.
5. The fifth hypothesis, like the second, assumed that the number of juveniles increases constantly, but unlike the second, the number of juveniles does not reach an asymptote. Rather, the number of juveniles increases indefinitely, but at a slowing rate of increase. This hypothesis was modeled with both a Cushing curve and a Gamma function. The Cushing curve took the form:

$$
\boldsymbol{J}=\boldsymbol{\alpha} \boldsymbol{R}^{\gamma},
$$

where \boldsymbol{J} and \boldsymbol{R} are as above, $\boldsymbol{\alpha}$ is the number of juveniles per redd at low spawning levels, and γ describes the level of density dependence at high spawning levels. The Gamma function is a three-parameter model that has the form:

$$
J=\alpha R^{y} e^{-\beta R}
$$

This is an un-normalized gamma function that is similar to the Cushing curve when $\beta=0$.
We used Akaike's Information Criterion for small sample size ($\mathrm{AIC}_{\mathrm{c}}$) to determine which model(s) best explained the productivity of juvenile Chinook in the Chiwawa Basin. AIC ${ }_{c}$ was estimated as:

$$
A I C_{c}=-2 \log (£(\theta \mid \text { data }))+2 K+[(2 K(K+1)) /(n-K-1)],
$$

where $\boldsymbol{\operatorname { l o g }}(\boldsymbol{£}(\boldsymbol{\theta} \mid$ data $))$ is the maximum likelihood estimate, \boldsymbol{K} is the number of estimable parameters (structural parameters plus the residual variance parameter), and \boldsymbol{n} is the sample size (Burnham and Anderson 2002). We used least-squares methods to estimate $\boldsymbol{\operatorname { l o g }}(\boldsymbol{f}(\boldsymbol{\theta} \mid \boldsymbol{d a t a})$), which was calculated as $\boldsymbol{\operatorname { l o g }}\left(\sigma^{2}\right)$, where $\sigma^{2}=$ residual sum of squares divided by the sample size ($\boldsymbol{\sigma}^{2}=\boldsymbol{R S S} / \boldsymbol{n}$). AIC c_{c} assesses model fit in relation to model complexity (number of parameters). The model with the smallest $\mathrm{AIC}_{\mathrm{c}}$ value represents the "best approximating" model within the model set. Remaining models were ranked relative to the best model using $\mathrm{AIC}_{\mathrm{c}}$ difference scores $(\mathbf{\Delta A I C} \mathbf{c})$, Akaike weights $\left(\boldsymbol{w}_{\boldsymbol{i}}\right)$, and evidence ratios. Models with $\boldsymbol{\Delta A I C} \mathbf{c}$ values less than 2 indicate that there is substantial support for these models as being the best-fitting models within the set (Burnham and Anderson 2002). Models with values greater than 2 have less support. Akaike weights are probabilities estimating the strength of the evidence supporting a particular model as being the best model within the model set. Models with small \boldsymbol{w}_{i} values are less plausible as competing models (Burnham and Anderson 2002). When no single model could be specified as the best model, a "best subset" of competing models was identified using (1) AIC ${ }_{c}$ differences to indicate the level of empirical support each model had as being the best model, (2) evidence ratios based on Akaike weights to indicate the relative probability that any model is the best model, and (3) coefficients of determination $\left(R^{2}\right)$ assessing the explanatory power of each model.

The use of $\mathrm{AIC}_{\mathrm{c}}$ indicated that the Cushing model best approximated the information in the juveniles/redd data (Table 4; Figure 6). The estimated structural parameters for this model were:

$$
\text { Juveniles }=9,422(\text { Redds })^{0.38}
$$

where the estimated standard errors of the two parameters were 3,912 and 0.07 , respectively. The adjusted $R^{2}=0.70$. The second-best model was the Beverton-Holt model, which was only 1.9 $\mathrm{AIC}_{\mathrm{c}}$ units from the best model (Table 4; Figure 6). The estimated parameters for this model were:

$$
\text { Juveniles }=[(118,413 * \text { Redds }) /(112+\text { Redds })],
$$

where the estimated standard errors of the two parameters were 17,409 and 49.6 , respectively, and the $R^{2}=0.66$. The $\mathrm{AIC}_{\mathrm{c}}$ difference scores, Akaike weights, and evidence ratios indicated that
there was substantial support for both the Cushing and Beverton-Holt models (Table 4). There was less support for the remaining models (Gamma ${ }^{4}$, smooth hockey stick, Ricker, and Density Independent), which were $\geq 4 \mathrm{AIC}_{\mathrm{c}}$ units from the best model. This was further supported by the fact that, relative to the best models, the remaining four models had evidence ratios greater than 6.

Although the Cushing and Beverton-Holt models have different biological assumptions, they both indicated a density-dependent relationship between spawning levels (redds) and juvenile Chinook production. This was not only evident in the best approximating models, but there was also a significant negative relationship between juveniles per redd and numbers of redds in the Chiwawa Basin (Figure 7). Although data at high seeding levels are lacking, the Beverton-Holt model would limit the production of juvenile Chinook to less than about 156,000 parr in the basin (upper $95 \% \mathrm{CI}$ of $\boldsymbol{\alpha}$ in the Beverton-Holt model). In contrast, the smooth hockey stick model, which did not fit the data as well as the Beverton-Holt or Cushing models, would limit the carrying capacity for juvenile Chinook to about 118,000 parr (upper 95% CI of \boldsymbol{J}_{∞} in the smooth hockey stick model). The Cushing model, which has no upper limit, indicates that the information in the available data may not support the estimation of a maximum production limit at this time. Additional information is needed to determine maximum juvenile productivity in the Chiwawa Basin.

Steelhead/Rainbow Abundance

Based on stream surface area, we estimated a total of $17,179(\pm 9 \%$ of the estimated total) age- 0 steelhead/rainbow ($<4 \mathrm{in}$) in reaches of the Chiwawa Basin in August 2009 (Table 5). During the 1992-2009 survey period, numbers of age-0 steelhead/rainbow ranged from 1,410 to 45,727 in the Chiwawa River Basin (Figure 8; Appendix B). In 1992-2009, numbers of age-0 steelhead/rainbow varied among reaches, but were typically highest in the lower reaches of the Chiwawa River. In all years they most often used riffle and multiple channel habitats in the Chiwawa River, although we also found them associated with woody debris in pool and glide habitat. In tributaries they were generally most abundant in small pools. Those that we observed in riffles selected stations in quiet water behind small and large boulders or occupied stations in quiet water along the stream margin. In pool and multiple-channel habitats, we found age- 0 steelhead/rainbow using the same kinds of habitat as age-0 Chinook salmon.
We estimated that 5,629 ($\pm 18 \%$ of the estimated total) age- $1+$ steelhead/rainbow (4-8 in) lived in reaches of the Chiwawa Basin in August 2009 (Table 6). During the survey period 1992-2009, numbers of age-1+ steelhead/rainbow ranged from 2,533 to 22,130 (Figure 8; Appendix B). In most years we found these fish in nearly all reaches, but they were typically most numerous in lower reaches of the Chiwawa River. We observed age-1+ steelhead/rainbow mostly in pool, riffle, and multiple-channel habitats. Those that we observed in pools were usually in deeper water than age- 0 steelhead/rainbow and Chinook. Like age- 0 steelhead/rainbow, age-1+ steelhead/rainbow selected stations in quiet water behind boulders in riffles, but we generally did

[^5]not find the two age groups together. Age- $1+$ steelhead/rainbow appeared to use deeper and faster water than did age-0 steelhead/rainbow.

We estimated that steelhead/rainbow larger than 8 inches numbered $85(\pm 18 \%$ of the estimated total) in the Chiwawa Basin in August 2009 (Table 7). During the period 1992-2009, steelhead/rainbow numbers ranged from 8 to 1,869 (Appendix B). Steelhead/rainbow larger than 8 inches were most abundant in the lower Chiwawa River; however, in 1992 and 1993, they were most abundant near campgrounds in Reaches 8,9 , and 10 (these were mostly hatchery fish planted near the campgrounds). We found very few in tributary survey reaches. Most of the steelhead/rainbow larger than 8 inches used deep pools (>5 feet), and occupied stations near the bottom at the upstream end of pools.

Bull Trout Abundance

We estimated, based on surface area, that at least 82 ($\pm 22 \%$ of the estimated total) juvenile (2-8 in) bull trout lived in reaches of the Chiwawa River Basin in August 2009 (Table 8). We found most of these fish in the upper-most reaches and in tributaries of the Chiwawa River. During 1992-2009, numbers of juvenile bull trout ranged from 79 to 505 (Figure 9; Appendix B). These estimates and those for adult bull trout are incomplete because we did not sample the entire range of bull trout in all tributaries. We did not extend our surveys into the headwaters of the Chiwawa River because there were no juvenile Chinook there. Areas beyond the distribution of juvenile Chinook salmon are known to support bull trout, steelhead/rainbow, and cutthroat trout (USFS 1993). In addition, our estimates of bull trout abundance were based on daytime snorkel surveys, which may underestimate the actual abundance of bull trout. ${ }^{5}$ Several studies (e.g., Goetz 1994; Thurow and Schill 1996; Hillman and Chapman 1996; Bonar et al. 1997) have found bull trout population estimates based on nighttime snorkeling to be in some cases more accurate than daytime snorkeling, especially for juvenile bull trout. Our estimates of adult bull trout numbers may be more accurate than those for juveniles.

In all years we found most juvenile bull trout in the upstream reaches of the Chiwawa River. Of the reaches we surveyed, they were most numerous in Reaches $8-10$ on the Chiwawa River. We found the majority of these fish in multiple channels, pools, and riffles, and few in glides. They consistently occupied stations close to the stream bottom over rubble and small boulder substrate or near woody debris. This is similar to the observation of Pratt (1984) in the upper Flathead River Basin in Montana. She found that juvenile bull trout lay close to instream cover and that they tended to conceal themselves. As a result, she found it difficult to accurately estimate their numbers. Although this implies that we underestimated numbers of juvenile bull trout in the Chiwawa River, the relative distribution of juvenile bull trout is valid if we assume that we saw the same fraction of juveniles in all reaches (i.e., detection probability was the same across survey sites).

We estimated a total of $618(\pm 17 \%$ of the estimated total) adult ($>8 \mathrm{in}$) bull trout in reaches of

[^6]the Chiwawa Basin in August 2009 (Table 9). In previous years, numbers ranged from 76 to 900 (Figure 9; Appendix B). As with juvenile bull trout, we found most of the adult bull trout upstream from Reach 6; although they were found in nearly all reaches on the Chiwawa River. We found relatively few adult bull trout in tributaries of the Chiwawa River. Adult bull trout primarily used pools and multiple channel habitat, although most of the smaller adults ($<10 \mathrm{in}$) used riffles. In all years we found few adult bull trout near campgrounds. There also appeared to be an inverse association between numbers of adult bull trout and numbers of age-0 Chinook salmon in pools in Reaches 7-10. That is, where we found large bull trout we generally observed few juvenile Chinook salmon.

Abundance of Other Salmonids

In August 2009, we estimated that at least 123 brook trout, an exotic species closely related to the bull trout, occurred in the Chiwawa River, Chikamin Creek, Big Meadow Creek, Minnow Creek, and in the Little Wenatchee River survey areas. Brook trout occurred throughout most of the Chiwawa River. In both the Chiwawa and Little Wenatchee rivers, brook trout usually used multiple channels. Few appeared to be bull trout/brook trout hybrids. In Chikamin, Minnow, and Big Meadow creeks, brook trout were most abundant in pools. Brook trout lengths ranged from 2-8 inches.

At least 128 westslope cutthroat trout occurred in the Chiwawa River and Phelps Creek survey areas in August 2009. These fish most often occurred in pools and multiple channel habitats. They ranged in size from 2-14 inches. Juvenile coho salmon were observed in Nason Creek, the Chiwawa River, and in Rock Creek.

We observed both juvenile and adult mountain whitefish in the Chiwawa River, Phelps Creek, Nason Creek, and the Little Wenatchee River survey areas. In sum, at least 5,210 adult and 1,182 juvenile whitefish lived in these streams in August 2009. We found few whitefish in tributaries to the Chiwawa River.

Conclusion

This was the $17^{\text {th }}$ year of a study to monitor trends in juvenile spring Chinook production in the Chiwawa River Basin. As shown in Figure 3, numbers of juvenile Chinook salmon in the Chiwawa Basin have fluctuated widely over the 17-year period. Numbers of juveniles in 2001 and 2002 were some of the highest recorded, while numbers in the mid-1990s were some of the lowest. Interestingly, the highest spawning escapements (highest redd numbers) resulted in the lowest egg-parr survival rates (Appendix A). This is supported by the fact that the best approximating models clearly demonstrate a density-dependent relationship between seeding levels and juvenile production. Indeed, there is a significant negative relationship between parr per redd and numbers of redds in the Chiwawa Basin. This is an important observation because Objectives 1, 3, 4, and 7 and their associated hypotheses in the monitoring and evaluation plan (Murdoch and Peven 2005) are only valid when the supplemented population is below its carrying capacity.

The presence of density dependence in the early life stages of spring Chinook is not surprising. Rarely does density dependence appear in numbers of adult spring Chinook or on their spawning
grounds. The Chiwawa Basin has plenty of spawning habitat, as indicated by the large numbers of spawners and redds widely distributed throughout the basin during 2001 and 2002. However, those large spawning escapements did not translate into large numbers of juveniles or smolts.
Thus, density-dependent regulation occurs sometime during the early life stages of the fish. Our observations indicate that it is unlikely that physical habitat (space) currently limits parr production in the basin. Low nutrient levels and its effects on food (macroinvertebrates) production may be the primary limiting factor in the basin. If spawning escapements remain relatively high, marine-derived nutrients should increase in the basin, resulting in more food for juvenile Chinook salmon.

References

Bonar, S. A., M. Divens, and B. Bolding. 1997. Methods for sampling the distribution and abundance of bull trout and Dolly Varden. Washington Department of Fish and Wildlife, Research Report No. RAD97-05. Olympia, WA.
Burnham, K. P. and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Second edition. Springer, New York, N.Y.

Goetz, F. A. 1994. Distribution and juvenile ecology of bull trout (Salvelinus confluentus) in the Cascade Mountains. Master's thesis. Oregon State University, Corvallis.

Hillman, T. W. and D. W. Chapman. 1996. Comparison of underwater methods and electrofishing for estimating fish populations in the upper Blackfoot River Basin. Report to Seven-Up Pete Joint Venture, Lincoln, MT.

Hillman, T. W. and M. D. Miller. 2004. Abundance and total numbers of Chinook salmon and trout in the Chiwawa River Basin, Washington, 2004. Report to Chelan Public Utility District, Wenatchee, WA. BioAnalysts, Inc., Boise, ID.

Hillman, T, M. Miller, J. Miller, M. Tonseth, T. Miller, K. Truscott, and A. Murdoch. 2009. Monitoring and evaluation of the Chelan County PUD Hatchery programs: 2008 annual report. Report to the HCP Hatchery Committee, Wenatchee, WA.
Hubble, J. 1993. Methow valley spring Chinook supplementation project. Yakima Indian Nation. Annual report to Douglas County Public Utility District, East Wenatchee, WA.
Kiefer, R. and K. Forster. 1991. Idaho habitat and natural production monitoring. Idaho Department of Fish and Game, Annual Report 1989, Project No. 83-7, Contract No. DE-BI79-84BP13381.

Konopacky, R. C., P. J. Cernera, and E. C. Bowles. 1986. Natural propagation and habitat improvement, Idaho: Salmon River habitat enhancement. Subproject I, Bear Valley Creek: inventory, 1984 and 1985. Shoshone-Bannock Tribes, Fort Hall, ID. Report to U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife, Project No. 83-359, Contract No. DE-A179-84BP14383, Portland, OR.
Mullan, J. W., K. R. Williams, G. Rhodus, T. W. Hillman, and J. D. McIntyre. 1992. Production and habitat of salmonids in mid-Columbia River tributary streams. U.S. Fish and Wildlife Service, Monograph I. 489 p.

Murdoch, A. and C. Peven. 2005. Conceptual approach to monitoring and evaluating the Chelan County Public Utility District hatchery programs. Chelan County Public Utility District and the Washington Department of Fish and Wildlife, Wenatchee, WA.

Murdoch, A., T. Pearsons, and T. Maitland. 2009. The number of redds constructed per female spring Chinook salmon in the Wenatchee River Basin. North American Journal of Fisheries Management 29:441-446.
Petrosky, C. E. 1990. Estimating spring Chinook parr and smolt abundance in wild and natural
production areas. Pages 57-61 in: D. L. Park, editor. Status and future of spring Chinook salmon in the Columbia River basin--conservation and enhancement. Spring Chinook salmon workshop, U.S. Dept. Comm. NOAA Tech. Mem. NMFS F/NWD-187.

Pratt, K. L. 1984. Habitat use and species interactions of juvenile cutthroat Salmo clarki lewisi and bull trout Salvelinus confluentus in the upper Flathead River Basin. Masters thesis. University of Idaho, Moscow, ID. 95 p.

Richards, C. and P. J. Cernera. 1987. Salmon River habitat enhancement, annual report, 1986. Shoshone-Bannock Tribes, Fort Hall, ID. Report to Bonneville Power Administration, Project No. 83-359, Contract No. DE-A179-84BP14383, Portland, OR.
Thurow, R. F. and D. J. Schill. 1996. Comparison of day snorkeling, night snorkeling, and electrofishing to estimate bull trout abundance and size structure in a second-order Idaho stream. North American Journal of Fisheries Management 16:314-323.
USFS (United States Forest Service). 1993. Upper Chiwawa River stream survey report. Wenatchee National Forest, Wenatchee, WA.

Figure 1. Location of study reaches on the Chiwawa River, and Chikamin, Rock, Big Meadow, Peven, Alder, Brush and Phelps creeks, Chelan County, Washington. Reach 2 on Nason Creek and Reach 2 on the Little Wenatchee River were matched with Reaches 3 and 8 on the Chiwawa River, respectively.

Chiwawa River

 2009

Figure 2. Mean, minimum, and maximum monthly flows in the Chiwawa River for 2009.

Figure 3. Numbers of age-0 and age-1+ Chinook salmon within the Chiwawa River Basin in August 1992-2009; ND = no data.

Chiwawa River Basin Chinook Salmon

Figure 4. Relationship between total numbers of age-0 Chinook salmon (based on fish/ha) and numbers of eggs in the Chiwawa River Basin. Vertical bars indicate 95% confidence bounds.

Figure 5. Comparison of the 16-year means of age-0 Chinook salmon densities (fish/ha) within state/habitat types in Reaches 3 and 8 of the Chiwawa River and their matched reference areas on Nason Creek and the Little Wenatchee River. There was no sampling in 2000 and no sampling in reference areas in 1992.

Figure 6. Relationship between numbers of juvenile (age-0) Chinook and redds in the Chiwawa Basin, 1992-2009 (no sampling occurred in 2000). Figures show the fit of the Cushing model, Beverton-Holt model, Ricker model, and the smooth hockey stick model to the data. Gray lines indicate the upper and lower 95% C.B.

Chiwawa Spring Chinook

Figure 7. Relationship between natural log parr/redd and numbers of redds in the Chiwawa River Basin, 1992-2009. No sampling was conducted in 2000. Estimates for 1992-2009 included the Chiwawa River and its tributaries; the 1992 estimate included only the Chiwawa River. The linear relationship $\mathrm{LN}(\mathrm{P} / \mathrm{R})=6.41-0.002($ Redd $)$ was significant with $\mathrm{P}=0.0001 ; R^{2}=0.645$.

Figure 8. Numbers of age-0 ($<4 \mathrm{in}$) and age-1+ (4-8 in) steelhead/rainbow within the Chiwawa River Basin in August 1992-2009; ND = no data.

Figure 9. Numbers of juvenile (2-8 inches) and adult (>8 inches) bull trout within the Chiwawa River Basin in August 1992-2009; ND = no data.

Table 1. Description, location (river mile), and area (hectares) of land-class strata (reaches) used by age-0 Chinook salmon in the Chiwawa River Basin, 2009. Reaches were classified according to geologic district, landtype association, valley-bottom type, stream state-type, and habitat type within the Cascade Ecoregion; MCV = moderately confined valley, $\mathrm{CC}=$ confined canyon, $\mathrm{UCV}=$ unconfined valley, $\mathrm{NC}=$ natural channel, $\mathrm{EB}=$ eroded banks, $\mathrm{S}=$ straight, $\mathrm{G}=$ glide, $\mathrm{P}=$ pool, $\mathrm{R}=$ riffle, and $\mathrm{MC}=$ multiple channel. See Hillman and Miller (2004) for definitions of stream state codes.

Reach	RM	Gradient	Geologic district	Landtype association	Valley bottom type	Stream state type	Habitat type	Area (ha)	
								Total	Sample
Chiwawa River									
1	0.00-3.77	0.007	Glacial Drift over Chumstick Formation	Glacial Valley	MCV Alluvial	NC/EB	G	0.53	0.53
						NC/EB	P	1.33	0.95
						NC/EB	R	15.30	1.59
2	3.77-5.51	0.010	Glacial Drift over Chumstick Formation	Glacial Canyon	CC Fluvial	NC/EB	G	0.28	0.28
						NC/EB	P	0.72	0.26
						NC/EB	R	7.27	0.56
3	5.51-7.88	0.009	Glacial Drift over Chumstick Formation	Glacial Valley	MCV Alluvial	NC/S	R	4.80	0.76
						NC/EB	G	0.15	0.15
						NC/EB	R	4.08	0.45
						MC	MC	0.43	0.43
4	7.88-8.90	0.007	Glacial Drift over Chumstick Formation	Glacial Canyon	CC Fluvial	NC/EB	P	0.37	0.27
						NC/EB	R	2.70	0.45
						MC	MC	0.45	0.45
5	8.90-10.83	0.011	Glacial Drift over Chumstick Formation	Glacial Valley	MCVAlluvial	NC/EB	P	0.14	0.14
						NC/EB	R	9.69	0.71
6	10.83-11.80	0.008	Glacial Drift over Chumstick Formation	Glacial Canyon	CC Fluvial	NC/EB	P	0.41	0.41
						NC/EB	R	4.05	0.99
						MC	MC	0.31	0.31
7	11.80-20.03	0.001	Glacial Drift over Chumstick Formation	Glacial Valley	UCV Alluvial	NC	G	2.21	0.44
						NC	P	4.68	0.58
						NC	R	1.34	0.39
						NC/EB	G	2.94	1.00
						NC/EB	P	6.63	1.19
						NC/EB	R	4.19	0.76
						MC	MC	4.68	2.20
8	20.03-25.42	0.003	Glacial Drift over Swakane Gneiss	Glacial Valley	$\begin{gathered} \text { UCV } \\ \text { Alluvial } \end{gathered}$	NC/EB	G	3.22	1.26
						NC/EB	P	7.31	1.55
						NC/EB	R	4.46	0.80
						EB	P	0.23	0.23
						EB	R	0.46	0.46
						MC	MC	5.98	2.81
9	25.42-28.81	0.007	Glacial Drift over Swakane Gneiss	Glacial Valley	MCVAlluvial	NC	G	0.15	0.15
						NC	P	2.95	0.89
						NC	R	2.64	0.27
						MC	MC	3.41	0.99
10	28.81-31.11	0.011	Pre-upper Jurassic Gneiss	Glacial Valley	MCV Alluvial	NC	P	1.14	0.38
						NC	R	2.64	0.86
						MC	MC	2.37	0.43

Table 1. Concluded.

Reach	$\mathbf{R M}$	Gradient	Geologic district	Landtype association	Valley bottom type	Stream state type	Habitat type	Area (ha)	
								Total	Sampled
Phelps Creek									
1	0.00-0.35	0.043	Pre-upper Jurassic Gneiss	Glacial Valley	MCV Alluvial	NC	P	0.03	0.03
						NC	R	0.14	0.14
						NC	MC	0.06	0.06
Chikamin Creek ${ }^{1}$									
1	0.00-0.94	0.013	Glacial Drift over Chumstick Formation	Glacial Valley	UCV Alluvial	NC	G	0.10	0.10
						NC	P	0.22	0.06
						NC	R	0.39	0.14
						MC	MC	0.15	0.15
Rock Creek									
1	0.00-0.73	0.020	Glacial Drift over Swakane Gneiss	Glacial Valley	UCV Alluvial	NC	G	0.03	0.03
						NC	P	0.20	0.05
						NC	R	0.39	0.06
						MC	MC	0.10	0.10
Peven Creek (Unnamed Creek)									
1	0.00-0.05		Pre-upper Jurassic Gneiss	Glacial Valley	MCV Alluvial	NC	P	0.00	0.00
						NC	R	0.01	0.01
Big Meadow Creek									
1	0.00-0.35	0.025	Glacial Drift over Chumstick Formation	Glacial Valley	MCV Alluvial	NC	G	0.01	0.01
						NC	P	0.20	0.04
						NC	R	0.05	0.01
						MC	MC	0.04	0.04
Alder Creek									
1	0.00-0.01		Glacial Drift over Chumstick Formation	Glacial Valley	MCV Alluvial	NC	P	0.01	0.01
						NC	R	0.01	0.01
Brush Creek									
1	0.00-0.01		Glacial Drift over Chumstick Formation	Glacial Valley	UCV Alluvial	NC	P	0.00	0.00
						NC	R	0.00	0.00
Clear Creek									
1	0.00-0.05		Glacial Drift over Chumstick Formation	Glacial Valley	UCV Alluvial	NC	P	0.00	0.00
						NC	R	0.00	0.00
Y Creek									
1	0.00-0.05		Glacial Drift over Swakane Gneiss	Glacial Valley	UCV Alluvial	NC	P	0.00	0.00
						NC	R	0.00	0.00

[^7]Table 2. Estimated mean densities (fish $/$ hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and error of the estimated total number of age-0 Chinook salmon in reaches in the Chiwawa River Basin, Washington, August 2009.

Reach	Mean density		Surface area (ha)			Volume (m ${ }^{3}$)		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm Error	Total No.	95\% C.B.	\pm Error
Chiwawa River								
1	185.8	0.052	3,188	± 436	0.14	2,980	± 262	0.09
2	249.8	0.060	2,066	± 357	0.17	1,796	± 353	0.20
3	250.1	0.068	2,366	± 111	0.05	2,671	± 113	0.04
4	425.6	0.089	1,498	± 96	0.06	1,541	± 111	0.07
5	76.1	0.021	748	± 24	0.03	735	± 38	0.05
6	244.0	0.058	1,164	± 110	0.10	1,098	± 235	0.21
7	1,133.2	0.187	30,221	$\pm 4,915$	0.16	30,891	$\pm 5,087$	0.17
8	801.6	0.149	17,362	$\pm 6,296$	0.36	16,486	$\pm 6,263$	0.38
9	2,801.6	0.624	25,635	$\pm 19,061$	0.74	27,975	$\pm 32,193$	1.15
10	2,737.7	0.865	16,837	$\pm 4,674$	0.28	18,302	$\pm 5,586$	0.31
Phelps Creek								
1	543.5	0.223	125	± 0	0.00	125	± 0	0.00
Chikamin Creek ${ }^{1}$								
1	2,867.4	1.605	2,486	± 894	0.36	2,731	± 853	0.31
Rock Creek								
1	2,568.1	1.117	1,849	± 748	0.41	2,017	± 701	0.35
Peven Creek								
1	1,400.0	0.642	14	± 0	0.00	14	± 0	0.00
Big Meadow Creek								
1	3,618.7	1.136	1,082	± 501	0.46	1,244	± 595	0.48
Alder Creek								
1	1,380.9	0.780	29	± 0	0.00	29	± 0	0.00
Brush Creek								
1	3,000.0	6.207	18	± 0	0.00	18	± 0	0.00
Clear Creek								
1	4,250.0	3.778	17	± 0	0.00	17	± 0	0.00
Y Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Grand Total	898.2	0.203	106,705	$\pm 21,235$	0.20	110,670	$\pm 33,683$	0.30

[^8]Table 3. Estimated mean densities (fish $/$ hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and error of the estimated total number of age-1+ Chinook salmon in reaches in the Chiwawa River Basin, Washington, August 2009.

Reach	Mean density		Surface area (ha)			Volume (m ${ }^{3}$)		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm Error	Total No.	95\% C.B.	\pm Error
Chiwawa River								
1	0.4	0.000	7	± 8	1.14	6	± 11	1.83
2	2.3	0.001	19	± 6	0.32	18	± 20	1.11
3	0.0	0.000	0	± 0	0.00	0	± 0	0.00
4	1.7	0.000	6	± 0	0.00	5	± 0	0.00
5	0.0	0.000	0	± 0	0.00	0	± 0	0.00
6	0.0	0.000	0	± 0	0.00	0	± 0	0.00
7	0.3	0.000	9	± 31	3.44	17	± 25	1.47
8	0.4	0.000	8	± 17	2.13	11	± 20	1.82
9	0.0	0.000	0	± 0	0.00	0	± 0	0.00
10	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Phelps Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Chikamin Creek ${ }^{1}$								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Rock Creek								
1	6.9	0.003	5	± 0	0.00	5	± 0	0.00
Peven Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Big Meadow Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Alder Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Brush Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Clear Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Y Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Grand Total	0.5	0.000	54	± 37	0.69	62	± 39	0.63

[^9]Table 4. Summary of the six productivity models of juvenile (age-0) Chinook salmon in the Chiwawa Basin. Models are shown, including the number of parameters (K), $\mathrm{AIC}_{\mathrm{c}}$ values, $\mathrm{AIC}_{\mathrm{c}}$ difference scores $\left(\Delta_{\mathrm{i}}\right)$, the likelihood of the model given the data $\left(£\left(g_{i} \mid x\right)\right.$), Akaike weights $\left(w_{i}\right)$, and adjusted R^{2} values. The sample size (n) for all models was 17. Models describe the relationship between juvenile Chinook numbers (dependent variable) and redd numbers (independent variable).

Model	$\boldsymbol{K}^{\boldsymbol{a}}$	$\mathbf{A I C}_{\mathbf{c}}$	$\boldsymbol{\Delta}_{\mathbf{i}}$	$\boldsymbol{f}\left(\boldsymbol{g}_{\boldsymbol{i}} \mid \boldsymbol{x}\right)$	$\boldsymbol{w}_{\boldsymbol{i}}$	$\boldsymbol{R}^{\mathbf{2}}$
Cushing	3	292.81	0.00	1.00	0.61	0.70
Beverton-Holt $^{\text {Gamma }}{ }^{\text {b }}$	3	294.73	1.92	0.38	0.23	0.66
Smooth Hockey Stick	3	296.27	3.46	0.18	0.11	0.70
Ricker	3	302.86	10.05	0.01	0.00	0.45
Density Independent	2	313.95	21.14	0.00	0.00	0.00

${ }^{a} \boldsymbol{K}$ is the number of structural parameters in the model plus 1 for σ^{2}.
${ }^{\mathrm{b}}$ The β parameter in the Gamma model was very close to 0 , which means that this model is nearly identical to the Cushing model. The reason it did not rank higher is because it contains an extra parameter, which means that it has less bias and greater variance than the Cushing model (less parsimonious).

Table 5. Estimated mean densities (fish $/$ hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and error of the estimated total number of age- $0(<4 \mathrm{in})$ steelhead/rainbow in reaches in the Chiwawa River Basin, Washington, August 2009.

Reach	Mean density		Surface area (ha)			$\text { Volume }\left(\mathrm{m}^{3}\right)$		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm Error	Total No.	95\% C.B.	\pm Error
Chiwawa River								
1	94.0	0.027	1,613	± 87	0.05	1,516	± 99	0.07
2	183.4	0.042	1,517	± 215	0.14	1,241	± 198	0.16
3	460.3	0.128	4,354	± 225	0.05	5,015	± 344	0.07
4	154.0	0.035	542	± 46	0.09	607	± 60	0.10
5	130.7	0.036	1,285	± 37	0.03	1,257	± 63	0.05
6	102.1	0.024	487	± 97	0.20	455	± 113	0.25
7	118.9	0.020	3,172	$\pm 1,271$	0.40	3,377	$\pm 1,512$	0.45
8	12.1	0.002	261	± 414	1.59	244	± 421	1.73
9	0.0	0.000	0	± 0	0.00	0	± 0	0.00
10	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Phelps Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Chikamin Creek ${ }^{1}$								
1	1,364.5	0.741	1,183	± 492	0.42	1,261	± 599	0.48
Rock Creek								
1	623.6	0.278	449	± 237	0.53	501	± 209	0.42
Peven Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Big Meadow Creek								
1	6,896.3	2.125	2,062	± 531	0.26	2,327	± 705	0.30
Alder Creek								
1	8,095.2	4.570	170	± 0	0.00	170	± 0	0.00
Brush Creek								
1	11,166.7	23.103	67	± 0	0.00	67	± 0	0.00
Clear Creek								
1	4,250.0	3.778	17	± 0	0.00	17	± 0	0.00
Y Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Grand Total	144.6	0.033	17,179	$\pm 1,576$	0.09	18,055	$\pm 1,885$	0.10

[^10]Table 6. Estimated mean densities (fish $/$ hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and error of the estimated total number of age-1+ $(4-8 \mathrm{in})$ steelhead/rainbow in reaches in the Chiwawa River Basin, Washington, August 2009.

Reach	Mean density		Surface area (ha)			$\text { Volume }\left(\mathrm{m}^{3}\right)$		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm Error	Total No.	95\% C.B.	\pm Error
Chiwawa River								
1	55.7	0.016	956	± 88	0.09	894	± 100	0.11
2	99.2	0.023	820	± 151	0.18	692	± 138	0.20
3	133.3	0.037	1,261	± 85	0.07	1,444	± 160	0.11
4	55.4	0.013	195	± 40	0.21	220	± 51	0.23
5	18.9	0.005	186	± 11	0.06	182	± 22	0.12
6	53.0	0.012	253	± 37	0.15	235	± 43	0.18
7	27.6	0.005	737	± 321	0.44	762	± 348	0.46
8	27.2	0.005	590	± 888	1.51	554	± 860	1.55
9	0.0	0.000	0	± 0	0.00	0	± 0	0.00
10	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Phelps Creek								
1	69.6	0.029	16	± 0	0.00	16	± 0	0.00
Chikamin Creek ${ }^{1}$								
1	369.1	0.207	320	± 164	0.51	352	± 201	0.57
Rock Creek								
1	141.7	0.064	102	± 93	0.91	115	± 62	0.54
Peven Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Big Meadow Creek								
1	558.5	0.176	167	± 85	0.51	193	± 88	0.46
Alder Creek								
1	1,000.0	0.565	21	± 0	0.00	21	\pm	0.00
Brush Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Clear Creek								
1	1,250.0	1.111	5	± 0	0.00	5	\pm	0.00
Y Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Grand Total	47.4	0.010	5,629	± 987	0.18	5,685	± 986	0.17

[^11]Table 7. Estimated mean densities (fish $/$ hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and error of the estimated total number of steelhead/rainbow larger than 8 inches in reaches in the Chiwawa River Basin, Washington, August 2009.

Reach	Mean density		Surface area (ha)			Volume (m^{3})		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm Error	Total No.	95\% C.B.	\pm Error
Chiwawa River								
1	1.4	0.000	24	± 5	0.21	23	± 18	0.78
2	2.7	0.001	22	± 7	0.32	18	± 13	0.72
3	1.1	0.000	10	± 1	0.10	12	± 2	0.17
4	0.6	0.000	2	± 0	0.00	2	± 0	0.00
5	0.1	0.000	1	± 0	0.00	0	± 0	0.00
6	0.0	0.000	0	± 0	0.00	0	± 0	0.00
7	0.7	0.000	19	± 11	0.58	17	± 12	0.71
8	0.0	0.000	0	± 0	0.00	0	± 0	0.00
9	0.0	0.000	0	± 0	0.00	0	± 0	0.00
10	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Phelps Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Chikamin Creek ${ }^{1}$								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Rock Creek								
1	9.7	0.004	7	± 6	0.86	8	± 4	0.50
Peven Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Big Meadow Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Alder Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Brush Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Clear Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Y Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Grand Total	0.7	0.000	85	± 15	0.18	80	± 26	0.33

[^12]Table 8. Estimated mean densities (fish $/$ hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and error of the estimated total number of juvenile bull trout ($2-8 \mathrm{in}$) in reaches in the Chiwawa River Basin, Washington, August 2009.

Reach	Mean density		Surface area (ha)			Volume (m ${ }^{3}$)		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm Error	Total No.	95\% C.B.	\pm Error
Chiwawa River								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
2	0.0	0.000	0	± 0	0.00	0	± 0	0.00
3	0.0	0.000	0	± 0	0.00	0	± 0	0.00
4	0.0	0.000	0	± 0	0.00	0	± 0	0.00
5	0.0	0.000	0	± 0	0.00	0	± 0	0.00
6	0.0	0.000	0	± 0	0.00	0	± 0	0.00
7	0.0	0.000	0	± 0	0.00	0	± 0	0.00
8	0.1	0.000	2	± 4	2.00	1	± 5	5.00
9	3.2	0.001	29	± 9	0.31	27	± 17	0.63
10	2.0	0.001	12	± 13	1.08	19	± 12	0.63
Phelps Creek								
1	87.0	0.036	20	± 0	0.00	20	± 0	0.00
Chikamin Creek ${ }^{1}$								
1	1.2	0.001	1	± 0	0.00	1	± 0	0.00
Rock Creek								
1	25.0	0.011	18	± 9	0.50	19	± 5	0.26
Peven Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Big Meadow Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Alder Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Brush Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Clear Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Y Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Grand Total	0.7	0.000	82	± 18	0.22	87	± 22	0.25

[^13]Table 9. Estimated mean densities (fish $/$ hectare and fish $/ \mathrm{m}^{3}$), total numbers, 95% confidence bounds on total numbers, and error of the estimated total number of adult bull trout (>8 in) in reaches in the Chiwawa River Basin, Washington, August 2009.

Reach	Mean density		Surface area (ha)			Volume (m ${ }^{3}$)		
	Fish/ha	Fish/m ${ }^{3}$	Total No.	95\% C.B.	\pm Error	Total No.	95\% C.B.	\pm Error
Chiwawa River								
1	1.5	0.000	25	± 5	0.20	23	± 18	0.78
2	2.3	0.001	19	± 1	0.05	18	± 20	1.11
3	0.5	0.000	5	± 0	0.00	4	± 0	0.00
4	3.1	0.001	11	± 6	0.55	10	± 7	0.70
5	0.5	0.000	5	± 0	0.00	4	± 0	0.00
6	0.0	0.000	0	± 0	0.00	0	± 0	0.00
7	6.9	0.001	184	± 79	0.43	182	± 126	0.69
8	5.5	0.001	119	± 53	0.45	111	± 100	0.90
9	12.6	0.003	115	± 25	0.22	125	± 177	1.42
10	21.6	0.008	133	± 23	0.17	173	± 30	0.17
Phelps Creek								
1	8.7	0.004	2	± 0	0.00	2	± 0	0.00
Chikamin Creek ${ }^{1}$								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Rock Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Peven Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Big Meadow Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Alder Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Brush Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Clear Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Y Creek								
1	0.0	0.000	0	± 0	0.00	0	± 0	0.00
Grand Total	5.2	0.001	618	± 102	0.17	652	± 243	0.37

[^14]APPENDIX A. Numbers of redds, eggs, age-0 Chinook salmon, parr per redd, and percent egg-to-parr survival in the Chiwawa River Basin, brood years 1991-2008. Numbers of eggs were calculated as the number of redds times the mean fecundity of females collected for broodstock.

Brood Year	Chinook Salmon			Parr/Redd	Egg-to-parr survival (\%)
	Redds	Eggs	Age-0 (parr)		
1991	104	478,400	45,483	437	9.5
1992	302	1,570,098	79,113	262	5.0
1993	106	556,394	55,056	519	9.9
1994	82	485,686	55,240	674	11.4
1995	13	66,248	5,815	447	8.8
1996	23	106,835	16,066	699	15.0
1997	82	374,740	68,415	834	18.3
1998	41	218,325	41,629	1,015	19.1
1999	34	166,090	NS	NS	NS
2000	128	642,944	114,617	895	17.8
2001	1,078	4,984,672	134,874	125	2.7
2002	345	1,605,630	91,278	265	5.7
2003	111	648,684	45,177	407	7.0
2004	241	1,156,559	49,631	206	4.3
2005	332	1,436,564	79,902	241	5.6
2006	297	1,284,228	60,752	205	4.7
2007	283	1,256,803	82,351	291	6.6
2008	689	3,163,888	106,705	155	3.4
Average	238	1,122,377	66,594	452	9.1

APPENDIX B. Estimated numbers of salmonids (based on fish/ha) in the Chiwawa River Basin, Washington, 1992-2009; NS = not sampled.

Survey year	Chinook salmon		Steelhead/Rainbow			Bull trout	
	Age-0	Age-1+	Age-0	Age-1+	>8 in 1	2-8 in	>8 in
$1992{ }^{2}$	45,483	563	4,927	2,533	1,869	299	208
1993	79,113	174	4,004	2,860	768	158	156
1994	55,056	18	1,410	5,856	67	90	76
1995	55,241	13	7,357	9,517	140	97	664
1996	5,815	22	4,245	11,849	78	79	343
1997	16,066	5	8,823	6,905	48	220	472
1998	68,415	63	3,921	10,585	78	300	900
1999	41,629	41	5,838	22,130	33	130	423
2000	NS						
2001	114,617	69	45,727	10,623	420	505	542
2002	134,874	32	20,521	9,090	181	217	521
2003	91,278	134	18,020	6,179	49	196	282
2004	45,177	21	10,380	8,190	8	140	157
2005	49,631	79	11,463	6,188	48	125	346
2006	79,902	388	16,245	10,533	50	238	686
2007	60,752	41	14,073	8,448	77	95	520
2008	82,351	189	15,230	10,576	144	124	510
2009	106,705	54	17,179	5,629	85	82	618

${ }^{1}$ During 1992-1993, numbers included both hatchery and wild rainbow trout. Thereafter only wild trout were observed.
${ }^{2}$ Only the Chiwawa River was sampled in 1992. No tributaries were sampled in that year.

APPENDIX C. Proportion of total habitat available, fraction of all age-0 Chinook within each habitat type, and densities (fish/ha) and numbers of age-0 Chinook within each habitat type in the Chiwawa River Basin, survey years 1992-2009.

Habitat	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Proportion of total habitat available											
Glide	0.10	0.09	0.10	0.10	0.10	0.09	0.09	0.09	NS	0.07	0.08
Pool	0.19	0.19	0.21	0.18	0.18	0.17	0.16	0.17	NS	0.15	0.16
Riffle	0.61	0.61	0.57	0.59	0.57	0.57	0.58	0.55	NS	0.49	0.48
M. Chan	0.10	0.11	0.12	0.14	0.14	0.17	0.17	0.19	NS	0.29	0.28
Fraction of all age-0 Chinook within habitat types											
Glide	0.07	0.03	0.02	0.01	0.02	0.01	0.01	0.01	NS	0.03	0.01
Pool	0.30	0.28	0.22	0.21	0.30	0.16	0.17	0.14	NS	0.23	0.24
Riffle	0.19	0.16	0.12	0.11	0.43	0.23	0.08	0.11	NS	0.18	0.15
M. Chan	0.45	0.53	0.64	0.67	0.24	0.60	0.74	0.74	NS	0.57	0.60
Densities of age-0 Chinook within habitat types (fish/ha)											
Glide	254	251	93	55	11	12	78	13	NS	351	187
Pool	584	1,049	619	541	82	122	607	257	NS	1,392	1,468
Riffle	116	188	124	91	38	52	79	62	NS	336	300
M. Chan	1,710	3,408	2,985	2,328	84	449	2,620	1,201	NS	1,820	2,069
Number of age-0 Chinook within habitat types											
Glide	2,967	2,458	857	623	137	130	837	157	NS	3,231	1,931
Pool	13,468	21,814	12,131	11,294	1,755	2,553	11,454	5,933	NS	25,890	32,612
Riffle	8,531	12,616	6,698	6,197	2,525	3,699	5,392	4,626	NS	20,629	19,754
M. Chan	20,517	42,225	35,370	36,965	1,396	9,682	50,728	30,912	NS	64,866	80,576

APPENDIX C. Concluded.

Habitat	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Mean
Proportion of total habitat available											
Glide	0.07	0.07	0.08	0.08	0.07	0.09	0.08				0.08
Pool	0.17	0.16	0.16	0.16	0.17	0.23	0.22				0.18
Riffle	0.49	0.50	0.47	0.47	0.47	0.51	0.54				0.53
M. Chan	0.26	0.27	0.29	0.30	0.29	0.17	0.15				0.21
Fraction of all age-0 Chinook within habitat types											
Glide	0.02	0.01	0.01	0.03	0.02	0.03	0.02				0.02
Pool	0.23	0.07	0.19	0.31	0.46	0.40	0.36				0.26
Riffle	0.15	0.14	0.07	0.12	0.12	0.11	0.11				0.13
M. Chan	0.60	0.77	0.73	0.54	0.40	0.45	0.51				0.59
Densities of age-0 Chinook within habitat types (fish/ha)											
Glide	200	58	49	237	113	238	230				140
Pool	951	155	492	1,240	1,211	1,210	1,453				811
Riffle	216	101	60	166	118	156	175				138
M. Chan	1,626	1,008	1,057	1,147	603	1,872	2,993				1,531
Number of age-0 Chinook within habitat types											
Glide	1,884	540	442	2,498	1,120	2,668	2,371				1,462
Pool	21,091	3,183	9,626	26,754	28,851	34,314	39,382				17,771
Riffle	13,783	6,501	3,367	10,753	7,809	9,773	11,558				9,071
M. Chan	54,519	34,952	36,196	46,580	25,409	38,275	55,607				39,104

APPENDIX B

Fish Trapping at the Chiwawa, Upper Wenatchee, and Lower Wenatchee Smolt Traps during 2009.

STATE OF WASHINGTON DEPARTMENT OF FISH AND WILDLIFE FISH PROGRAM -SCIENCE DIVISION
 SUPPLEMENTATION RESEARCH TEAM
 3515 Chelan HWY, Wenatchee, WA 98801
 Voice (509) 664-3148 FAX (509) 662-6606

February 5, 2010

To: HCP Hatchery Committee
From: Todd Miller

Cc: Distribution List
Subject: 2009 Chiwawa and Wenatchee River Smolt Estimates
Smolt monitoring programs in the Wenatchee Basin were intended to estimate the number of naturally produced migrating smolts at either the subbasin (i.e., Wenatchee) or watershed scale (i.e., Chiwawa) depending on the target stock (Table 1). In addition, population estimates of hatchery sockeye emigrating from Lake Wenatchee were used to calculate post release survival (i.e., subyearling parr to yearling smolt). The size of smolt traps operated was determined by water depth and river discharge at each of the locations. The number of smolt traps operated was determined by the expected trap efficiency. Smolt traps were located downstream from all (i.e., Chiwawa spring Chinook, Wenatchee spring Chinook, and Wenatchee sockeye), or the majority (i.e., Wenatchee summer Chinook and Wenatchee steelhead) of the spawning areas (Figure 1).

Table 1. Target stocks and corresponding smolt trapping locations used in 2009.

Stock	Smolt trap location	Smolt trap	
		Number	Diameter (m)
Chiwawa spring Chinook	Chiwawa	1	2.6
Wenatchee sockeye	Lake Wenatchee	2	1.5
Wenatchee spring Chinook	Monitor (Lower Wenatchee)	2	2.6
Wenatchee summer Chinook	Monitor (Lower Wenatchee)	2	2.6
Wenatchee steelhead	Monitor (Lower Wenatchee)	2	2.6

Figure 1. Locations of the upper Wenatchee (Lake Wenatchee Trap), Chiwawa, and lower Wenatchee River (Monitor Smolt Trap) smolt traps.

Methods

Fish were removed from the trap at a minimum every morning and placed in an anesthetic solution of MS-222. Fish were identified to species and counted. Non-target species were allowed to fully recover in fresh water prior to being released in an area of calm water downstream from the smolt trap. Target species were held in separate live boxes when needed for mark/recapture efficiency trials conducted in the evening.

Fork length was measured to the nearest millimeter and weight to the nearest 0.1 g . A Fulton type condition factor $\left(\mathrm{WH} 10^{5} / \mathrm{FL}^{3}\right)$ was calculated for all target species. The degree of smoltification (parr, transitional, or smolt) was assessed by visual examination. Juvenile spring Chinook and steelhead were classified as parr if parr marks were distinct, transitional if parr marks were not distinct, and smolts if parr marks were not visible and the fish exhibited a silvery appearance.

Mark/recapture efficiency trials were conducted throughout the trapping season. The frequency of mark/recapture trials was dependent on the number of fish captured (i.e., no less than 100) and the river discharge. These trials were conducted over the widest range of discharge possible (interval depends on trap location). Fish utilized for mark/recapture trials were marked by clipping the tip of either the upper or lower lobe of the caudal fin or were PIT tagged by Chelan

County PUD personnel. Chinook fry (i.e., FL < 50 mm) used in mark/recapture trials were dyed using a Bismark brown solution. Marked fish were distributed evenly on both sides of the river in pools or in calm pockets of water around boulders. In the case of the upper Wenatchee River trap, marked fish were transported and released into Lake Wenatchee. Marked fish were released between 1800 h and 2000 h . All recaptures of marked fish typically occurred within 48 h after each trial. Emigration estimates were calculated using estimated daily trap efficiency derived from the regression formula using trap efficiency (dependent variable) and discharge (independent variable).

Trap efficiency was calculated using the following formula:

$$
\text { Trap efficiency }=E_{i}=R / M i,
$$

where E_{i} is the trap efficiency during time period $i ; M_{i}$ is the number of marked fish released during time period i; and R_{i} is the number of marked fish recaptured during time period i. The number of fish captured was expanded by the estimated daily trap efficiency (e) to estimate the daily number of fish migrating past the trap $\left(N_{i}\right)$ using the following formula:

$$
\text { Estimated daily migration }=\hat{N}_{i}=C_{i} / \hat{e}_{i}
$$

where N_{i} is the estimated number of fish passing the trap during time period $i ; C_{i}$ is the number of unmarked fish captured during time period i; and e_{i} is the estimated trap efficiency for time period i based on the regression equation.

The variance for the total daily number of fish migrating past the trap will be calculated using the following formulas:

Variance of daily migration estimate $=$

$$
\operatorname{var}\left[\hat{N}_{i}\right]=\hat{N}_{i}^{2} \frac{\operatorname{MSE}\left(1+\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{(n-1) \mathrm{s}_{\mathrm{X}}^{2}}\right)}{\hat{e}_{i}^{2}}
$$

where X_{i} is the discharge for time period i, and n is the sample size. If a relationship between discharge and trap efficiency was not present (i.e., $P<0.05 ; r^{2} \sim 0.5$), a pooled trap efficiency was used to estimate daily emigration:

$$
\text { Pooled trap efficiency }=e_{p}=\sum R / \sum M
$$

The daily emigration estimate was calculated using the formula:

$$
\text { Daily emigration estimate }=\hat{N}_{i}=C_{i} / e_{p}
$$

The variance for daily emigration estimates using the pooled trap efficiency was calculated using the formula:

Variance for daily emigration estimate $=\operatorname{var}\left[\hat{N}_{i}\right]=\hat{N}_{i}^{2} \frac{e_{p}\left(1-e_{p}\right) / \sum M}{e_{p}^{2}}$

The total emigration estimate and confidence interval was calculated using the following formulas:

$$
\begin{gathered}
\text { Total emigration estimate }=\sum \hat{N}_{i} \\
95 \% \text { confidence interval }=1.96 \times \sqrt{\sum \operatorname{var}}\left[\hat{N}_{i}\right]
\end{gathered}
$$

Results

Chiwawa River Smolt Trap

2007 Brood Year

The Chiwawa River smolt trap was located approximately 1 km upstream from the confluence with the Wenatchee River. The smolt trap operated between 5 March and 2 December. During that time period the trap was inoperable for 17 days as a result of high river flows, debris, snow/ice, or mechanical failure. During breaks in operation, the estimated number of Chinook captured was calculated from the mean number of fish captured two days prior and two days after the break in operation. The trap was operated in two positions dependent on river discharge (i.e., lower $>12 \mathrm{~m}^{3} / \mathrm{s}$ and upper $<12 \mathrm{~m}^{3} / \mathrm{s}$). Daily trap efficiencies were estimated from two regression models (independent variable = discharge) depending on trap position and age class (i.e., subyearling and yearling Chinook).

Wild yearling spring Chinook (2007 brood) were primarily captured 5 March and 29 June (Figure 2). 3,765 yearling Chinook (Appendix A) an estimated 3,919 yearling Chinook would have been captured if the trap had operated without interruption. Mortality for the season totaled 16 yearling spring Chinook (0.4%). Eight mark/recapture efficiency trials were conducted in the lower position with a mean (SD) trap efficiency of 23.3 (0.11)\%. In 2009, mark/recapture trials could not be conducted at all required discharge levels due to low catch rates. Therefore, efficiency trials were combined with 2007 and 2008 trials in order to expand the population model's utility over a greater range of river discharge. The 2009 regression model for the lower position ($r^{2}=0.68, P<0.001$) was used to estimate yearling Chinook. The estimated number (95% C.I.) of yearling Chinook that emigrated from the Chiwawa River in 2009 was 25,809 ($\pm 10,914$).

2008 Brood Year

Wild subyearling spring Chinook were captured between March 5 and December 2, with major peaks occurring in August and September (Figure 2). We captured 30,641 subyearling Chinook and estimated 31,258 subyearling Chinook would have been captured if the trap had operated
without interruption (Figure 2). Mortality for the season totaled 492 subyearling spring Chinook (1.6\%). Eighteen mark/recapture efficiency trials were conducted with a mean (SD) trap efficiency of $21(0.12) \%$, which provided a current year regression model (i.e., upper trap position; $r^{2}=0.61, P<0.01$). However, subyearling Chinook were also captured while the trap was operated in the lower position. Hence, a separate regression model was used for that time period ($r^{2}=0.62, P<0.01$). In 2009, the estimated number (95% C.I.) of subyearling spring Chinook (including fry) that moved downstream of the Chiwawa River smolt trap during the sampling period was $233,079(\pm 62,658)$.

The proportion of the subyearling Chinook that were captured and classified as fry was greater in 2009 (45\%) than in 2008 (16\%). Typically the number of fry captured comprises less than 3% of the total number of Chinook captured for any given brood year. The large proportion of fry captured in 2009 was attributed to a combination of large escapement, proximity of redds to the trapping location, and high water velocity and discharge during the emergence period. We have been unable to determine if fry captured in the smolt trap migrate upstream at a later date and rear in the Chiwawa River or reside downstream of the smolt trap until the following spring and emigrate as yearling smolts. Hillman and Miller (2002) reported large numbers of subyearling Chinook in tributaries of the Chiwawa River where no spawning had been reported. These data suggest considerable movement during the summer rearing period. Due to the high likelihood that fry do migrate upstream and reside in the Chiwawa River, fry have not been included in our emigrant production estimates. Excluding the fry from the estimate, the number of subyearling spring Chinook that emigrated from the Chiwawa River was $85,161(\pm 6,885)$.

Figure 2. Daily number of Chiwawa River spring Chinook smolts, parr, and fry captured in 2009.

Emigrant Survival

The estimated total egg deposition was calculated by multiplying the mean fecundity of the 2007 brood spawners (WDFW, unpublished data) by the total number of redds found during surveys in the Chiwawa River basin in 2007 (Murdoch et al. 2007). Egg-to-emigrant survival was calculated by dividing the estimated egg deposition by the total number of subyearling (excluding fry) that emigrated in 2008 and yearling spring Chinook that emigrated in 2009. The estimated egg-to-emigrant survival for the 2007 brood Chiwawa spring Chinook was 6.9%
(Table 2).

Length and Weight

Individual length and weight measurements were recorded from a sample of the daily catch. The mean fork length (SD) of yearling and subyearling Chinook (fry excluded) captured was 91.61 (7.06) mm and 74.71 (10.11) mm, respectively (Table 3).

Table 2. Estimated egg deposition (\# of redds x mean broodstock fecundity) and egg-toemigrant survival rates for Chiwawa River spring Chinook salmon.

| $\begin{array}{c}\text { Brood } \\ \text { year }\end{array}$ | $\begin{array}{c}\text { Number } \\ \text { of redds }\end{array}$ | $\begin{array}{c}\text { Estimated } \\ \text { egg } \\ \text { deposition }\end{array}$ | Subyearling | | | Yearling |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | \(\left.\begin{array}{c}Total

emigrants\end{array} \quad $$
\begin{array}{c}\text { Egg-to- } \\
\text { emigrant } \\
\text { survival (\%) }\end{array}
$$\right)\)

Table 3. Mean fork lengths (mm), weights (g), and body condition factor of spring Chinook salmon captured in the Chiwawa River smolt trap during 2009.

	Yearling				Subyearling*		
	Mean	SD	N		Mean	SD	N
Fork length	91.61	7.06	3,633		74.71	10.11	10,692
Weight	8.82	2.09	3,633		4.88	2.06	10,536
K factor	0.89	0.07	3,633		0.91	0.11	10,536

* Parr only

Nontarget Salmonids

During the trapping period, 248 steelhead smolts and 1,709 steelhead/rainbow parr were also captured. Mortality for the season totaled 20 steelhead juveniles (1.02\%). The mean fork length (SD) of steelhead parr and smolts captured was 87.9 (34.3) mm and 143.2 (35.7) mm, respectively (Table 4). Bull trout also comprised a large proportion of incidental species captured. During the trapping period, 24 adult ($>300 \mathrm{~mm}$) and 496 juvenile bull trout were captured (Table 5). Low numbers of fish captured prevented us from estimating the total number of steelhead and bull trout that emigrated from the Chiwawa River during the sampling period. Mortality for the season totaled two juvenile bull trout (0.3%). The monthly totals of all fish captured are listed in Appendix A.

Table 4. Mean fork lengths (mm), weights (g), and body condition factor of juvenile steelhead captured in the Chiwawa River smolt trap during 2009.

	Parr				Smolts		
	Mean	SD	N		Mean		SD
Fork length	85.4	35.8	1,291		146.7	35.1	197
Weight	11.2	18.1	1,289		38.4	22.7	197
K factor	0.94	0.25	1,289		0.96	0.08	197

Table 5. Mean fork lengths (mm), weights (g), and body condition factor of bull trout captured in the Chiwawa River smolt trap during 2009.

	Juvenile				Adult		
	Mean	SD	N		Mean		SD
Fork length	179.5	45.9	480		534.9	158.8	14
Weight	62.0	39.3	472		308.5	144.2	7
K factor	1.00	0.10	472		1.30	0.80	7

Upper Wenatchee River Smolt Trap

The upper Wenatchee River smolt traps were located approximately 0.5 km below the outlet of Lake Wenatchee. The trap operated nightly between 26 March and 29 July 2009. We captured 7,314 wild and 2,444 hatchery sockeye smolts during the sampling period (Figure 3). Mortality during the season totaled 10 wild sockeye (0.13%). We also captured 323 wild spring Chinook smolts, and 66 juvenile steelhead. Mortality of wild juvenile steelhead during trapping totaled one fish (1.5\%). There was no mortality of Chinook or bull trout captured during the sampling period. The monthly totals of all fish captured are listed in Appendix B.

Three mark/recapture efficiency trials with wild and hatchery sockeye were conducted during the sampling period. A combined total of 2,502 wild and hatchery sockeye were marked (i.e., caudal fin clip) and released into Lake Wenatchee. A combined total of 25 wild and hatchery fish were recaptured. A delay in migration and subsequent recapture of the marked fish from Lake Wenatchee negatively affected the relationship between discharge and trap efficiency (i.e., unequal probability of recapture). Both the hatchery and wild sockeye smolt production estimates were calculated using a wild and hatchery pooled daily trap efficiency (wild = 1.0\%; hatchery $=1.0 \%$).
The estimated smolt production (95\% C.I.) for wild sockeye was 732,686 ($\pm 73,610$). Age classes of wild sockeye were determined from scales collected randomly from the run (Table 6). Egg deposition was calculated based on the spawning escapement determined at Tumwater Dam and the sex ratio and fecundity of the broodstock (C. Herring, WDFW, personal communication). Historical egg-to-smolt survival rates for wild Wenatchee sockeye have ranged between 1.2% and 18.4% (Table 7).

The estimated number (95\% CI) of hatchery sockeye that emigrated from Lake Wenatchee was $247,098(\pm 24,909)$. This was the third brood year in which all hatchery sockeye parr were released at a similar size and time since 1999 (Table 8).

Figure 3. Number of wild and hatchery sockeye captured at the upper Wenatchee smolt trap, 2009.

Table 6. Age composition derived from scale samples and estimated number of wild sockeye smolts emigrating from Lake Wenatchee.

Run year	Proportion of wild smolts			Total emigrants
	Age 1+	Age 2+	Age 3+	
1998	0.075	0.906	0.019	55,359
1999	0.955	0.037	0.008	$1,447,259$
2000	0.619	0.381	0.000	$1,944,966$
2001	0.599	0.400	0.001	985,490
2002	0.943	0.051	0.006	39,353
2003	0.961	0.039	0.000	729,716
2004	0.740	0.026	0.000	$5,439,032$
2005	0.929	0.071	0.000	$5,771,187$
2006	0.230	0.748	0.022	723,413
2007	0.994	0.006	0.000	$1,266,971$
2008	0.996	0.004	0.000	$2,797,313$
$2009 *$	0.804	0.195	0.001	549,682

* Ages not confirmed by scales.

Table 7. Estimated egg deposition (mean fecundity x estimated \# of females) and egg-toemigrant survival rates for Lake Wenatchee sockeye salmon.

Brood year	Estimated egg deposition	Estimated number of wild smolts				Egg-to- smolt survival $(\%)$	
		4,174	53,549	0	57,723	1.18	
1996	$10,035,288$	$1,382,133$	741,032	985	$2,124,150$	12.09	
1997	$13,223,588$	$1,203,934$	394,196	236	$1,598,366$	13.55	
1998	$5,693,512$	590,309	2,007	0	592,316	10.40	
1999	$1,188,488$	37,110	28,459	0	65,569	5.52	
2000	$30,506,949$	701,257	$1,378,795$	0	$2,080,052$	6.82	
2001	$64,100,860$	$4,024,884$	409,754	15,915	$4,450,553$	6.94	
2002	$49,197,456$	$5,361,433$	541,113	0	$5,902,546$	12.00	
2003	$7,576,738$	166,385	7,602	8,392	182,379	2.41	
2004	$39,198,446$	$1,259,369$	106,298	550	$1,366,216$	3.49	
2005	$15,946,506$	$2,786,123$	107,243	37,367	$2,930,733$	18.38	
$2006^{\text {a }}$	$7,296,032$	442,164	40,224	--	482,388	6.61	
$2007^{\text {a }}$	$2,912,525$	681,105	--	--	681,105	--	

${ }^{\mathrm{a}}$ Incomplete brood year.
Table 8. Release-to-smolt survival rates for Lake Wenatchee hatchery sockeye.

Brood year	Release year	Run year	Number of fish released	Fork length (mm) at release (SD)	Date of release	Number of fish captured	Estimated number of smolts	Release to smolt survival
1995	1996	1997	150,808	106.0(6.2)	25 Oct	130	28,828	19.12\%
1996	1997	1998	284,630	106.5(7.4)	22 Oct	279	55,985	19.67\%
1997	1998	1999	197,195	122.1(7.4)	09 Nov	586	112,524	57.06\%
1998	1999	2000	121,344	112.3(7.6)	29 Oct	66	24,684	20.34\%
1999	2000	2001	84,466	94.4(8.9)	28 Aug	319	30,326	35.90\%
1999	2000	2001	83,489	134.3(15.4)	01 Nov	548	63,720	76.32\%
2000	2001	2002	92,055	122.6(7.9)	27 Aug	142	30,918	33.59\%
2000	2001	2002	98,119	146.3(12.2)	27 Sept	416	90,593	92.33\%
2001	2002	2003	96,486	117.9(8.7)	28 Aug	162	36,484	37.81\%
2001	2002	2003	104,452	134.8(8.7)	23 Sept	465	103,838	99.41\%
2002	2003	2004	98,509	72.7(5.0)	16 Jun	31	5,192	4.41\%
2002	2003	2004	104,855	118.1(9.1)	25 Aug	376	98,412	85.88\%
2002	2003	2004	112,419	145.4(13.7)	22 Oct	292	112,419	100.0\%
2003	2004	2005	32,755	78.7(3.6)	15 Jun	0	0	0.00\%
2003	2004	2005	104,879	118.4(7.0)	25 Aug	229	19,574	18.66\%
2003	2004	2005	102,825	158.2(12.8)	03 Nov	1,185	102,825	100.0\%
2004	2005	2006	81,428	115.8(6.7)	29 Aug	,	159,500	92.2\%
2004	2005	2006	91,495	150.7(7.0)	02 Nov	,	159,500	92.2\%
2005	2006	2007	140,542	148.9(14.0)	30 Oct	516	140,542	100.0\%
2006	2007	2008	225,670	137.8(14.7)	31 Oct	1,367	102,907	45.60\%
2007	2008	2009	252,133	137.2(6.8)	29 Oct	263	247,098	98.00\%

Lower Wenatchee River Smolt Trap

The lower Wenatchee River smolt traps were located at the West Monitor Bridge (rkm 9.6). The trap operated nightly between 19 February and 5 August. However, due to heavy debris and/or high flow, both traps were not operational for 13 days (i.e., April 30 and May 20, the 1st of June through June 8th, and July $4^{\text {th }}, 10^{\text {th }}$, and 30th). One trap was not operational for an additional 35 days (i.e., April $22^{\text {nd }}$ through the $25^{\text {th }}$, May $8^{\text {th }}$ and 9 th, May $13^{\text {th }}$ through the $19^{\text {th }}$, May $21^{\text {st }}$ through the $25^{\text {th }}$, May $28^{\text {th }}$ and $29^{\text {th }}$, and June $9^{\text {th }}$ through the $23^{\text {rd }}$).

We captured 536 wild spring Chinook (Figure 4) and 264 parr and smolt steelhead (Figure 5). A total of 596 steelhead fry were also captured. A total of 37,568 subyearling Chinook were also captured (Figure 4) comprising 83.9\% of the total number of juvenile Chinook captured in 2009.

We also captured 1,259 wild sockeye (Figure 6). Mortality during the trapping period consisted of 4 yearling Chinook (0.8%), 262 wild subyearling Chinook (0.7%), two steelhead parr and one steelhead smolt (0.8%). Three of the yearling Chinook mortalities were post-handling while one was found dead prior to sampling. Both steelhead mortalities were prior to sampling. Hatchery fish captured totaled 6,692 yearling Chinook, 1,949 steelhead and 263 sockeye. The monthly totals of all fish captured are listed in Appendix C. Smolt production estimates for salmon and steelhead were calculated using efficiency trials conducted with subyearling Chinook, yearling hatchery Chinook, and yearling hatchery coho. Mark/recapture trials were conducted when river discharge changed between 14 and $28 \mathrm{~m}^{3} / \mathrm{s}$ or the trap position had changed. Low abundance of other target species precluded their use in mark/recapture trials.

Smolt production estimates were calculated using separate regression models (independent variable = river discharge) for each trap position and species. However, when too few trials for a given position or species were conducted, efficiency trials from previous years were incorporated into the regression model. Until the relative abundance of wild yearling Chinook and steelhead increases, or trap efficiency significantly increases such that an adequate number of the target species are captured, surrogates must be used in trap efficiency trials. Estimates for yearling Chinook and steelhead incorporated regression models developed with hatchery coho and hatchery Chinook for both the trap positions ($r^{2}=0.99, P<0.01 ; r^{2}=0.76, P<0.01$). Subyearling Chinook were captured in sufficient numbers such that regression models were developed using only subyearling Chinook when the trap was operated in both operating positions ($r^{2}=0.61, P<0.01 ; r^{2}=0.67, P<0.01$). The smolt production estimate ($95 \% \mathrm{CI}$) for wild yearling and subyearling Chinook was $60,739(\pm 14,229)$ and $4,699,396(\pm 2,860,918)$, respectively. The 2007 brood egg-to-smolt survival for Wenatchee spring Chinook was 2.91% (Table 9). The smolt production estimate for Wenatchee steelhead was $27,373(\pm 7,097)$ and the 2005 brood emigration, completed in 2009, had an egg-to-smolt survival of 0.80% (Table 10).

Figure 4. Daily capture of wild and hatchery yearling Chinook and subyearling summer Chinook at the lower Wenatchee River trap in 2009.

Figure 5. Daily capture of wild and hatchery juvenile steelhead at the lower Wenatchee smolt trap in 2009 (SHR S = steelhead smolt, SHR P = steelhead parr, SHH = hatchery steelhead).

Figure 6. Daily capture of wild and hatchery sockeye at the lower Wenatchee smolt trap in 2009.

Table 9. Estimated egg deposition (\# of redds x mean broodstock fecundity) and egg-to-smolt survival rates for Wenatchee Basin spring Chinook salmon.

| $\begin{array}{c}\text { Brood } \\ \text { year }\end{array}$ | $\begin{array}{c}\text { Number of } \\ \text { redds }\end{array}$ | $\begin{array}{c}\text { Estimated egg } \\ \text { deposition }\end{array}$ | Total emigrants | |
| :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Egg-to-smolt

survival (\%)\end{array}\right]\)

Table 10. Estimated egg deposition (mean fecundity x estimated \# of females) and egg-toemigrant survival rates for Wenatchee Basin steelhead.

Brood year	Estimated egg deposition	Estimated number of wild smolts				Egg-tosmolt survival (\%)
		Age 1+	Age 2+	Age 3+	Total	
$1998{ }^{\text {a }}$		16,628	14,799	4,293	35,720	
$1999{ }^{\text {a }}$		5,691	24,528	4,203	34,422	
$2000^{\text {a }}$		7,972	26,462	5,857	40,292	
$2001{ }^{\text {b }}$	858,990	1,930	21,522	8,142	31,594	3.68
2002	2,674,250	4,712	28,153	1,708	34,573	1.29
2003	2,919,420	4,887	6,828	5,520	17,235	0.59
2004	1,933,560	8,963	51,608	944	61,515	3.18
2005	5,620,120	28,307	14,480	2,311	45,098	0.80
$2006{ }^{\text {c }}$	2,126,240	16,474	16,178	--	--	--
$2007^{\text {c }}$		9,024	--	--	--	--

${ }^{\text {a }}$ No redd counts
${ }^{\mathrm{b}}$ Partial basin redd counts
${ }^{\text {c }}$ Incomplete brood year

Discussion

Upper Wenatchee River Smolt Trap

Wild and Hatchery sockeye were used in mark/recapture efficiency trials. However, only three mark/recapture trials were performed due to the low numbers of wild and hatchery sockeye available. Tagging activities of sockeye and their sensitivities to tagging and handling precluded their use in performing more mark/recapture efficiency trials. A delay in migration and subsequent recapture of the marked fish from Lake Wenatchee negatively affected the relationship between discharge and trap efficiency (i.e., unequal probability of recapture). Therefore, the pooled trap efficiency (1.0\%) was used to calculate wild and hatchery sockeye smolt production estimates. If previously PIT tagged sockeye could be used in mark/recapture trials perhaps enough trials could be performed to confirm a relationship between river discharge and trap efficiency.

Lower Wenatchee River Smolt Trap

Low abundance of spring Chinook and steelhead precluded their use for mark/recapture trials. Hatchery Chinook and coho were used as surrogates for mark/recapture trials, which were conducted at various levels of river discharge or if the trap position had changed. Smolt production estimates were calculated using separate regression models (independent variable $=$ river discharge; dependent variable = trap efficiency) for each of the two trap positions. Mark/recapture trials conducted in 2009 were too few at the varying river discharge to obtain a useable model. Therefore, trials from previous years (i.e., 2001-2008) were used in the regression model to increase the sample size used in the model. Hatchery Chinook and coho will continue to be used as surrogates in trap efficiency trials until the relative abundance of wild spring Chinook and steelhead increase sufficiently to allow species-specific trials.

In 2009, accuracy of smolt production estimates based on estimated trap efficiencies should be high because the regression models used to estimate trap efficiency were significant and discharge accounted for a large proportion of the variability in observed trap efficiencies for both trap positions ($r^{2}=0.76, P<0.001 ; r^{2}=0.99, P<0.05$).

Although we feel our estimates are accurate there seems to be a fundamental problem with the equation used to calculate the variance estimate. There may be other variables that influence mark/recapture trials and subsequently affect our confidence intervals. Continued investigation of such parameters and vigilance in sampling methods will be the focus of upcoming seasons in order to improve our methods.

Chiwawa River Smolt Trap

We have used PIT tagged fish in efficiency trials during the last three smolt trapping seasons at the Chiwawa River smolt trap. During the 2008 season, a difference was noticed in recapture rates depending on how many days the fish were held after tagging and before release. Though not significant, we had planned to conduct additional trials to further test those differences. Due to logistical difficulties (i.e., CCPUD tagging not always conducted during daily holds) we were unable to analyze potential differences in 2009. During the 2010 trapping season we hope to
continue to investigate potential differences between recapture efficiency and days held post tagging.

The model used to estimate the subyearling spring Chinook migration (2008 brood year) used all the $2009 \mathrm{mark} /$ recaptures trials (i.e., no outliers). Having sufficient number of releases during river discharges that encompassed most of the discharges observed during the trapping period resulted in a sufficient relationship between river discharge and trap efficiency $\left(r^{2}=0.60, P=\right.$ 0.001). Therefore, we did not use previous models to combine with the current year’s model.

Yearling spring Chinook (2007 brood year) estimates could have been obtained from the 2009 mark/recapture trials, but a combined (2007-2009; $r^{2}=0.68, P<0.001$) regression model was used to increase the models utility (i.e., increased range of river discharge).

References

Hillman, T.W. and M.D. Miller. 2002. Abundance and total numbers of Chinook salmon and trout in the Chiwawa River Basin, Washington, 2001. Report to Chelan county Public Utility District, Wenatchee, Washington.

Murdoch, A.R., T.N. Pearsons, T.W. Maitland, M.F. Ford, and K. Williamson. 2007.
Monitoring the reproductive success of naturally spawning hatchery and natural spring Chinook salmon in the Wenatchee River. BPA Project No. 2003-039-00. Bonneville Power Administration, Portland, Oregon.

Herring, C. 2009. Personal communication. Washington Department of Fish and Wildlife, Science division, Supplementation research team, Wenatchee WA.

Appendix A. Monthly total juvenile capture information for the Chiwawa River trap.

	2009									Mug	
Species/Origin	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chinook											
\quad Wild yearling	779	2,387	515	84	0	0	0	0	0	0	3,765
\quad Wild subyearling	758	6,571	1,190	1,850	7,274	4,727	878	4,583	2,781	29	30,641
\quad Hatchery yearling	0	7,007	7,082	1	2	2	3	0	0	0	14,097
Steelhead											
\quad Wild	15	123	127	257	43	279	423	447	242	1	1,957
\quad Smolt	7	80	86	26	3	19	23	4	0	0	248
\quad Parr	8	43	41	231	40	260	400	443	242	1	1,709
\quad Hatchery	0	8	2,651	17	6	14	11	0	1	0	2,708
Coho											
\quad Wild yearling	0	0	0	0	0	0	0	0	0	0	0
\quad Wild subyearling	0	0	0	0	0	0	1	0	0	0	1
\quad Hatchery yearling	0	0	0	0	0	0	0	2	1	0	3
Bull trout											
\quad Juvenile	27	21	7	28	9	60	57	225	61	1	496
\quad Adult	0	0	0	1	1	3	9	10	0	0	24
Cutthroat	--	--	--	--	--	--	--	--	--	--	--
Eastern brook	--	--	--	--	--	--	--	--	--	--	--
Whitefish	60	33	1	15	240	2,783	71	49	80	8	3,340
Northern pikeminnow	0	0	0	0	11	24	11	1	0	0	47
Longnose dace	4	31	122	508	130	189	857	222	17	1	2,081
Sucker spp.	0	0	0	0	3	0	3	1	0	0	7
Redside shiner	0	0	0	0	0	0	0	0	0	0	0
Yellow perch	0	0	0	0	0	0	0	0	0	0	0
Sculpin spp.	2	3	4	9	11	19	10	18	2	0	78

Appendix B. Monthly total juvenile capture information for the upper Wenatchee River trap.

2009											
Species/Origin	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chinook											
Wild yearling	12	141	160	10	0	--	--	--	--	--	323
Wild subyearling	12	116	1	74	109	--	--	--	--	--	312
Hatchery yearling	0	25	728	313	8	--	--	--	--	--	1,074
Steelhead											
Wild	1	25	14	16	10	--	--	--	--	--	66
Smolt	0	11	10	16	0	--	--	--	--	--	37
Parr	1	14	4	0	10	--	--	--	--	--	29
Hatchery	0	0	636	1	0	--	--	--	--	--	637
Sockeye											
Wild	0	4,108	3,199	6	1	--	--	--	--	--	7,314
Hatchery	0	204	2,234	6	0	--	--	--	--	--	2,444
Coho											
Wild yearling	0	0	9	0	0	--	--	--	--	--	9
Wild subyearling	0	0	0	0	1	--	--	--	--	--	1
Hatchery yearling	0	38	540	7	0	--	--	--	--	--	585
Bull trout											
Juvenile	2	6	1	0	0	--	--	--	--	--	9
Adult	0	0	0	0	0	--	--	--	--	--	0
Cutthroat	0	2	0	0	0	--	--	--	--	--	2
Whitefish	3	58	13	2	2	--	--	--	--	--	78
Northern											
pikeminnow	0	34	170	18	12	--	--	--	--	--	234
Longnose dace	0	2	3	4	33	--	--	--	--	--	42
Sucker spp.	0	1	3	3	23	--	--	--	--	--	30
Redside shiner	0	22	23	9	36	--	--	--	--	--	90
Yellow perch	0	0	0	0	0	--	--	--	--	--	0

Appendix C. Monthly total juvenile capture information for the lower Wenatchee River trap.
2009

					009							
Species/Origin	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chinook												
Wild yearling	12	24	345	137	18	0	0	--	--	--	--	536
Wild subyearling	26	343	1,987	15,287	12,506	7,401	18	--	--	--	--	37,568
Hatchery yearling	1	4	3,140	3,485	71	8	0	--	--	--	--	6,709
Steelhead												
Wild	2	1	87	142	19	11	2	--	--	--	--	264
Smolt	1	1	66	133	14	0	1	--	--	--	--	216
Parr	1	0	21	9	5	11	1	--	--	--	--	48
Hatchery	0	0	7	1,890	50	2	0	--	--	--	--	1,949
Sockeye												
Wild	0	0	863	394	0	2	0	--	--	--	--	1,259
Hatchery	0	0	31	230	2	0	0	--	--	--	--	263
Coho												
Wild yearling	0	2	46	52	9	5	0	--	--	--	--	114
Wild subyearling	2	3	56	25	113	316	0	--	--	--	--	515
Hatchery yearling	0	0	4,229	5,283	187	10	0	--	--	--	--	9,709
Bull trout												
Juvenile	0	0	0	0	0	0	0	--	--	--	--	0
Adult	0	0	0	0	0	0	0	--	--	--	--	0
Cutthroat	0	0	0	1	0	0	0	--	--	--	--	1
White fish	0	0	2	1	12	36	1	--	--	--	--	52
Northern pikeminnow	0	1	1	6	1	2	2	--	--	--	--	13
Longnose dace	19	69	87	71	49	56	32	--	--	--	--	383
Speckled dace	0	0	0	0	0	0	0	--	--	--	--	0
Umatilla dace	0	0	0	0	0	0	0	--	--	--	--	0
Sucker spp.	3	1	3	25	19	7	5	--	--	--	--	63
Peamouth	0	0	0	0	0	1	0	--	--	--	--	1
Chiselmouth	0	0	0	0	0	0	0	--	--	--	--	0
Redside shiner	0	0	1	1	1	13	2	--	--	--	--	18
Yellow bullhead	0	0	0	0	0	0	0	--	--	--	--	0
Pacific lamprey	4	18	664	320	201	38	0	--	--	--	--	1,245
River lamprey	0	0	0	0	0	0	0	--	--	--	--	0
Sculpin spp.	4	11	20	16	16	45	11	--	--	--	--	123
Stickleback (3 spined)	0	0	1	1	1	4	0	--	--	--	--	7

Appendix D. Yearly total juvenile capture information for the Chiwawa river trap.

Species/Origin	2008	2007	2006	2005	2004	2003	2002	2001	2000	1999	1998	1997
Chinook												
Wild yearling	8,711	4,433	4,974	2,874	4,326	8,012	1,423	2,763	1,791	3,917	3,460	880
Wild subyearling	12,728	16,250	14,542	11,049	5,266	25,096	53,672	5,177	1,483	557	3,843	744
Hatchery yearling	22,367	17,634	9,796	3,965	7,557	5,893	2,926	0	6	60	97	0
Steelhead												
Wild	1,700	1,211	1,789	1,672	2,441	1,662	778	1,091	326	253	622	260
Smolt	448	152	53	45	280	32	86	63	181	133	160	105
Parr	1,250	1,056	1,736	1,627	2,161	1,630	692	1,028	145	120	462	155
Hatchery	2,684	1,964	1,384	2,104	9,678	5,886	2,720	134	45	78	3	0
Coho												
Wild yearling	0	0	3	4	0	0	0	0	0	0	0	0
Wild subyearling	13	12	2	0	0	0	0	0	0	0	0	0
Hatchery yearling	1	0	126	8	0	0	0	2	0	0	0	0
Bull Trout Juvenile	513	250	125	175	238	438	339	264	421	234	605	233
Bull Trout Adult	33	29	39	41	12	6	8	25	19	16	57	23
Cutthroat	52	40	56	44	45	28	37	183	22	13	34	22
Eastern brook	4	3	4	4	2	6	7	25	10	9	17	24
Whitefish	2,672	2,186	2,267	3,672	3,669	1,212	871	1,825	837	317	1,565	525
Northern pikeminnow	7	15	0	0	13	1	3	14	12	2	54	3
Longnose dace	2,934	2,349	1,951	3,133	3,162	1,557	604	1,217	1,456	130	1,481	579
Sucker spp.	9	1	8	10	5	4	0	6	40	3	11	0
Redside shiner	0	0	1	2	1	1	0	0	0	0	0	0
Yellow perch	0	0	0	0	0	0	1	14	0	1	4	0
Sculpin spp.	143	73	104	23	34	13	58	77	56	24	119	42

Appendix E. Yearly total juvenile capture information for the upper Wenatchee river trap.

Species/Origin	2008	2007	2006	2005	2004	2003	2002	2001	2000	1999	1998	1997
Chinook												
Wild yearling	194	1,597	138	61	355	257	34	62	49	228	90	12
Wild subyearling	71	213	2,012	2,541	139	40	5	118	10	84	0	0
Hatchery yearling	398	750	10	6	1	0	0	0	0	5	0	0
Steelhead												
Wild	28	80	42	36	55	14	2	37	1	9	4	7
Smolt	14	15	10	1	1	0	2	4	1	1	3	1
Parr	14	65	32	35	54	14	0	33	0	8	1	6
Hatchery	61	178	160	354	27	43	41	0	0	0	0	0
Sockeye												
Wild	9,133	38,628	20,309	6,580	37,953	25,165	3,299	848	2,635	9,887	6,926	265
Hatchery	1,367	2,387	1,500	1,416	1,866	668	558	1,581	66	572	268	138
Coho												
Wild yearling	6	3	10	2	1	0	0	0	0	0	0	0
Wild subyearling	16	0	0	5	0	0	0	0	0	0	0	0
Hatchery yearling	120	311	125	340	81	98	27	119	11	10	0	0
Bull Trout Juvenile	3	5	1	5	0	0	1	3	6	4	1	3
Bull Trout Adult	0	2	0	3	1	0	0	2	0	0	0	0
Cutthroat	2	1	0	1	2	0	0	12	0	0	1	0
Whitefish	35	49	3	26	19	6	4	16	4	16	10	20
Northern pikeminnow	106	113	46	17	46	23	5	28	26	43	33	125
Longnose dace	8	24	2	53	58	0	0	20	3	6	2	0
Sucker spp.	3	18	2	28	47	12	0	23	5	25	6	5
Redside shiner	21	37	21	47	62	14	0	21	15	23	12	34

Yellow perch	0	1	0	0	0	0	0	0	0	0	0
Sculpin spp.	251	201	35	85	68	34	12	96	46	67	59

Appendix F. Yearly total juvenile capture information for the lower Wenatchee river trap.

Species/Origin	2008	2007	2006	2005	2004	2003	2002	2001	2000
Chinook									
Wild yearling	612	1,906	652	333	1,061	1,619	336	206	284
Wild subyearling	30,547	86,142	63,580	224,858	225,549	110,528	39,714	70,952	72,244
Hatchery yearling	19,440	45,467	35,261	23,709	11,846	20,939	3,421	8,758	2,753
Steelhead									
Wild	319	495	151	246	360	413	252	341	468
Smolt	220	433	105	210	299	343	187	273	426
Parr	99	62	45	36	61	70	76	68	42
Hatchery	2,106	2,697	3,769	2,013	3,465	2,175	2,260	1,711	2,219
Sockeye									
Wild	216	6,340	5,204	202	3,224	7,544	5,042	58	1,114
Hatchery	207	248	68	79	335	271	281	131	12
Coho									
Wild yearling	111	292	103	189	58	199	72	0	0
Wild subyearling	1,013	431	1,460	1,846	927	29	1,443	191	0
Hatchery yearling	4,296	29,305	13,627	11,943	15,455	8,034	12,363	11,265	12,305
Bull Trout Juvenile	1	2	1	3	2	0	1	1	4
Bull Trout Adult	0	0	0	0	0	0	0	0	0
Cutthroat	1	0	0	0	0	0	0	2	0
Whitefish	67	23	118	9	34	115	31	78	73
Northern pikeminnow	57	135	475	90	75	21	93	10	9
Longnose dace	568	1,820	801	659	2,374	488	593	445	319
Speckled dace	1	0	0	0	5	4	3	7	17
Umatilla dace	2	0	0	0	2	1	12	36	17

Sucker spp.	612	339	3,420	203	208	172	169	201	121
Peamouth	2	1	0	0	0	0	0	0	11
Chiselmouth	0	1	32	0	7	2	7	1	6
Redside shiner	69	84	952	166	100	14	47	47	8
Yellow bullhead	0	0	0	0	0	0	0	0	1
Pacific lamprey	1,431	2,876	1,933	685	650	922	978	1,267	1,393
River lamprey	0	0	0	0	0	1	0	18	20
Sculpin spp.	49	64	118	171	86	71	97	55	76
Stickleback (3 spined)	4	39	78	51	85	18	48	246	0

APPENDIX C

Summary of ISEMP PIT Tagging Activities in the Wenatchee Basin, 2009.

Appendix C. Numbers of fish captured, PIT tagged, lost, and released in the Wenatchee Basin during February through October, 2009.

Sampling Location	Species and Life Stage	Number	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { recaptures } \end{aligned}$	Number tagged	Number died	Shed Tags	Total released	Percent mortality
Chiwawa Trap	Wild Subyearling Chinook	9,300	333	8,785	18	2	8,765	0.19
	Wild Yearling Chinook	4,170	338	3,710	15	1	3,694	0.36
	Wild Steelhead/Rainbow	1,209	5	1,136	9	0	1,127	0.74
	Hatchery Steelhead/Rainbow	1	0	1	0	0	1	0.00
	Wild Coho	0	0	0	0	0	0	--
	Total	14,680	676	13,632	42	3	13,587	0.29
Chiwawa Remote	Wild Subyearling Chinook	402	2	128	0	0	128	0.00
	Wild Yearling Chinook	3	0	3	0	0	3	0.00
	Wild Steelhead/Rainbow	38	0	35	0	0	35	0.00
	Hatchery Steelhead/Rainbow	46	3	43	0	0	43	0.00
	Wild Coho	0	0	0	0	0	0	--
	Total	489	5	209	0	0	209	0.00
Upper Wenatchee Trap	Wild Subyearling Chinook	38	0	38	1	0	37	2.63
	Wild Yearling Chinook	308	3	299	3	0	296	0.97
	Wild Steelhead/Rainbow	52	1	47	1	0	46	1.92
	Hatchery Steelhead/Rainbow	1	0	0	0	0	0	0.00
	Wild Coho	1	0	0	0	0	0	0.00
	Wild Sockeye	3,739	1	3,692	9	0	3,683	0.24
	Total	4,139	5	4,076	14	0	4,062	0.34
Nason Creek Remote	Wild Subyearling Chinook	750	6	702	1	0	701	0.13
	Wild Yearling Chinook	14	0	13	0	0	13	0.00
	Wild Steelhead/Rainbow	531	30	459	0	0	459	0.00
	Hatchery Steelhead/Rainbow	197	16	197	1	0	196	0.51
	Wild Coho	0	0	0	0	0	0	--
	Total	1,492	52	1,371	2	0	1,369	0.13
Upper Wenatchee Remote	Wild Subyearling Chinook	0	0	0	0	0	0	--
	Wild Yearling Chinook	0	0	0	0	0	0	--
	Wild Steelhead/Rainbow	7	0	7	0	0	7	0.00
	Hatchery Steelhead/Rainbow	25	2	23	0	0	23	0.00
	Wild Coho	0	0	0	0	0	0	--
	Total	32	2	30	0	0	30	0.00
Middle Wenatchee Remote	Wild Subyearling Chinook	343	4	284	0	0	284	0.00
	Wild Yearling Chinook	0	0	0	0	0	0	--
	Wild Steelhead/Rainbow	944	24	867	1	0	866	0.11
	Hatchery Steelhead/Rainbow	5	0	5	0	0	5	0.00
	Wild Coho	6	0	4	0	0	4	0.00

Sampling Location	Species and Life Stage	Number held	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { recaptures } \end{aligned}$	Number tagged	$\begin{gathered} \text { Number } \\ \text { died } \end{gathered}$	Shed Tags	Total released	Percent mortality
	Total	1,298	28	1,160	1	0	1,159	0.08
Lower Wenatchee Remote	Wild Subyearling Chinook	0	0	0	0	0	0	--
	Wild Yearling Chinook	0	0	0	0	0	0	--
	Wild Steelhead/Rainbow	69	0	69	0	0	69	0.00
	Hatchery Steelhead/Rainbow	11	2	9	0	0	9	0.00
	Wild Coho	0	0	0	0	0	0	--
	Total	80	2	78	0	0	78	0.00
Peshastin Creek Remote	Wild Subyearling Chinook	0	0	0	0	0	0	--
	Wild Yearling Chinook	0	0	0	0	0	0	--
	Wild Steelhead/Rainbow	95	2	92	0	0	92	0.00
	Hatchery Steelhead/Rainbow	0	0	0	0	0	0	--
	Wild Coho	0	0	0	0	0	0	--
	Total	95	2	92	0	0	92	0.00
Lower Wenatchee Trap	Wild Subyearling Chinook	0	0	0	0	0	0	--
	Wild Yearling Chinook	529	53	471	3	0	468	0.57
	Wild Steelhead/Rainbow	238	5	227	0	0	227	0.00
	Hatchery Steelhead/Rainbow	1	0	1	0	0	1	0.00
	Wild Coho	0	0	0	0	0	0	--
	Wild Sockeye	0	0	0	0	0	0	--
	Total	768	58	699	3	0	696	0.39
Total:	Wild Subyearling Chinook	10,833	345	9,937	20	2	9,915	0.18
	Wild Yearling Chinook	5,024	394	4,496	21	1	4,474	0.42
	Wild Steelhead/Rainbow	3,183	67	2,939	11	0	2,928	0.35
	Hatchery Steelhead/Rainbow	287	23	279	1	0	278	0.35
	Wild Coho	7	0	4	0	0	4	0.00
	Wild Sockeye	3,739	1	3,692	9	0	3,683	0.24
Grand Total:		23,073	830	21,347	62	3	21,282	

APPENDIX D

Wenatchee Steelhead Spawning Ground Surveys, 2009

STATE OF WASHINGTON DEPARTMENT OF FISH AND WILDLIFE
 FISH PROGRAM - SCIENCE DIVISION SUPPLEMENTATION RESEARCH TEAM

3515 Chelan HWY, Wenatchee, WA 98801
Voice (509) 663-9678 FAX (509) 662-6606
28 December 2009

To: Distribution List
From: Mike Tonseth

Subject: 2009 Wenatchee River Basin Steelhead Spawning Ground Surveys
Summer steelhead migrate to their spawning grounds as early as nine months prior to spawning. Run escapement estimates of summer steelhead counted at Columbia River dams or at Tumwater Dam in the Wenatchee River may not accurately reflect the size of the spawning population because of fallback and prespawn mortality that may occur prior to spawning. English et al. (2003) reported fallback rates for Rock Island (4.9\%) and Rocky Reach (6.5\%) dams were similar, but no information regarding Tumwater Dam was reported. In the same study, survival to spawning was not explicitly calculated, but kelting rates for the Wenatchee River ranged between 68% and 77% and may serve as a minimum survival rate. Keefer et al. (2008) conducted a more comprehensive study throughout the Columbia Basin and reported mortality rates of summer steelhead that overwintered in the Columbia River or tributaries was 14.5% and 18.9%, respectively.

Redd counts may be used to calculate a more accurate estimate of the spawning population, but requires knowledge concerning the number of redds per female and the number of fish per redd. Female steelhead have been reported to construct multiple redds, ranging between 1.02 and 6.91 redds (Reingold 1965; Gallagher and Gallagher 2005; Kuligowski et al. 2005). Large variation in the number of redds per female within and across populations may be natural or the result of lack of precision in the methodology. While the sex ratio may be an appropriate surrogate for the number of fish per redd under the assumption females construct a single redd, if female steelhead construct multiple redds, it is also likely male steelhead spawn at multiple redd locations with either the same or different females. An estimate of the spawning population coupled with other population specific information (i.e., ratio of hatchery and wild spawners and age composition) are critical data needed to assess the productivity of the population (i.e., recruits per spawner).

Our objectives in conducting steelhead spawning ground surveys were to 1) determine spawn timing of naturally spawning steelhead (both hatchery and wild origin) and 2) estimate the abundance of redds by naturally spawning steelhead within selected tributaries. We also examined the relationship between run escapement upstream of

Tumwater Dam (i.e., female and total) and redd counts as a method of assessing the precision of our estimates.

Methods

Steelhead migrating upstream of Tumwater Dam were captured, sampled (sex, length, weight, scales), and PIT tagged as part of a separate study. Gender was determined using secondary sexual characteristics (i.e., kype, coloration, body shape). Origin was determined using hatchery marks (i.e., fin clip, VIE, CWT, or eroded fins) or scale pattern analysis.

Spawning grounds surveys were primarily concentrated in the upper Wenatchee basin because all hatchery fish were released upstream of Tumwater Dam. Peshastin Creek was included in our surveys because it was identified as a potential reference stream (i.e., no hatchery releases since 1998) for the Wenatchee Basin. Survey methodology involved surveying non-random index areas, defined as major spawning area(s) for each stream, as frequently as once a week. Redds were either individually flagged or in the case of localized spawning, mapped and numbered sequentially. All redds were also georeferenced using handheld global positioning devices. Between 2000 and 2003, the number of index areas has increased as more information became available. Beginning in 2004, survey methodology has remained similar. Hence, direct comparisons of redd counts to years before 2004 may not be appropriate.

Index area spawning ground surveys were conducted by foot or raft on the Wenatchee River and most major tributaries (Appendix A). For each index area, the same surveyor(s) conducted all weekly surveys. However, when the end of spawning within an index area was thought to be nearly complete, a different observer (i.e., naïve) surveyed the index area to determine the number of redds still visible at the end of spawning. At approximately the same time, non-index areas within a reach or stream were also surveyed. The total number of redds in non-index areas was estimated by dividing the number of redds found in non-index areas by the proportion of redds still visible inside the index area. The reach total redd count was calculated by combining the number of redds in the index area and the estimated number of redds in the non-index. Murdoch and Peven (2005) provide a more detailed description of the methodology (Appendix F, Task 7-3).

The sex ratio of the entire population upstream of Tumwater Dam was used as the redd expansion factor (i.e., number fish per redd). Spawning escapement was estimated by multiplying the estimated total number of redds by the number of fish per redd. Linear regression analysis was used to examine the relationship between run escapement estimates, index area redd counts, and total redd counts upstream of Tumwater Dam. Fallbacks rates at Tumwater Dam were calculated based on the number of PIT tagged steelhead recaptured or tagged at Tumwater Dam that were detected downstream of Tumwater Dam prior to spawning divided by the total number of PIT tagged steelhead.

Results

The estimated steelhead run escapement upstream of Tumwater Dam was 1,781 fish that included 3 fish detected on videotape, 42 surplus broodstock, and 1,736 trapped and released upstream. Run escapement in 2009 was 34% greater than 2008, and was 18% greater than the previous 5-year average of 1,512 fish (Table 1). A slightly greater proportion of female than male steelhead were observed at Tumwater Dam resulting in a fish per redd value of 1.83. Of those steelhead released upstream of Tumwater Dam 24 $\%(N=423)$ were determined to be naturally produced.

Table 1. Total number, gender, and sex ratio of steelhead migrating upstream of Tumwater Dam between 2001 and 2009. Sex ratio in 2001 was determined by the number of fish passed and collected during broodstock collection at Tumwater and Dryden dams. For 2002-2008, gender was determined visually at Tumwater Dam. For 2009, gender was determined visually and/or by ultrasound.

Year	Number of steelhead to Tumwater Dam			Male to female ratio	Number of fish per redd
	Total	Female	Male		
2001	820	394	426	1.08	2.08
2002	1,720	641	1,079	1.68	2.68
2003	1,813	1,137	676	0.59	1.59
2004	1,918	869	1,049	1.21	2.21
2005	2,598	1,620	978	0.60	1.60
2006	1,057	505	552	1.09	2.09
2007	657	339	318	0.94	1.94
2008	1,328	473	855	1.81	2.81
2009	1,781	973	808	0.83	1.83

In 2009, a large snow pack coupled with cool temperatures delayed runoff and river conditions were similar to those observed in 2003, 2006, and 2008. After the second week of May, air temperatures increased such that snowmelt resulted in elevated water conditions for the remainder of the spawning period. Steelhead began spawning during the third week of March in the Wenatchee River and Peshastin Creek and the fourth and fifth week of March in Icicle River and Nason Creek, respectively. Spawning progressed upstream as water temperatures increased. Spawning was observed in water temperatures ranging from $3.2-9.4^{\circ} \mathrm{C}$. Based on preliminary data, most spawning activity appeared to begin once a mean daily stream temperature reached $\sim 4.4^{\circ} \mathrm{C}$. Steelhead spawning peaked in Peshastin Creek the first week of May. Peak spawning in the Wenatchee River and Nason Creek occurred during the fourth week of April (Appendix B). As indicated above, spawning ground surveys were limited beyond the second week of May due to poor river conditions. A single survey was conducted the first week of June to determine if any late spawning could be detected and found that all previously constructed redds were erased and no new redds were located.

The estimated number of redds in the Wenatchee Basin increased 231\% between 2008 (N $=286)$ and $2009(N=662)$ and was 184% greater the 5 -year average of 360 redds (Table 2). High river discharge occurring during, and following the peak of spawning decreased observer efficiency and may have resulted in an underestimate of redd abundance. The proportion of redds in tributaries upstream of Tumwater Dam generally decreased and increased in tributaries downstream of Tumwater Dam as well as in the Wenatchee River. The increase in redd abundance in spawning areas below Tumwater Dam was likely the function of poor survey conditions during peak and post peak spawn periods in areas above Tumwater Dam.

In 2009, the proportion of redds in Nason Creek (19\%) was considerably less than the 5year mean (34\%; Table 2). This decrease was likely due to poor survey conditions (i.e., high flows and water clarity), which persisted beyond the second week of May. Redd distribution in Nason Creek continues to primarily be occurring in the middle two reaches (79\%; Appendix D1). Steelhead redds observed in the Chiwawa River were also found in locations consistent with previous years (Appendix D2). The proportion of redds found in all streams upstream of Tumwater Dam decreased from a high of 96\% in 2006 to 59% in 2008 and 2009 (Appendix D3). While Peshastin Creek experienced only a small decrease in the abundance of redds, the overall proportion of redds in 2009 was 72% less than 2008 (Appendix D4). The number of steelhead redds in Icicle Creek, another major spawning tributary downstream of Tumwater Dam, increased 276\% of that observed in 2008, however only represented 15.4% of the redds in the basin.

Table 2. Comparison of the number and distribution of steelhead redds in 2009 and the five year geometric mean (2004-2008).

| Stream | 2009 | | | Geo. mean (2004-2008) | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Number of
 redds | Distribution
 $(\%)$ | | Number of
 redds | Distribution
 $(\%)$ |
| Nason Creek | 126 | 19.0 | | 123 | 34.2 |
| Chiwawa River | 75 | 11.4 | | 30 | 8.3 |
| White River | 0 | 0.0 | | <1 | 0.0 |
| L. Wenatchee River | 0 | 0.0 | | 0 | 0.0 |
| Peshastin Creek | 32 | 4.8 | | 45 | 12.5 |
| Icicle Creek | 102 | 15.4 | | 18 | 5.0 |
| Wenatchee River | 327 | 49.4 | | 144 | 40.0 |
| Above Tumwater | 195 | 59.6 | | 115 | 87.8 |
| \quad Below Tumwater | 132 | 40.4 | | 16 | 12.2 |
| Total | 662 | 100.0 | | 360 | |

As a result of poor survey conditions during the peak and post peak spawning period, observer efficiency was reduced resulting in fewer visible redds and subsequent lower expansion rates for non-index areas. However, the proportion of redds found within index areas upstream of Tumwater Dam in 2008 was about 10% below the 5 -year average of 82% (2004-2008, Table 3).

Table 3. Comparison of the number of redds found within index areas and the estimated number of redds in non-index areas upstream of Tumwater Dam between 2001 and 2009.

Year	Index area	Non-index area	Estimated total	Within index area (\%)
2001	118	19	137	86
2002	296	179	475	62
2003	353	88	441	80
2004	277	92	369	75
2005	828	136	964	86
2006	192	34	226	85
2007	105	29	134	78
2008	124	35	159	78
2009	284	107	391	73

Female escapement explained a slightly greater proportion of the variation in the estimated total number of redds than the total number of steelhead (Figure 1). Given the variation in sex ratios and that only female steelhead construct redds, we would expect female escapement to be highly correlated to the number of redds. The high correlation ($r=0.87$) between female escapement and the number of redds, despite a large variation in the number of females, suggests that prespawn mortality may be less variable and redd superimposition may not be of concern at the observed escapement levels. However, total run escapement explained a greater proportion of the variation in index redd counts than total redd counts suggesting that redd detection rates or observer efficiency in non-index areas may be highly variable (Figure 2).

Figure 1. Relationship between steelhead run escapement (total and female) upstream of Tumwater Dam and total redd counts.

Figure 2. Relationship between steelhead run escapement upstream of Tumwater Dam and total and index area redd counts.

In 2009, only 40% of the steelhead migrating above Tumwater Dam was accounted for on spawning grounds compared to the 5-year average (2004-2008) of 47% (Table 4). Difficult survey conditions during and after the peak spawning period resulted in poor redd detection rates. While environmental conditions do affect the accuracy of our estimates, other factors contribute to the difference between run and spawning escapement estimates that are quantifiable. Ongoing studies address some of these factors, while new studies will be required for those not currently being addressed.

Table 4. Comparison of run and estimated spawning escapement for steelhead upstream of Tumwater Dam between 2001 and 2009.

Year	Run escapement (A)	Number of redds (B)	Number of fish per redd (C)	Estimated spawning escapement (D = B x C)	Proportion of run escapement (E = D/A)
2001	820	137	2.08	285	0.35
2002	1,720	475	2.68	1,273	0.74
2003	1,813	441	1.59	701	0.39
2004	1,918	369	2.21	815	0.42
2005	2,598	964	1.60	1,542	0.59
2006	1,057	226	2.09	472	0.45
2007	657	134	1.94	260	0.40
2008	1,328	159	2.81	447	0.34
2009	1,781	391	1.83	716	0.40

Discussion

The high correlation between the expanded total redd counts and run escapement ($r=$ 0.89) suggest that the methodology used to estimate the number of steelhead can be very robust in estimating spawning escapement. It also suggests that factors responsible for the observed difference in run and estimated spawning escapement are relatively constant with respect to escapement levels and time. Given the large differences between run and spawn escapement upstream of Tumwater Dam, it is evident that multiple factors are contributing to the difference in the escapement estimates.

Tumwater Dam offers a unique opportunity to examine all the possible factors that may influence the size of the spawning population. Furthermore, it is not unreasonable to apply results of studies designed to answer these critical uncertainties to all populations in the upper Columbia River Basin. In the following section, we discuss these factors in more detail.

Estimates of the number of redds

The current methodology does not involve conducting weekly surveys of the entire available spawning habitat (e.g., spring Chinook, summer Chinook, and sockeye). Steelhead are thought to have a greater range of spawning habitats than other anadromous species making a total redd census logistically impractical and costly. In the Wenatchee Basin, the Integrated Status and Effectiveness Monitoring Program (ISEMP) has been conducting probabilistic sampling (e.g., GRTS) of those areas not covered under the current methodology. When available, annual estimates of redd abundance outside of the current survey area should provide some indication regarding the extent of steelhead spawning habitat. Within the current survey area, while a majority of the steelhead redds are consistently found within index areas, this may simply be a result an artifact of the methodology and river reaches surveyed. Furthermore, observer efficiency is potentially a large source of error in conducting redd counts (Dunham et al. 2001; Muhlfeld et al. 2006). Studies are planned for 2010 to estimate of observer efficiency and not only identify, but also quantify sources of error (redd omission or false identification). We hope to develop a model that incorporates important variables, both biotic and abiotic, to estimate observer efficiency in the future. Other studies are planned (i.e., 2011 and beyond) that are design to evaluate the accuracy of the current spawning ground protocol.

Run escapement estimates

Current methodology allows for the direct enumeration of steelhead upstream of Tumwater Dam. However, it may not be appropriate to assume that all steelhead that migrate upstream of Tumwater Dam spawn upstream of Tumwater Dam (i.e., fallback and prespawn mortality). Using PIT tag recapture data, we were able to calculate a minimum fallback rate of steelhead at Tumwater Dam in 2009. Nearly all the steelhead (91.9\%) that migrated past Tumwater Dam were implanted with a PIT tag in the pelvic girdle. PIT tag detection at all Columbia and Snake River hydroelectric projects and some major spawning tributaries downstream of Tumwater Dam (e.g., Peshastin Creek, Prosser Dam in the Yakima Basin) provided recapture data. Because some steelhead may have spawned in areas downstream of Tumwater Dam with no PIT tag antenna array (e.g., lower Wenatchee, Icicle, Mission, and Chumstick) or simply lost their tag, fallback rates were considered minimum values. Of the PIT tagged steelhead that were passed upstream of Tumwater Dam $(N=1,680), 8.0 \%(N=135)$ were detected prior to spawning downstream of Tumwater Dam. While most fallback steelhead ($94 \%, N=127$) were detected upstream of the Wenatchee River, a small number of fish were also detected in Peshastin Creek ($N=8$).

Because no estimate of survival to spawning is available for steelhead in the Wenatchee Basin, we assumed that survival to spawning was at a minimum similar to that of steelhead overwintering in lower Columbia River tributaries (i.e., Deschutes and John Day) reported by Keefer et al (2008). Actual survival in the Wenatchee River may be considerable lower than that reported by Keefer et al. (2008) as a result of colder water temperatures and depleted energy reserves. Studies should be designed and implemented to estimate survival to spawning for all tributaries in the Upper Columbia Basin. We used estimates of fallback and prespawn mortality to adjust run escapement estimates
upstream of Tumwater Dam (Table 5). After adjustment, the mean proportion of the run escapement accounted for on the spawning grounds increased from 48% to 61%.

Table 5. Comparison of steelhead run escapement estimates at Tumwater Dam to the estimate spawning escapement derived from redd counts after adjusting for fallback and prespawn mortality.

Year	Tumwater Dam count	Adjusted Tumwater Dam counts		Number of redds (D)	Number of fish per redd (E)	Estimated spawning escapement$(\mathrm{F}=\mathrm{D} \times \mathrm{E})$	Proportion of run escapement(G = F/C)
		Fallback (B = A - 3.0\%)	$\begin{gathered} \text { Prespawn } \\ \text { mortality } \\ (\mathrm{C}=\mathrm{B}-18.9 \%) \end{gathered}$				
2001	820	795	645	137	2.08	285	0.44
2002	1,720	1,668	1,353	475	2.68	1,273	0.94
2003	1,810	1,756	1,424	441	1.60	706	0.50
2004	1,869	1,813	1,470	369	2.21	815	0.55
2005	2,650	2,571	2,085	964	1.61	1,552	0.74
2006	1,053	1,021	828	226	2.05	463	0.56
2007	657	637	517	134	1.94	260	0.50
2008	1,358	1,317	1,068	159	2.81	447	0.42
2009	1,781	1,639 ${ }^{\text {a }}$	1,329	391	1.83	716	0.54

${ }^{\mathrm{a}}$ Adjusted for fallback rate of 8.0% as determined by PIT tag detections for 2009 brood.

Spawning escapement estimates

Monitoring and evaluation plans require estimates of the spawning population in order to evaluate hatchery program effectiveness and determine appropriate escapement levels (i.e., carrying capacity). Steelhead exhibit a diverse life history and complex migration patterns reducing the reliability that run escapement estimates (i.e., dam counts) accurately reflect the size of the spawning population. Steelhead spawning ground surveys are currently conducted in every major steelhead population in the Upper Columbia Basin. However, uncertainty in using these data to estimate the size of the spawning population lies in some factors previously discussed (i.e., redd omission and observer efficiency), but also in the manner in which redd counts are expanded to estimate the population.

The conversion of redd counts to an estimate of the spawning population requires knowledge of the average number of redds constructed per female and the number of fish per redd (Gallagher et al. 2007). In some populations, female steelhead were reported to construct multiple redds. If steelhead in the Wenatchee do construct multiple redds, differences in run and escapement estimates would increase as a result of a lower spawning escapement estimate. For example, if female steelhead construct an average of 1.5 redds, the difference in run and spawning escapement estimates would increase 9%. Redd abundance estimates are used to estimate the female escapement, which are then expanded by the sex ratio to estimate the male population on the spawning grounds. The number of fish per redd is based on the sex ratio of the population. Error associated with
observer accuracy (i.e., gender misassignments) could be corrected using portable ultrasound devices. This approach assumes 1) equal survival to spawning and 2) every male spawns on average at one redd location. A tagging study is needed to test these assumptions.

Hatchery effectiveness monitoring

The timing and distribution of natural spawning hatchery and naturally produced steelhead in the Wenatchee River is unknown. Differences in spawn timing have been observed in Wenatchee summer steelhead broodstock, but fish are held in a controlled environment on well water. Based on the differences observed in the hatchery, it is possible that a considerable portion of hatchery origin steelhead spawn prior to initiation of spawning ground surveys. Spawning ground surveys start in early March with redds typically being found during April suggesting that hatchery steelhead are spawning within the current survey period. A bi-modal spawning distribution has not been detectable under the current survey protocols, but may be masked by the large proportion of hatchery fish on the spawning grounds. The inability to discern hatchery and naturally produced fish on the spawning grounds precludes determining the spawning distribution and timing of hatchery steelhead relative to naturally produced steelhead. Murdoch et al. (2008) reported that spawning location of both male and female spring Chinook salmon was a significant factor influencing reproductive success. Studies developed and implemented to examine the factors previously discussed, should also incorporate an assessment of the temporal and spatial distribution of hatchery and wild steelhead.

Recommendations

Of all the factors that are contributing to the difference between run and spawning escapement estimates, redds constructed in streams not included in the survey area have the potential to account for a significant portion of the differences. The reported number of redds upstream of Tumwater Dam underestimate the total number of redds because all available spawning habitat (i.e., low order streams) is not surveyed. Studies have been ongoing in the Wenatchee Basin designed to estimate the number of redds in areas not covered under the current survey design. Data from these studies (ISEMP) must be analyzed and incorporated into spawning escapement estimates.

The accuracy and precision of the current methodology used in estimating the redd abundance should be evaluated. Studies focused on testing assumptions used in estimating the size of the spawning population (number of redds per female and number of fish per redd) should incorporate an assessment of 1) fallback 2) survival to spawning 3) the spawning distribution of the hatchery and wild steelhead. Information from these studies is required to ensure spawning escapement estimates have sufficient accuracy and precision, such that inferences regarding the efficacy of naturally spawning hatchery steelhead can be made in a timely manner.

References

Dunham, J. B. Rieman, and K. Davis. 2001. Sources and magnitude of sampling error in redd counts for bull trout. North American Journal of Fisheries Management 21:343-352.

English, K. K., C. Sliwinski, B. Nass, and J. R. Stevenson. 2001. Assessment of adult steelhead migration through the Mid-Columbia River using radio-telemetry techniques, 1999-2000. Report prepared by LGL Limited for Public Utility District No. 2 of Grant County, Public Utility District No. 1 of Chelan County, and Public Utility District No. 1 of Douglas County.

English, K. K., C. Sliwinski, B. Nass, and J. R. Stevenson. 2003. Assessment of adult steelhead migration through the Mid-Columbia River using radio-telemetry techniques, 2001-2002. Report prepared by LGL Limited for Public Utility District No. 2 of Grant County, Public Utility District No. 1 of Chelan County, and Public Utility District No. 1 of Douglas County.

Gallagher, S.P., and C.M. Gallagher. 2005. Discrimination of Chinook salmon, coho salmon, and steelhead redds and evaluation of the use of redd data for estimating escapement in several unregulated streams in northern California. North American Journal of Fisheries Management 25:284-300.

Gallagher, S.P., P.K.J. Hahn, and D. H. Johnson. 2007. Redd counts. Pages 197-234 in Johnson, D.H., B.M. Shier, J.S. O’Neal, J.A. Knutzen, X. Augerot, T.A. O’Neil, T.N. Pearsons plus 37 contributing authors. Salmonid field protocols handbook: techniques for assessing status and trends in salmon and trout populations. American Fisheries Society, Bethesda, Maryland.

Keefer, M.L., C.T. Boggs, C.A. Perry, and C.C. Caudill. 2008. Overwintering distribution, behavior, and survival of adult summer steelhead: variability among Columbia River populations. North American Journal of Fisheries Management 28:81-96.

Kuligowski, D. R., M. J. Ford, and B. A. Berejikian. 2005. Breeding structure of steelhead inferred from patterns of genetic relatedness among nests. Transactions of the American Fisheries Society 134:1202-1212.

Muhlfeld, C.C., M.L. Taper, D.F. Staples, and B.B. Shepard. 2006. Observer error structure in bull trout redd counts in Montana streams: Implications for inference on true redd numbers. Transactions of the American Fisheries Society 135:643654.

Murdoch, A.R., T.N. Pearsons, T.W. Maitland, M.J. Ford, and K. Williamson. 2008. Monitoring the reproductive success of naturally spawning hatchery and natural spring Chinook salmon in the Wenatchee River. Project No. 2003-039-00, Contract No. 00032138. Bonneville Power Administration, Portland, Oregon.

Murdoch, A. R. and C. M. Peven. 2005. Conceptual approach to monitoring and evaluating the Chelan county Public Utility District hatchery programs. Chelan County PUD, Wenatchee, WA.

Reingold, M. 1965. A steelhead spawning study. Idaho Wildlife Review 17:8-10.

Appendix A. Wenatchee River Basin survey reach and index/reference areas - surveys conducted weekly from March through June.

Reach	Index/reference area
Wenatchee River	
Sleepy Hollow Br. to Lower Cashmere Br. (W2)	Monitor boat ramp to Cashmere boat ramp
Leavenworth Bridge to Icicle Road Bridge (W6)	Leavenworth boat ramp to Icicle River
Tumwater Dam to Tumwater Bridge (W8)	Swiftwater boat ramp to Tumwater Bridge
Tumwater Bridge to Plain (W9)	Tumwater Bridge to Plain
Plain to Lake Wenatchee (W10)	Chiwawa pump station to Lake Wenatchee
Peshastin Creek	
Mouth to Camas Creek (P1)	Kings Bridge to Camas Creek
Camas Creek to mouth of Scotty Creek (P2A)	Ingalls Creek to Ruby Creek
Camas Creek to mouth of Scotty Creek (P2)	FR7320 to mouth of Shaser Cr.
Ingalls Creek	
Mouth to Trailhead rm 1.0 (D1)	Mouth to Trailhead rm 1.0
Trailhead to Wilderness Boundary rm 1.5 (D2)	Trailhead to Wilderness Boundary rm 1.5
Chiwawa River	
Mouth to Grouse Creek (C1)	Mouth to Road 62 Bridge rm 6.4
Grouse Creek to Rock Creek (C2)	Chikamin Creek to Log jam
Clear Creek	
Mouth to HWY 22 (V1)	Mouth to HWY 22
HWY 22 to Lower culvert rm 2.0 (V2)	HWY 22 to Lower culvert
Nason Creek	
Mouth to Kahler Creek Bridge (N1)	Mouth to Swamp Creek
HWY 2 Bridge to Lower R.R. Bridge (N3)	Highway 2 Bridge to Merrit Bridge
Lower R.R. Bridge to Whitepine Creek (N4)	Rayrock to Church camp
Icicle River	
Mouth to Hatchery (I1)	Mouth to Hatchery
Little Wenatchee River	
Mouth to Lost Creek (L2)	Fish Weir to Lost Creek
Lost Creek to Rainy Creek Bridge (L3)	Lost Creek to Rainy Creek Bridge
White River	
Sears Cr. Bridge to Napeequa River (H2)	Riprap bank to Napeequa River
Napeequa River to mouth of Panther Creek (H3)	Napeequa River to Grasshopper Meadows.
Napeequa River	
Mouth to rm 1.0 (Q1)	Mouth to rm 1.0

Appendix B. Summary of steelhead spawning ground index surveys in the Wenatchee River basin in 2009.

Reach	Survey Week of index Area														Index Total	Reach Total	Expanded \# of redds
	$\begin{gathered} \hline 1 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 8 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 15 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 29 \\ \text { Mar } \end{gathered}$	$\begin{gathered} 5 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ \text { Apr } \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \text { May } \end{gathered}$	$\begin{gathered} 10 \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ \text { May } \end{gathered}$	$\begin{gathered} 24 \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 \\ \text { May } \end{gathered}$			
Wenatchee River																	
W1																0	0
W2	0	0	0	2	1	1	1		5	7	1				18	22	36
W3																8	36
W4																0	0
W5																3	12
W6	0		0	0	0	5	4		5	2					16	23	36
W7																3	12
W8		0	1	0	1	1	5	1	3	2	2				16	17	17
W9			1	2	1	8	7		42	8	7				76	84	84
W10			0	1	4	11	19		21	20	18				94	94	94
Total	0	0	2	5	7	26	36	1	76	39	28				220	254	327
Peshastin Creek																	
P1			1	3	3		0			10	4				21	24	28
P2			0	0	0		0		2	0					2	3	4
Total			1	3	3		0		2	10	4				23	27	32
Chiwawa River																	
C1			0	0	0	1	2		1	6	7				17	29	58
C2															0	3	10
Total			0	0	0	1	2		1	6	7				17	32	68

Appendix B. Continued.

Reach	Survey Week of index Area														Index Total	Reach Total	Expanded \# of redds
	$\begin{gathered} \hline 1 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 8 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 15 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \hline 29 \\ \text { Mar } \end{gathered}$	$\begin{gathered} 5 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} \hline 12 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} \hline 19 \\ \mathrm{Apr} \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ \text { Apr } \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ \text { May } \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 \\ \text { May } \\ \hline \end{gathered}$			
Clear Creek																	
V1			0		0	0	0		0	0	0	1	0	0	1	1	1
V2											0	1	0	0	1	1	1
Total			0		0	0	0		0	0	0	2	0	0	2	2	2
Nason Creek																	
N1	0	0	0	0	0	3	1	4	6	5	5				24	24	24
N2																6	21
N3	0	0	0	0	1	2	3	2	6	13	10				37	45	58
N4	0	0	0	0	0	0	1	2	3	7	5				18	20	23
Total	0	0	0	0	1	5	5	8	15	25	20				79	95	126
Icicle River																	
Total	0		0	1	3	3	28		47	15	5				102	102	102
White River																	
H2							0		0		0				0	0	0
H3							0		0		0				0	0	0
Total							0		0		0				0	0	0
Little Wenatchee River																	
L2										0	0				0	0	0
L3									0		0				0	0	0
Total									0	0	0				0	0	0
Wenatchee River Basin																	
Total	0	0	3	9	14	35	71	9	141	95	64	2	0	0	443	512	657

Appendix C. Steelhead spawning surveys in the Wenatchee River basin, 2001 - 2009. Redd counts are expanded values derived from sample rates within index areas.

Basin/subbasin	2001	2002	2003	2004	2005	2006	2007	2008	2009
Chiwawa River Basin									
Chiwawa River	25	27	26	17	118	8	3	9	68
Rock Creek	--	1	0	0	0	0	--	--	0
Chikamin creek	--	0	0	1	2	1	0	--	2
Meadow Creek	--	5	1	5	16	3	0	0	3
Twin Creek	--	4	0	--	0	--	--	--	--
Goose Creek	--	0	--	--	--	--	--	--	--
Alder Creek	--	0	5	2	14	0	0	0	0
Deep Creek	--	0	--	--	--	--	--	--	--
Clear Creek	--	43	32	37	12	7	8	2	2
Subtotal	25	80	64	62	162	19	11	11	75
Nason Creek Basin									
Nason Creek	27	80	121	124	410	74	78	87	126
White Pine Creek	--	--	--	0	0	0	0	--	0
Un-named Creek	--	--	--	3	0	3	0	1	0
Roaring Creek	--	--	--	--	2	0	0	0	0
Subtotal	27	80	121	127	412	77	78	88	126
White River Basin									
White River	--	0	1	0	2	0	1	0	0
Panther Creek	--	--	0	0	0	0	0	0	0
Napeequa River	--	0	2	0	0	0	0	1	0
Subtotal		0	3	0	2	0	1	1	0
Little Wenatchee River									
Mainstem	--	1	5	0	0	--	0	--	0
				le Cree					
Mainstem	19	27	16	23	8	41	6	37	102
Peshastin Creek Basin									
Peshastin	--	--	15	32	91	67	17	48	32
Creek									
Mill Creek	--	--	--	--	1	0	0	1	0
Ingalls Creek	--	--	0	0	0	0	--	--	--
Ruby Creek	--	--	0	0	0	--	--	--	0
Tronsen Creek	--	--	0	2	5	0	0	0	0
Scotty Creek	--	--	0	0	0	0	0	0	0
Shaser Creek	--	--	0	0	0	0	0	0	0
Schafer Creek	--	--	--	0	0	0	0	0	0
Subtotal	--	--	15	34	97	67	17	49	32

Wenatchee River									
Mainstem	116	315	248	136	456	191	46	100	327
Beaver Creek	--	0	0	* 15	3	0	0	0	0
Chiwaukum	--	--	0	--	0	0	--	0	0
Subtotal	116	315	248	151	459	191	46	100	327
Wenatchee Basin Total	187	503	472	397	1,140	395	159	286	662

*Redds were enumerated by USFS

Map Symbols

- Redd locations

Appendix D1. Steelhead spawning distribution in the Nason Creek Basin in 2009.

Appendix D2. Steelhead spawning distribution in the Chiwawa River Basin in 2009.

Appendix D3. Steelhead spawning distribution in the Wenatchee River in 2009.

Appendix D4. Steelhead spawning distribution in the Peshastin Creek Basin in 2009.

APPENDIX E

NPDES Hatchery Effluent Monitoring, 2009

NPDES MONITORING FOR WDFW FACILITIES.

All WDFW hatcheries monitor their discharge in accordance with the National Pollutant Discharge Elimination System (NPDES) permit. This permit is administered in Washington by the Washington Department of Ecology under agreement with the United States Environmental Protection Agency. The permit was renewed effective June 1, 2005 and will expire June 1, 2010.

Facilities are exempted from sampling during any month that pounds of fish on hand fall below $20,000 \mathrm{lbs}$ and pounds of feed used fall below $5,000 \mathrm{lbs}$, with the exception of offline settling basin discharges which are to be monitored once per month when ponds are in use and discharging to receiving waters.

Sampling at permitted facilities includes the following parameters:

$<$ FLOW	M
<SS EFF	Average net settleable solids in the hatchery effluent, measured
$<$ TSS COMP	Average net total suspended solids, composite sample ($6 \mathrm{x} /$ day) of the hatchery effluent, measured in mg / L.
<TSS MAX	Maximum daily net total suspended solids, composite sample ($6 \mathrm{x} /$ day) of the hatchery effluent, measured in mg / L.
$<$ SS PA	Maximum settleable solids discharge from the pollution abatement pond, measured in ml / L.
<SS \%	Removal of settleable solids within the pollution abatement pond from inlet to outlet, measured as a percent. No longer required under permit effective June 1, 2000.
<TSS PA	Maximum total suspended solids effluent grab from the pollution abatement pond discharge, measured in mg / L.
$<\mathrm{TSS}$ \%	Removal of suspended solids within the pollution abatement pond from inlet to outlet, measured as a percent. No longer required under permit effective June 1, 2000.
<SS DD	Settleable solids discharged during drawdown for fish release. One sample per pond drawdown, measured in ml / L.
$<$ TRC	Total residual chlorine discharge after rearing vessel disinfection and after neutralization with sodium thiosulfate. One sample per disinfection, measured in ug/L.

In addition, at Similkameen Hatchery only, the following sampling was conducted at the request of WA Dept of Ecology, but is not required under NPDES permit:
<SS IW Settleable solids influent grab taken as wastes are pumped into the pollution abatement pond, measured in mg / L.
$<$ TSS IW Total suspended solids influent grab as wastes are pumped into the pollution abatement pond, measured in mg / L.

National Pollutant Discharge Elimination System (NPDES) Effluent Summary

for the period of January 1, 2009 through December 31, 2009
as reported on the Discharge Monitoring Reports (DMRs)
submitted to the Washington State Department of Ecology

Eastbank Hatchery

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	FLOW PA	SS FA	SS \%	TSS FA	TSS \%	Lbs of Fish	Lbs of Feed
2009	JAN	23.35	0.01		8.8	10500	0.1		0.0		62839	14578
	FEB	23.75	0.01		14.0	7000	0.0		0.4		72573	14038
	MAR		0.01		22.0	12000	0.0		0.0		80028	5610
	APR	21.78	0.01		32.4	7850	0.0		0.0		45430	4851
	MAY	23.75	0.01		3.8	5500	0.0				11982	3357
	JUN	17.73	0.01		21.7	7000	0.0				12503	4908
	JUL	18.73	0.01		32.4	3500	0.0		1.4		22736	13476
	AUG	18.15	0.01		19.6	5000	0.0		0.8		25688	17678
	SEP	23.77	0.01		14.4	7500	0.0		0.2		34232	20343
	OCT	29.08	0.01		25.0	12000	0.0		0.02		51415	23775
	NOV	29.08	0.01		73.2	14000	0.0		0.2		61656	18599
	DEC	29.08	0.01		19.0	14000	0.0		0.6		78102	34069

Turtle Rock
NPDES Permit Number WAG13-5004

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	Lbs of Fish	Lbs of Feed	SS DD	TSS DD
2009	JAN	18.00	0	0.3	0.6	35602	5962		
	FEB	18.00	0	0.2	0.2	50349	1102		
	MAR	18.00	0	0.4	0.4	50868	4595		
	APR	14.40	0	0.4	0.4	47563	5962		
	MAY	7.20	0	-0.4	-0.4	29419	6194	0.1	4.1
	JUN	10.80	0	0.2	0.2	17470	4564	0.1	1.4
	JUL	No Monitoring				0	0		
	AUG	No Monitoring				0	0		
	SEP	No Monitoring				0	0		
	OCT	No Monitoring				0	0		
	NOV	3.60	0	-0.2	-0.2	15699	4486		
	DEC	7.20	0	0.3	0.8	18361	4237		

Wells Hatchery
NPDES Permit Number WAG13-
5009

YEAR	MONTH	FLOW	SS EFF	TSS COMP	$\begin{aligned} & \text { TSS } \\ & \text { MAX } \end{aligned}$	FLOW PA	SS PA	SS \%	TSS PA	TSS \%	Lbs of Fish	Lbs of Feed	$\begin{aligned} & \text { SS } \\ & \text { DD } \end{aligned}$	TSS DD
2009	JAN	16.30	0	0.8	0.8		0				105596	18320		
	FEB	14.30	0	0.3	0.6		0				117202	12663		
	MAR	24.00	0	0.6	0.6	495	0		4.4		146563	14885		
	APR	14.90	0	0.6	0.6	495	0		16.0		14772	13595		
	MAY	45.40	0	0.0	0.0		0				4965	4903		
	JUN	6.50	0	0.0	0.0	495	0		26.0		5642	1525		
	JUL	9.90	0	0.0	0.0	495	0		1.0		7942	1673		
	AUG	7.70	0	-0.2	-0.2	495	0		0.6		12044	1673		
	SEP	10.40	0	-0.2	-0.2	495	0		1.0		16991	5121		
	OCT	11.90	0	0.4	0.4	495	0		1.0		29364	8403		
	NOV	13.40	0	0.2	0.2	495	0		0.4		39122	10010		
	DEC	21.30	0	0.2	0.2	495	0		4.8		54865	14485		

Chiwawa Ponds
NPDES Permit Number WAG13-5015

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	Lbs of Fish	Lbs of Feed	SS DD	TSS DD
2009	JAN	4.20	0	0.0	0.0	18847	220		
	FEB	4.14	0	0.4	0.4	17500	660		
	MAR	5.25	0	0.9	1.0	17969	1425		
	APR	7.30	0	-0.4	-0.4	13000	2024		
	MAY	8.38	0	5.6	5.6	3000	0	0.05	0.4
	JUN	No Monitoring				0	0		
	JUL	No Monitoring				0	0		
	AUG	No Monitoring				0	0		
	SEP	8.64	0	-0.2	-0.2	34975	1468		
	OCT	8.37	0	0.8	1.2	38700	3902		
	NOV	8.25	0	0.2	0.2	33200	3102		
	DEC	8.18	0	0.2	0.2	40682	572		

Carlton Acclimation Pond
NPDES Permit Number WAG13-5013

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	Lbs of Fish	Lbs of Feed	SS DD	TSS DD
2009	JAN	No Monitoring				0	0		
	FEB	No Monitoring				0	0		
	MAR	10.08	0.000	-0.40	-0.40	33408	5600		
	APR	10.08	0.000	0.10	0.20	40000	12000		
	MAY	No Monitoring				0	0		
	JUN	No Monitoring				0	0		
	JUL	No Monitoring				0	0		
	AUG	No Monitoring				0	0		
	SEP	No Monitoring				0	0		
	OCT	No Monitoring				0	0		
	NOV	No Monitoring				0	0		
	DEC	No Monitoring				0	0		

Methow Hatchery
NPDES Permit Number WAG13-
5000

YEAR	MONTH	$\begin{gathered} \text { FLO } \\ \mathbf{W} \end{gathered}$	SS EFF	TSS COMP	$\begin{aligned} & \text { TSS } \\ & \text { MAX } \end{aligned}$	FLOW PA	SS PA	SS \%	TSS PA	TSS \%	Lbs of Fish	Lbs of Feed	$\begin{aligned} & \text { SS } \\ & \text { DD } \end{aligned}$	TSS DD
2009	JAN	10.44	0.20	-0.60	-0.60	14400					11904	2400		
	FEB	9.86	0.00	-0.20	-0.20	14400					13701	2685		
	MAR	10.30	0.20	-0.40	-0.40	14400			0.60		15680	3073		
	APR	10.44	0.20	-0.50	-0.50	14400			0.00		17770	3500		
	MAY	3.74	0.00			14400			29.80		0	0	0.08	105.20
	JUN	4.46	0.00			14400					0	0		
	JUL	4.46	0.20			14400			0.40		0	0		
	AUG	4.46	0.00			14400			0.00		0	0		
	SEP	6.48	0.00			14400			0.00		0	0		
	OCT	6.48	0.10			14400			0.20		0	0		
	NOV	6.48	0.10	-0.80	-0.80	14400			12.60		20000	1100		
	DEC	10.94	0.10	0.10	. 020	14400			0.20		22900	900		

Similkameen Hatchery

NPDES Permit Number WAG13-5007

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	FLOW PA	SS IW*	TSS IW*	Lbs of Fish	Lbs of Feed	SS DD	TSS DD
2009	JAN	5.90	0	-0.4	-0.4				21829	0		
	FEB	5.90	0	-0.6	-0.6				21604	88		
	MAR	9.26	0	-1.8	-1.8				23595	4356		
	APR	11.5	0	0.6	0.6				30226	7304		
	MAY	11.5	0						15000	0	0	19.2
	JUN	No Monitoring							0	0		
	JUL	No Monitoring							0	0		
	AUG	No Monitoring							0	0		
	SEP	No Monitoring							0	0		
	OCT	5.9	0	0.0	0.0				15161	176		
	NOV	5.9	0	-1.6	-1.6				14465	616		
	DEC	5.9	0	1.0	1.0				13053	0		

* IW- influent waste

Chelan Hatchery
NPDES Permit Number WAG13-5006

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	FLOW FA	SS FA	SS \%	TSS EF	TSS \%	Lbs of Fish	Lbs of Feed
2009	JAN	9.02	0	0.4	0.6	6192000	0		2.4		25136	4706
	FEB	8.61	0	1.2	1.2	6192000	0		0.8		36396	5717
	MAR	8.88	0.2	-2.0	-2.0	7920000	0		6.2		44340	8579
	APR	6.02	0	1.2	1.2	5760000	0		2.6		34212	15198
	MAY	6.02	0	0.6	0.6	5760000	0		0.8		13771	3700
	JUN	6.02	0.2	0.2	0.2	5760000	0		0.2		10083	3502
	JUL	6.02	0	-2.2	-2.4	5760000	0		2.4		12516	6477
	AUG	6.02	0	2.6	2.6	5760000	0		4.8		19099	11170
	SEP	6.02	0.2	2.0	2.0	5760000	0		2.6		29323	10951
	OCT	6.02	0	0.2	0.2	6480000	0		7.0		29323	9336
	NOV	6.02	0	1.8	1.8	6480000	0		4.6		22907	8410
	DEC	6.02	0.2	0.8	1.0	6480000	0.22		1.8		26737	11528

Dryden Acclimation Pond

NPDES Permit Number WAG13-5014

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	Lbs of Fish	Lbs of Feed	SS DD	TSS DD
2009	JAN	No Monitoring				0	0		
	FEB	No Monitoring				0	0		
	MAR	No Monitoring				0	0		
	APR	14.83	0	-0.4	-0.4	37937	5258	0.02	1.2
	MAY	No Monitoring				0	0		
	JUN	No Monitoring				0	0		
	JUL	No Monitoring				0	0		
	AUG	No Monitoring				0	0		
	SEP	No Monitoring				0	0		
	OCT	No Monitoring				0	0		
	NOV	No Monitoring				0	0		
	DEC	No Monitoring				0	0		

Priest Rapids

NPDES Permit Number WAG13-7013

YEAR	MONTH	FLOW	SS EFF	TSS COMP	TSS MAX	Lbs of Fish	Lbs of Feed	SS DD	TSS DD	DO UP	DO DOWN	TEMP UP	TEMP DOWN
2009	JAN	14.20	0			0	0						
	FEB	36.20	0	1.4	1.4	8399	2163						
	MAR	32.60	0	-0.2	0.0	25946	9368						
	APR	33.80	0	2.0	2.0	31051	17028						
	MAY	33.80	0	0.2	0.2	105119	34012						
	JUN	33.80	0	0.4	0.4	129388	10120	0	1.6				
	JUL	No Monitoring				0	0						
	AUG	No Monitoring				0	0						
	SEP	35.70	0	-0.4	-0.4	22240	0						
	OCT	71.70	0	0.8	1.0	41780	0						
	NOV	69.80	0	-0.4	-0.4	3150	0						
	DEC	45.20	0			0	0						

APPENDIX F

Steelhead Stock Assessment at Priest Rapids Dam, 2007-2008

Priest Rapids Dam 2007-2008 Adult Upper Columbia River Steelhead Run-Cycle Stock Assessment Report

Introduction

Upper Columbia River (UCR) steelhead stock assessment sampling at Priest Rapids Dam (PRD) is authorized through the Endangered Species Act (ESA) Section 10 Permit 1395 (NMFS 2003). Permit authorizations include interception and biological sampling of 10 percent of the UCR steelhead passing PRD to determine upriver population size, estimate hatchery to wild ratios, determine age class contribution and evaluate the need for managing hatchery steelhead consistent with ESA recovery objectives which include fully seeding spawning habitat with naturally produced UCR steelhead supplemented with artificially propagated enhancement steelhead (NMFS 2003).

Stock Assessment

The 2007 steelhead sampling at Priest Rapids Dam began 10 July and concluded 11 October. Sampling consisted of operating the left bank ladder coded wire tag trap 8 hours per day, on Tuesdays and Thursdays, for a total of 27 sampling days. Steelhead were trapped, handled and released in accordance with Section 2.1 and 2.2.1 of the National Marine Fisheries Service (NMFS) Biological Opinion for ESA Permits 1395, 1396 and 1423 (NMFS 2003a). The cumulative sample rate attained during 2007 totaled 10.4% and no steelhead mortalities were observed.

The Washington Department of Fish and Wildlife (WDFW) sampled 1,582 steelhead of the 2007/2008 run-cycle passing PRD, totaling 15,257 steelhead, for an overall sampling rate of 10.4%. Of the 1,582 steelhead sampled, 1,261 (79.7\%) were hatchery origin and 321 (20.3\%) were wild origin. The estimated 2007-2008 run- cycle total wild steelhead return was 3,097 representing 138.5% of the 1986-2006 average, 112.8% of the recent 5 year average (Table 1).

Based on external marks, external and internal tags, 1,261 hatchery origin steelhead sampled at Priest Rapids Dam during the 2007 return cycle included, 22.6\% Wenatchee hatchery-origin steelhead and 61.2\% "above Wells Dam" hatchery origin steelhead ${ }^{1 /}$ (Table 2). Ringold FH origin steelhead accounted for 6.6% of the hatchery origin recoveries, while 9.6 of the hatchery origin steelhead sampled could not be assigned to a specific origin (Table 2).

1/- Defined as "above Wells Dam" because hatchery origin, adipose-clipped steelhead release into the Methow River from the Wells FH and Winthrop NFH have the same marks and are indistinguishable for one another.

Table 1. Priest Rapids Dam adult steelhead returns and stock composition, 1974-2006

Run-cycle ${ }^{1 /}$	Hatchery	Wild	Wild percent	Total run
1974				2,950
1975				2,560
1976				9,490
1977				9,630
1978				4,510
1979				8,710
1980				8,290
1981				9,110
1982				10,770
1983				32,000
1984				26,200
1985				34,010
1986	20,022	2,342	10.5	22,364
1987	9,955	4,058	29.0	14,013
1988	7,530	2,670	26.2	10,200
1989	8,033	2,685	25.1	10,718
1990	6,252	1,585	20.2	7,837
1991	11,169	2,799	20.0	13,968
1992	12,102	1,618	11.8	13,720
1993	4,538	890	16.4	5,428
1994	5,880	855	12.7	6,735
1995	3,377	993	22.7	4,370
1996	7,757	843	9.8	8,600
1997	8,157	785	8.8	8,942
1998	4,919	928	15.9	5,847
1999	6,903	1,374	16.6	8,277
2000	9,023	2,341	20.6	11,364
2001	24,362	5,715	19.0	30,077
2002	12,884	2,983	18.8	15,867
2003	14,890	2,837	16.0	17,729
2004	15,670	2,985	16.0	18,655
2005	10,352	3,127	23.2	13,479
2006	8,738	1,677	16.1	10,415
2007	12,160	3,097	20.3	15,257
1986-2006 average	10,212	2,236	18.0	12,448
2002-2006 average	12,362	2,745	18.2	15,107

${ }^{1 /}$ A return cycle is the combined total of steelhead passing PRD from 1 June - 30 November during year (x), plus steelhead passing PRD between 15 April and 31 May on year ($\mathrm{x}+1$).

Table 2. Origin classification of steelhead sampled at Priest Rapids Dam, 10 July - 11 October 2007.

Steelhead origin																					
Wild			Hatchery																		
Wild			Wenatchee						Above Wells				Ringold FH			Unk. Hat.			Total Wild	Total Hatchery	Total Total
Criteria			VIE					Total	Criteria			Total	Criteria		Total	Criteria		Total			
NS	NM	Total	LTGR	RTGR	RTOR	RTPK	LTRD		AD	LTYL	RTYL		AD	RV		SD	NM				
x	x	321	X					62	x			752	x	x	83	x	x	121	321	1,261	1,582
				X				15		x		13									
					X			0			x	7									
						X		60													
							X	148													
Total		321						285				772			83			121	321	1,261	1,582
\% Hatchery								22.6				61.2			6.6			9.6		100.0	
\% T	tal	20.3\%						18.0				48.8			5.2			7.6	20.3	79.7	100.0

Reconciliation of salt water age of wild steelhead sampled at Priest Rapids Dam during 2007 was accomplished through scale sample analysis. Hatchery origin salt-age determination included scale analysis and VIE interrogation. Salt-age analysis of the 2007 UCR steelhead run-cycle provides an estimated hatchery-origin 1- salt, 2-salt, 3salt age composition of $89.5 \%, 9.5 \%$ and 1.0%, respectively (Table 3). Natural origin steelhead salt ages were $71.9 \%, 25.6 \%$ and 2.2% for salt ages 1,2 , and 3 , respectively (Table 3).

Table 3. Salt-water age composition of 2007 return cycle Upper Columbia River steelhead sampled at Priest Rapids Dam, corrected by scale age/origin determination.

Salt-age	Origin				Combined	
	Hatchery		Wild			
	N	\%	N	\%	N	\%
1-salt	630	89.5	230	71.9	860	84.0
2-salt	67	9.5	82	25.6	149	14.5
3-salt	7	1.0	7	2.2	14	1.4
4-salt			1	0.3	1	0.1
Total	704	100	320	100	1,024	100

Freshwater residency of naturally produced Upper Columbia River steelhead present in the 2007-2008 run cycle were dominated by age-2 freshwater fish (81.8\%), and was considerably greater than the 1986-2007 average of 75.7% (Table 4).

Table 4. Freshwater age of wild Upper Columbia River steelhead sampled at Priest Rapids Dam during steelhead stock assessment activities, July - October 1986-2007.

Freshwater age	2007-2008 run cycle		1986-2007 average	
	N	\%	N	\%
1.x	22	7.6	186	6.6
2.x	238	81.8	2,126	75.7
3.x	30	10.3	475	17.0
4.x	1	0.3	18	0.6
5.x			2	0.1
Total	291	100	2,807	100

Wild and hatchery origin steelhead exhibited similar saltwater growth in the 2007 runcycle. Wild 1and 2-salt adults were slightly larger than their hatchery cohorts (Table 5). Age 1-salt hatchery and wild steelhead observed in the 2007-2008 adult run-cycle return past PRD were comparable in size to the 1986-2006 run-cycle average (Table 5).

Table 5. Average fork length of 1-salt and 2-salt, Upper Columbia River steelhead sampled at Priest Rapids Dam during July - October 1986-2006.

Average fork length (cm)

	2007-2008 run cycle		1986-2006 run cycle	
Salt age	Wild	Hatchery	Wild	Hatchery
x.1	60.4	59.2	60.2	59.1
x.2	72.5	70.5	73.0	71.9

APPENDIX G

Wenatchee Sockeye and Summer Chinook Spawning Ground Surveys, 2009

PUBLIC UTILITY DISTRICT NUMBER 1 OF CHELAN COUNTY Natural Resource Division
 Fish and Wildlife Department
 327 N. Wenatchee Ave., Wenatchee WA 98801 (509) 663-8121

January 15, 2010
To: HCP Hatchery Committee
From: Joe Miller
Subject: 2009 Wenatchee River Basin Summer Chinook and Sockeye Salmon Spawning
Ground Surveys

Introduction

The Chelan County Public Utility District (District) has conducted or funded others to conduct intensive spawning ground surveys of spring and summer/fall (late run) ${ }^{1}$ Chinook salmon (Oncorhyncus tshawytscha) and sockeye salmon (O. nerka) in river basins of the Columbia River upstream of Rock Island Dam. Summer/fall Chinook spawn in the entire mainstem of the Wenatchee River, from the mouth to the lake (Figure 1; Table 1). Sockeye spawn in the White and Little Wenatchee River basins (Figure 2).

The spawning surveys are performed yearly to assist in evaluating the effectiveness of the District's hatchery program. The purpose of this document is to report the results of the 2009 Chinook and sockeye salmon spawning ground surveys in the Wenatchee River basin. Information included in this document describes abundance, distribution, and timing of spawning activity.

[^15]

Figure 1. Map of the Wenatchee River Basin with spawning and migrational areas of laterun (summer/fall Chinook) areas highlighted (copied from the Wenatchee Subbasin Plan, NWPCC 2004).

Figure 2. Map of the Wenatchee River Basin with spawning and migrational areas for sockeye highlighted (copied from the Wenatchee Subbasin Plan, NWPCC 2004).

Methods

In 2009, the study methodology was the same as used in 2008. In 2008, the summer Chinook spawning surveys were modified to incorporate additional mapping index areas in all ten river reach strata. Additionally, summer Chinook naïve counts were also performed in all river reach strata by the Washington State Department of Fish and Wildlife (WDFW) and the District. Previously, mapping index counts focused on six of the ten reaches and naïve counts were conducted solely by WDFW.

Chinook Spawning Ground Surveys

Chinook spawning ground surveys are conducted by foot, raft, or canoe. The most appropriate survey method is chosen for a given stream reach based on stream size, flow, and density of spawners. Because of the broad stream width and high spawner densities, individual summer Chinook redds are not flagged. Each reach is surveyed approximately once per week.

In 2009, summer Chinook spawning ground surveys occurred from September 22 to November 10.

Table 1: Designated survey reaches for spawning ground areas on the Wenatchee, Little Wenatchee, White, and Nepeequa rivers for all species.

Survey Section	River Mile
Wenatchee River-Summer Chinook	
Mouth to Sleepy Hollow Bridge	0-3.5
Sleepy Hollow Bridge to Lower Cashmere Bridge	$3.5-9.5$
Lower Cashmere Bridge to Dryden Dam	9.5-17.5
Dryden Dam to Peshastin Bridge	17.5-20.0
Peshastin Bridge to Leavenworth Bridge	20.0-23.9
Leavenworth Bridge to Icicle Road Bridge	23.9-26.4
Icicle Road Bridge to Tumwater Dam	26.4-30.9
Tumwater Dam to Tumwater Bridge	30.9-35.6
Tumwater Bridge to Chiwawa River	35.6-48.4
Chiwawa River to Lake Wenatchee	48.4-54.2
Little Wenatchee River-Sockeye	
Mouth to Old Fish Weir	0-2.7
Old Fish Weir to Lost Creek	$2.7-5.2$
Lost Creek to Rainey Creek	5.2-9.2
Rainey Creek to End	9.2 - End
White River-Sockeye	
Mouth to Sears Creek Bridge	0-6.4
Sears Creek Bridge to Napeequa River	6.4-11.0
Napeequa River to Grasshopper Meadows	11.0-12.9
Grasshopper Meadows to Falls	12.9-14.3
Napeequa River-Sockeye	
Mouth to End	0 - End

Peak and total redd count methodologies were used during the summer Chinook surveys in 2009 (see Appendix F of Murdoch and Peven (2005) for more detail). A peak count is conducted by counting all visible redds (new and old) observed within a reach on each survey. The objective of the peak redd count methodology is to capture the apex of spawning activity over an entire spawning season. This apex occurs at different times between reaches during the season, i.e. spawning begins sooner in the upstream reaches compared to the downstream reaches. The sum of all of the apex counts for the entire river is the peak redd count for the year. Peak counts provide an index of spawning and have been used historically (Attachment 1).

Two different approaches were used to estimate the total number of redds within the Wenatchee River. The first method used map counts to expand peak counts. Under this approach, a total redd count is conducted by counting or mapping only new or recently constructed redds within an area. Each new redd is mapped on aerial photos and enumerated. The objective of the total redd count methodology is to capture 1) "early" redds that may fade over time due to siltation or algae growth, and 2) redds that become disfigured by superimposition (when new redds are constructed on top of previously existing redds).

Since it is not feasible to map all new redds within the entire river, an expansion is used to estimate total count for the entire Wenatchee River. To account for the different spawning substrate types in the main stem Wenatchee River, the river was delineated into ten distinct reaches in consultation with WDFW (Table 2). Within each of these reaches, index areas have been identified as being representative areas of spawning activity. Peak counts are performed within each total reach (referred to as non-index areas), while mapping new redds only occurs within the index areas. An expansion is developed based on the ratio of mapped to peak counts for each reach (i.e., each reach has its own expansion factor), and the sum of the expanded counts is the estimate of the total redd counts. Additional details of how total redd counts are calculated are provided below.
a. Calculate an index peak expansion factor (IP) by dividing the peak number of redds in the index by the total number of redds (map count) in the index area.

$$
I P=\frac{n_{\text {peak }}}{n_{\text {otalal }}}
$$

b. Expand the non-index area peak redd counts by the $I P$ to estimate the total number of redds in the entire reach (reach total; $R T$).

$$
R T_{\text {peak }}=n_{\text {peak }} / I P
$$

c. Estimate the total number of redds (total redds; $T R$) by summing the reach totals.

$$
T R_{\text {peak }}=\sum R T
$$

The second approach relied on a "naïve" count to expand redd numbers in reaches that did not have map counts. As noted above, the reaches with map counts are referred to as index reaches and those that were not mapped are called non-index reaches. Near the end of the spawning period (early November), one team of observers counts all visible redds within all non-index reaches. A separate, independent team counts all visible redds within the index reaches (these are the naïve counts). Surveys within the index and non-index areas should occur within one day of each other near the end of the spawning period. The naïve counts are divided by the total map count to estimate an index expansion factor. This factor is then applied to the total visible count in the non-index areas to estimate the total number of redds within each reach. The sum of the expanded counts is the estimate of the total redd count for the river. Additional details of how total numbers of redds are estimated using this approach are provided below.
a. Calculate an index expansion factor (IF) by dividing the number of visible redds in the index by the total number of redds (map counts) in the index area.

$$
I F=n_{\text {visible }} / n_{\text {total }}
$$

b. Expand the non-index area redd counts by the proportion of visible redds in the index to estimate the total number of redds in the entire reach (reach total; $R T$).

$$
R T_{\text {visible }}=n_{\text {non-index }} / I F
$$

c. Estimate the total number of redds (total redds; $T R$) by summing the reach totals.

$$
T R_{\text {visible }}=\sum R T
$$

The total redd count methods are believed to provide a more accurate indication of total spawning than the peak redd count methodology, because the peak count methodology only accounts for visible redds each week during the survey season. For example, summer Chinook redds that were visible during the first week of spawning may not be visible during the third week; those redds would be missed in the third and subsequent weeks' redd counts. Using the total count methodology, the redds in the first week would be mapped and accounted for in subsequent weeks, even though they may fade at some point during the future surveys.

Table 2: Index (Mapping) Areas on the Wenatchee River for 2009.

Reach	Reach description	Distance (miles)	Mapping index area within reach
1	Sleepy Hollow Br to River Mouth	3.5	Sleepy Hollow Br to River Bend
2	Cashmere Br to Sleepy Hollow Br	6	Cashmere Br 2 to Old Monitor Br.
3	Dryden Dam to Cashmere Br	8	Dryden Dam to Williams Canyon
4	Peshastin Br to Dryden Dam	2.5	Peshastin Br to Dryden Dam
5	Leavenworth Br to Peshastin Br	3.9	Leavenworth Br to Irrigation Flume
6	Icicle Rd Br to Leavenworth Br	2.5	Icicle Mouth to Boat Takeout
7	Tumwater Dam to Icicle Rd Br	4.5	Penstock Br to Icicle Rd Br
8	Tumwater Br to Tumwater Dam	4.7	Tumwater Br to Swiftwater Campground
9	Old Plain Br to Tumwater Br	12.8	RR Tunnel to Swing Pool
10	Lake Wenatchee to Old Plain Br	5.8	Bridge to Swamp

Sockeye Spawning Ground Surveys

In 2009, we employed one survey method, area-under-the-curve (AUC). Sockeye spawning ground surveys began August 24 and ended October 16. Spawning areas in the Little Wenatchee, Napeequa, and White rivers (Table 1) were surveyed at least once per week. Both the Little Wenatchee and White rivers have blocking falls, and spawning is known to occur only within the first few miles of the Napeequa River, a tributary to the White River.

Area-under-the-curve

The AUC method is based on the number of live spawners counted. Using AUC, the number of fish observed in a survey is plotted against the day of the year and the number of fish-days is estimated using an algorithm. The number of fish spawning is then estimated by dividing the cumulative fish-days by the estimated mean number of days that the average spawner is alive in the survey area (survey- or stream-life). This is then multiplied by a correction factor for fish visibility (observer efficiency; Hillborn et al. 1999).

Hillborn et al. (1999) outlined what they termed as the most commonly used form of AUC, trapezoidal approximation:

$$
\mathrm{AUC}=\sum_{\mathrm{i}=2}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}\right)\left(\underline{\mathrm{x}_{\mathrm{i}}} \frac{-\mathrm{x}_{\mathrm{i}-1}}{2}\right)
$$

where t_{i} is the day of the year and x_{i} is the number of salmon observed for the i th survey. Attempts are often made to initiate surveys prior to the presence of fish; however, when the first or last survey is not zero, then the above algorithm is not valid and Hillborn et al. (1999) recommend using the "rules" that the Alaska Department of Fish and Game use:

$$
\mathrm{AUC}_{\text {first }}=\underline{x_{i}} \underline{\underline{S}}
$$

where s is the survey life. Attempts should also be made until all salmon die, but when this is not possible, then the final survey should be calculated:

$$
\mathrm{AUC}_{\text {last }}=\underline{\underline{x}_{\text {last }}} \underline{2}
$$

Then total escapement (E) is estimated:

$$
\mathrm{E}^{\wedge}=\frac{\mathrm{AUC}}{s} v
$$

where v is a correction for observer efficiency. Since survey life has not been empirically estimated for the Wenatchee system, we used 11 days based on Perrin and Irvine (1990) and Hyatt et al. (2006).

Results

Summer Chinook

Peak Counts

The cumulative peak summer Chinook redd count was 2,677 in 2009, based on District ground surveys along the Wenatchee River (Table 3). Spawning activity began the last week of September and peaked during middle of October.

Table 3. Summary of summer Chinook redd peak counts, total redd estimates (TR) and spawner densities by reach in the Wenatchee River, 2009. Expansion factors were rounded to two decimal places ($\mathbf{0 . 0 0}$) prior to calculating reach totals.

Reach	Peak Count	CCPUD Estimates		WDFW Estimates	
		Density (redds/mile)	$\mathbf{R T}_{\text {Visible }}$	Density isisle (redds/mile)	
1	12	15	4	14	4
2	78	98	16	59	10
3	120	184	23	134	16
4	70	116	46	116	53
5	60	76	19	26	7
6	841	1076	430	949	380
7	235	284	63	227	50
8	183	243	52	267	58
9	690	811	63	548	44
10	378	517	89	579	92
Total	2,667	3,420	$\mathbf{6 3}$	2,919	54

Total Counts

The total number of redds in the Wenatchee River was 3,420 ($\left.T R_{\text {peak }}\right)$, using data from District surveys and the peak expansion factor. WDFW estimated 2,919 redds ($T R_{\text {visble }}$) based on their naïve surveys (Table 3). All survey methods (peak and visible) indicated that redd densities were highest in Reach 6 and lowest in Reach 1 (Table 3; Figure 3), consistent with the previous three years. The historical summer Chinook peak counts (1996-2009) for the Wenatchee River basin are summarized in Attachment 1.

Figure 3. Alternative estimates of reach totals (RT) for summer Chinook redds in the the Wenatchee River in 2009 [$R T_{\text {peak }}=$ District peak counts expanded by peak expansion method and $R T_{\text {visble }}$ (WDFW)=WDFW naïve counts expanded by naïve expansion factor].

Sockeye

Live fish counts

Fish counts were conducted for sockeye from August 24 through October 16. Peak spawning occurred in the Little Wenatchee (495); Napeequa River (248); and White River $(4,812)$ during the second half of September (Figure 4; Table 4).

Escapement

The total estimated spawning escapement of sockeye to the Wenatchee tributaries was 7,767 in 2009 (Table 4). The escapement estimate is based solely on tributary observations and does not include fish harvested in the Lake Wenatchee sockeye fishery.

Figure 4. Approximate live counts and survey dates for sockeye salmon in the Wenatchee River Basin, 2009.

Table 4. Number of live fish and total spawning escapement estimates for sockeye salmon in the Wenatchee Basin, August through October, 2009.

River	Peak number of live fish	Escapement
Little Wenatchee	495	763
Napeequa	248	384
White	4,812	6,620
Total	5,555	7,767

Recommendations

In 2010, sockeye escapements to the Wenatchee basin tributaries will be augmented with PIT-tag arrays on the White and Little Wenatchee Rivers. The District will continue to evaluate spawner enumeration techniques to ensure accuracy.

References

Hillborn, R. B.G. Bue, and S. Sharr. 1999. Estimating spawning escapements from periodic counts: a comparison of methods. Can. J. Fish. Aquat. Sci. 56: 888-896.

Hyatt, K.D., M.M. Stockwell, H. Wright, K. Long, J. Tamblyn, and M. Walsh. 2006. Fish and Water Management Tool Project Assessments: Okanogan Adult Sockeye Salmon (Oncorhynchus nerka) Abundance and Biological Traits in 2005. DRAFT Report to file: JSID-SRe 3-05. Salmon and Freshwater Ecolsystems Division, Fisheries and Oceans Canada, Nanaimo, B.C. V9T 6N7.

Mullan, J. W. 1987. Status and propagation of Chinook salmon in the mid-Columbia River through 1985. U.S. Fish and Wildlife Serv. Biol. Rep. 87(3) 111 pp.

Murdoch, A. and C. Peven. 2005. Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Hatchery Programs. Prepared for: Chelan PUD Habitat Conservation Plan's Hatchery Committee. Chelan PUD, Wenatchee, WA

Perrin, C.J. and J.R. Irvine. 1990. A review of survey life estimates as they apply to the area-under-the-curve method for estimating the spawning escapement of Pacific salmon. Canadian Tech. Rep. of Fisheries and Aquatic Sciences No. 1733. Department of Fisheries and Oceans, Nanaimo, B.C. V9R 5K6.

Peven, C. M. 1990. The life history of naturally produced steelhead trout from the MidColumbia River Basin. MS Thesis, University of Washington, Seattle.

Attachment 1.

Historic peak redd counts in the Wenatchee River for summer/fall Chinook salmon. Prior to 1995 , all counts based on highest count of multiple agencies surveys, which were usually aerial counts from fixed-wing aircraft. Since 1995, counts are ground counts based on Chelan PUD surveys.

Year	Highest Count	Year	Highest Count	Year	Highest Count
1960	502	1970	1333	1980	2024
1961	872	1971	1419	1981	1469
1962	1035	1972	1364	1982	1140
1963	1223	1973	1119	1983	723
1964	1300	1974	1155	1984	1332
1965	706	1975	925	1985	1058
1966	1260	1976	1106	1986	1322
1967	1593	1977	1365	1987	2955
1968	1776	1978	1956	1988	2102
1969	1354	1979	1698	1989	3331
1990	2479	2000	2022		
1991	2180	2001	2857		
1992	2328	2002	5419		
1993	2334	2003	4281		
1994	2426	2004	3764		
1995	1872	2005	3327		
1996	1435	2006	7165		
1997	1388	2007	1857		
1998	1660	2008	2338		

APPENDIX H

Genetic Diversity of Wenatchee Sockeye Salmon.

Developed for
Chelan County PUD
and the
Habitat Conservation Plan's Hatchery Committee
Developed by
Scott M. Blankenship, Cheryl A. Dean, Jennifer Von Bargen WDFW Molecular Genetics Laboratory
Olympia, WA
and
Andrew Murdoch
Supplementation Research Team
Wenatchee, WA

March 2008
Executive Summary 1
Introduction
Lake Wenatchee Sockeye Salmon 3
Sockeye Artificial Propagation In Lake Wenatchee 5
Previous Genetic Analyses 6
Study objectives 7
Methods
Tissue collection 9
Laboratory Analysis 9
Genetic Analysis
Assessing within collection genetic diversity 10
Assessing among-collection genetic differentiation 10
Effective population size 11
Results/Discussion 12
Conclusions 13
Acknowledgements 14
Literature Cited 15
Tables 19

Executive Summary

Nine spawning populations of sockeye (Oncorhynchus nerka) salmon have been identified in Washington, including stocks in the Lake Wenatchee basin (SaSI 5800) (Washington Department of Fisheries et al. 1993). Lake Wenatchee sockeye are classified as an Evolutionary Significant Unit (ESU), and consists of sockeye salmon that spawn primarily in tributaries above Lake Wenatchee (the White River, Napeequa River, and Little Wenatchee Rivers). Since 1990, the Wenatchee Sockeye Program has released juveniles into Lake Wenatchee to supplement natural production of sockeye salmon in the basin. The program's broodstock are predominantly natural-origin sockeye adults returning to the Wenatchee River captured at Tumwater Dam (Rkm 52.0), where a netpen system is used to house both maturing adults and juveniles prior to release into Lake Wenatchee to over-winter.

Previous genetic studies have generally found a lack of concordance between population genetic relationships and their geographic distributions. These studies indicate that the nearest geographic neighbors of sockeye salmon populations are not necessarily the most genetically similar. Specifically for the Columbia River Basin, sockeye from Lake Wenatchee, Okanogan River, and Redfish Lake may be more closely related to a population from outside the Columbia River (depending on marker used) then to each other.

In this study we investigated the temporal and spatial genetic structure of Lake Wenatchee sockeye collections, without regard to sockeye populations outside of the Lake Wenatchee area. Our primary objective here was to determine if the Wenatchee Sockeye Program affected the natural Lake Wenatchee sockeye population. More specifically, we were tasked to determine if the genetic composition of Lake Wenatchee sockeye population had been altered by a supplementation program that was based on the artificial propagation of a small subset of that population. Using microsatellite DNA allele frequencies, we investigated population differentiation between temporally replicated collections of natural-origin Lake Wenatchee sockeye and program broodstock. We analyzed thirteen collections of Lake Wenatchee sockeye (Table 1), eight temporally replicated collections of natural-origin Lake Wenatchee sockeye ($\mathrm{N}=786$) and five temporally replicated collections of Wenatchee Sockeye Program broodstock ($\mathrm{N}=248$). Paired natural - broodstock collections were available from years 2000, 2001, 2004, 2006, and 2007.

Conclusions

We observed that allele frequency distributions were consistent over time, irrespective of collection origin, resulting in small and statistically insignificant measures of genetic differentiation among collections. We interpreted these results to indicate no year-to-year differences in allele frequencies among natural-origin or broodstock collections.
Furthermore, there were no observed difference between pre- and post-supplementation collections. Therefore, we accepted our null hypothesis that the allele frequencies of the broodstock collections equaled the allele frequencies of the natural collections, which
equaled the allele frequency of the donor population. Given the small differences in genetic composition among collections, the genetic model for estimating N_{e} produced estimates with extremely large variances, preventing the observation of any trend in N_{e}.

Introduction

A report titled "Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Hatchery Programs" was prepared July 2005 by Andrew Murdoch and Chuck Peven for the Chelan PUD Habitat Conservation Plan's Hatchery Committee. This report outlined 10 objectives to be applied to various species assessing the impact (positive or negative) of hatchery operations mitigating the operation of Rock Island Dam. This current study pertains only to Lake Wenatchee sockeye and objective 3:

> Determine if genetic diversity, population structure, and effective population size have changed in natural spawning populations as a result of the hatchery program. Additionally, determine if hatchery programs have caused changes in phenotypic characteristics of natural populations.

In order to evaluate cause and effect of hatchery supplementation, WDFW Molecular Genetics Lab surveyed genetic variation of Lake Wenatchee sockeye. The conceptual approach for this project follows that of a parallel study regarding the Wenatchee River spring Chinook supplementation program (Blankenship et al. 2007). We determined the genetic diversity present in the Lake Wenatchee sockeye population by analyzing temporally replicated collections spanning 1989-2007, which included collections from before and following the inception of the Wenatchee Sockeye Program. Documenting the genetic composition of the Lake Wenatchee sockeye population is necessary to assess the effect of the hatchery program on the Lake Wenatchee population. In addition, this work provides a genetic baseline for future projects requiring genetic data. See study objectives below for specific details about how this project addresses Murdoch and Peven (2005) objective 3.

Lake Wenatchee Sockeye Salmon

Nine spawning populations of sockeye (Oncorhynchus nerka) salmon have been identified in Washington (Washington Department of Fisheries et al. 1993): 1) Baker

River, 2) Ozette Lake, 3) Lake Pleasant, 4) Quinault Lake, and 5) Okanogan River (classified as native stock); 6) Cedar River (classified as non-native stock); 7) Lake Wenatchee, classified as mixed stock); 8) Lake Washington/Lake Sammamish tributaries; and 9) Lake Washington beach spawners (classified as unknown origin). Chapman et al. (1995) listed four additional spawning aggregations of sockeye salmon that appear consistently in Columbia River tributaries: the Methow, Entiat, and Similkameen Rivers; and Icicle Creek in the Wenatchee River drainage.

Located in north central Washington, the Wenatchee River basin drains a portion of the eastern slope of the Cascade Mountains, including high mountainous regions of the Cascade crest. The headwater area of the Wenatchee River is Lake Wenatchee, a typical low productivity oligotrophic or ultra-oligotrophic sockeye salmon nursery lake (Allen and Meekin 1980, Mullan 1986, Chapman et al. 1995). Sockeye salmon bound for Lake Wenatchee enter the Columbia River in April and May and arrive at Lake Wenatchee in late July to early August (Chapman et al. 1995; Washington Department of Fisheries et al. 1993). The run timing of Lake Wenatchee sockeye salmon, classified as an Evolutionary Significant Unit (ESU), appears to have become earlier by 6-30 days during the past 70 years (Chapman et al. 1995; Quinn and Adams 1996). Additionally, scale pattern analysis suggests Wenatchee sockeye migrate past Bonneville Dam earlier than the sockeye bound for the Okanogan River (Fryer and Schwartzberg 1994). The Wenatchee population spawns from mid-September through October in the Little Wenatchee, White, and Napeequa Rivers above Lake Wenatchee (Washington Department of Fisheries et al. 1993), peaking in late September (Chapman et al. 1995). Limited beach spawning is believed to occur in Lake Wenatchee (L. Lavoy pers. com.; Mullan 1986), although Gangmark and Fulton (1952) reported two lakeshore seepage areas in Lake Wenatchee that were used by spawning sockeye salmon. Sockeye salmon fry enter Lake Wenatchee between March and May (Dawson et al. 1973), and typically rear in the lake for one year before leaving as smolts (Gustafson et al. 1997; Peven 1987).

Both the physical properties of the habitat and ecological/biological factors of the sockeye populations differ between the Lake Wenatchee ESU and the geographically
proximate Okanogan ESU. For example: 1) Different limnology is encountered by sockeye salmon in Lakes Wenatchee and Osoyoos; 2) Lake Wenatchee sockeye predominantly return at ages four and five (a near absence of 3-year-olds), where a large percentage of 3-year-olds return to the Okanogan population; and 3) the apparent one month separation in juvenile outmigration-timing between Okanogan- and Wenatcheeorigin fish (Gustafson et al. 1997 and references therein).

Sockeye Artificial Propagation In Lake Wenatchee

The construction of Grand Coulee Dam completely blocked fish passage to the upper Columbia River, and 85\% of sockeye salmon passing Rock Island Dam between 1935 and 1936 were estimated to be from natural stocks bound for areas up-river to Grand Coulee Dam (Mullan 1986; Washington Department of Fisheries et al. 1938). To compensate for loss of habitat resulting from Grand Coulee Dam, the federal government initiated the Grand Coulee Fish-Maintenance Project (GCFMP) in 1939 to maintain fish runs in the Columbia River above Rock Island Dam. Between 1939 and 1943, all sockeye salmon entering the mid-Columbia River were trapped at Rock Island Dam, and over 32,000 mixed Lake Wenatchee, Okanogan River, and Arrow Lake adult sockeye salmon were released into Lake Wenatchee (Gustafson et al. 1997 Appendix Table D-2). In addition to adult relocation, between 1941 and 1969 over 52.8 million fry descended from original spawners collected at Rock Island and Bonneville Dams, were released into Lake Wenatchee (Gustafson et al. 1997 Appendix Table D-2).

No releases of artificially-reared sockeye salmon occurred in the Wenatchee watershed during the years 1970 to 1989 (Gustafson et al. 1997 Appendix Table D-2). Since 1990, the Wenatchee Sockeye Program has released juveniles into Lake Wenatchee to supplement natural production of sockeye salmon in the basin. Sockeye adults returning to the Wenatchee River are captured at Tumwater Dam (Rkm 52.0) and transferred to Lake Wenatchee net pens until mature. The Wenatchee Sockeye Program goals are 260 adults with an equal sex ratio, $<10 \%$ hatchery-origin returns (identified by coded wire tags), and the adults removed for broodstock account for $<10 \%$ of the run size. Fish are spawned at Lake Wenatchee and their gametes are taken to Rock Island Fish Hatchery

Complex (i.e., Eastbank) for fertilization and incubation. Fry are returned to the Lake Wenatchee net -pens after they are large enough to be coded wire tagged, and are housed in the pens until fall (one year after spawning), when they are liberated into the lake to over-winter. For brood years 1991 - 2004 an average of 218,683 (std. dev. $=71,090$) pen-reared Lake Wenatchee-origin juvenile sockeye salmon have been released yearly into Lake Wenatchee.

Previous Genetic Studies

Protein (allozyme) variation - Surveying genetic variation at 12 allozyme loci, Utter et al. (1984) reported moderate population structure among 16 sockeye collections from southeast Alaska through the Columbia River Basin, including Okanogan and Wenatchee stocks, with an apparent genetic association between upper Fraser River and Columbia River sockeye salmon. Winans et al. (1996) surveyed variation at 55 allozyme loci for 25 sockeye salmon and two kokanee collections from 21 sites in Washington, Idaho, and British Columbia, and reported the lowest level of allozyme variability of any species of Pacific salmon and a highest level of inter-population differentiation. Furthermore, these authors reported that there was no clear relationship between geographic and genetic differentiation among the populations within there study. Other studies corroborate the results of Winans et al. (1996), finding a lack of discernible geographic patterning for sockeye salmon populations in British Columbia, Alaska, and Kamchatka (Varnavskaya et al. 1994, Wood et al. 1994, Wood 1995). These studies indicate that the nearest geographic neighbors of sockeye salmon populations are not necessarily the most genetically similar, which contrasts with the other Pacific salmon species that exhibit concordance between geographic and genetic differentiation (Utter et al. 1989, Winans et al. 1994, Shaklee et al. 1991). As part of the comprehensive status review of west coast sockeye salmon (Gustafson et al. 1997), NMFS biologists collected new allozyme genetic information for 17 sockeye salmon populations and one kokanee population in Washington and combined these data for analysis with the existing Pacific Northwest sockeye salmon and kokanee data from Winans et al. (1996). Results of the updated study were consistent with Winans et al. (1996), with no clear concordance between geographic and genetic distances. Sockeye salmon from Lake Wenatchee, Redfish Lake,

Ozette Lake, and Lake Pleasant are very distinct from other collections in the study, and Columbia River populations were not necessarily most closely related to each other. Gustafson et al. (1997) also examined between-year variability within a collection location and found low levels of statistical significance among the five Lake Wenatchee collections included in the study (For 10 pair-wise comparisons using sum-G test, five were statistically significant). Lake Wenatchee brood year 1987 accounted for three of the significant comparisons, which were driven by unusually high frequencies of two allozyme alleles (ALAT*95 and ALAT*108) (Winans et al. 1996). Nevertheless, Gustafson et al. (1997) conclude that, in general, temporal variation at a locale was considerably less than between-locale variation.

Nucleic acid variation - Beacham et al. (1995) reported levels of variation in nuclear DNA of O. nerka using minisatellite probes. They analyzed 10 collections, including a sample from Lake Wenatchee. Cluster analysis showed the Lake Wenatchee sample was different from all the other collections, including those from the Columbia River. Using a similar molecular technique, Thorgaard et al. (1995) examined the use of multi-locus DNA fingerprinting (i.e., banding patterns) to discriminate among 14 sockeye salmon and kokanee populations. Dendrograms based on analysis of banding patterns produced different genetic affinity groups depending on the probes used. While none of the five DNA probes showed a close relationship between Lake Wenatchee and Okanogan River sockeye salmon, if information from all probes were combined, O. nerka from Redfish Lake, Wenatchee, and Okanogan were separate from kokanee of Oregon and Idaho and a sockeye salmon sample from the mid-Fraser River.

Study Objective

We documented temporal variation in genetic diversity (i.e., heterozygosity and allelic diversity), and investigated population differentiation between temporally replicated collections of natural-origin Lake Wenatchee sockeye and program broodstock, using microsatellite DNA allele frequencies. Temporally replicated collections from the same location can also be used to estimate effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$. If populations are "ideal", the census size of a population is equal to the "genetic size" of the population.

Yet, numerous factors lower the "genetic size" below census, such as, non-equal sex ratios, changes in population size, and variance in the numbers of offspring produced from parent pairs. N_{e} is thought to be between 0.10 and 0.33 of the estimated census size (Bartley et al. 1992; RS Waples pers. comm.), although numerous observations differ from this general rule. N_{e} can be calculated directly from demographic data, or inferred from observed differences in genetic variance over time. Essentially, when calculated from genetic data, N_{e} is the estimated size of an "ideal" population that accounts for the genetic diversity changes observed, irrespective of abundance.

We will address the hypotheses associated with Objective 3 in Murdock and Peven (2005) using the following four specific tasks:

Task 1 - Document the observed genetic diversity.
Task 2 - Test for population differentiation among Lake Wenatchee collections and the associated supplementation program.

Task 2 was designed to address two hypotheses listed as part of Objective 3 in Murdoch and Peven (2005):

- Ho: Allele frequency Hatchery $=$ Allele frequency ${ }_{\text {Naturally produced }}=$ Allele frequency ${ }_{\text {Donor pop }}$.
- Ho: Genetic distance between subpopulations Year $^{x}={\text { Genetic distance between subpopulations }{ }_{\text {Year }} \mathrm{y}}$ Murdoch and Peven (2005) proposed these two hypotheses to help evaluate supplementation programs through a "Conceptual Process" (Figure 5 in Murdoch and Peven 2005). There are two components to the first hypothesis, which must be considered separately for Lake Wenatchee sockeye. The first component involves comparisons between natural-origin populations from Lake Wenatchee to determine if there have been changes in allele frequencies through time starting with the donor population. Documenting a change does not necessarily indicate that the supplementation program has directly affected the natural-origin fish, as additional tests would be necessary to support that hypothesis. The intent of the second component is to determine if the hatchery produced populations have the same genetic composition as the naturally produced populations.

Task 3 - Calculate N_{e} using the temporal method for multiple samples from the same location to document trend.

Task 4-Compare N_{e} estimates with trend in census size for Lake Wenatchee sockeye.

Methods and Materials

Sampling

Thirteen collections of Lake Wenatchee sockeye were analyzed, eight temporally replicated collections of natural Lake Wenatchee sockeye ($\mathrm{N}=786$) and five temporally replicated collections of Wenatchee Sockeye Program broodstock (N=248) (Table 1). Paired natural - broodstock collections were available from years 2000, 2001, 2004, 2006, and 2007 (Table 1). All collections were made at Tumwater Dam on the Wenatchee River. Note that collections classified as broodstock were predominantly natural-origin sockeye. A majority of the genetic samples were from dried scales. The tissue collections from 2006 and 2007 were fin clips stored immediately in ethanol after collection. DNA was extracted from stored tissue using Nucleospin 96 Tissue following the manufacturer's standard protocol (Macherey-Nagel, Easton, PA, U.S.A.).

Laboratory Analysis

Polymerase chain reaction (PCR) amplification was performed using 17 fluorescently end-labeled microsatellite marker loci, One 2 (Scribner et al 1996) One 100, 101, 102, 105, 108, 110, 114, and 115 (Olsen et al. 2000), Omm 1130, 1135, 1139, 1142, 1070, and 1085 (Rexroad et al. 2001), Ots 3M (Banks et al. 1999) and Ots 103 (Small et al. 1998). PCR reaction volumes were $10 \mu \mathrm{~L}$, with the reaction variables being $2 \mu \mathrm{~L} 5 \mathrm{x}$ PCR buffer (Promega), $0.6 \mu \mathrm{~L} \mathrm{MgCl}_{2}(1.5 \mathrm{mM})$ (Promega), $0.2 \mu \mathrm{~L} 10 \mathrm{mM} \mathrm{dNTP}$ mix (Promega), and $0.1 \mu \mathrm{~L}$ Go Taq DNA polymerase (Promega). Loci were amplified as part of multiplexed sets, so primer molarities and annealing temperatures varied. Multiplex one had an annealing temperature of $55^{\circ} \mathrm{C}$, and used 0.09 Molar (M) One 108, 0.06 M One 110, and 0.11 M One 100. Multiplex two had an annealing temperature of $53^{\circ} \mathrm{C}$, and used 0.08 M One 102, 0.1 M One 114, and 0.05 M One 115. Multiplex three had an annealing temperature of $55^{\circ} \mathrm{C}$, and used 0.08 M One 105 and 0.07 M Ots 103 . Multiplex four had
an annealing temperature of $53^{\circ} \mathrm{C}$, and used 0.09 M Omm 1135 and 0.08 M Omm 1139 . Multiplex five had an annealing temperature of $60^{\circ} \mathrm{C}$, and used $0.2 \mathrm{M} \mathrm{Omm} \mathrm{1085}$, Omm 1070, and 0.05 M Ots 3 M . Multiplex six had an annealing temperature of $48^{\circ} \mathrm{C}$, and used 0.06 M One 2, $0.08 \mathrm{M} \mathrm{Omm} \mathrm{1142} ,\mathrm{and} 0.08 \mathrm{M} \mathrm{Omm} \mathrm{1130}$.One 101 was run in isolation with a primer molarity of 0.06 . Thermal cycling was conducted on either PTC200 (MJ Research) or GeneAmp 9700 thermal cyclers as follows: $94^{\circ} \mathrm{C}(2 \mathrm{~min}) ; 30$ cycles of $94^{\circ} \mathrm{C}$ for 15 sec ., 30 sec . annealing, and $72^{\circ} \mathrm{C}$ for 1 min .; a final $72^{\circ} \mathrm{C}$ extension and then a $10^{\circ} \mathrm{C}$ hold. PCR products were visualized by denaturing polyacrylamide gel electrophoresis on an ABI 3730 automated capillary analyzer (Applied Biosystems). Fragment analysis was completed using GeneMapper 3.7 (Applied Biosystems).

Genetic data analysis

Assessing within collection genetic diversity - Heterozygosity measurements were reported using Nei's (1987) unbiased gene diversity formula (i.e., expected heterozygosity) and Hedrick's (1983) formula for observed heterozygosity. Both tests were implemented using the microsatellite toolkit (Park 2001). For each locus and collection FSTAT version 2.9.3.2 (Goudet 1995) was used to assess Hardy-Weinberg equilibrium, where deviations from the neutral expectation of random associations among alleles were calculated using a randomization procedure. Alleles were randomized among individuals within collections (4160 randomizations for this dataset) and the $\mathrm{F}_{\text {IS }}$ (Weir and Cockerham 1984) calculated for the randomized datasets were compared to the observed $\mathrm{F}_{\text {IS }}$ to obtain an unbiased estimation of the probability that the null hypothesis was true. The 5% nominal level of statistical significance was adjusted for multiple tests (Rice 1989). Genotypic linkage disequilibrium was calculated following Weir (1979) using GENETIX version 4.05 (Belkhir et al. 1996). Statistical significance of linkage disequilibrium results was assessed using a permutation procedure implemented in GENETIX for each locus by locus combination within each collection.

Assessing among collection genetic differentiation - The temporal stability of allele frequencies was assessed by the randomization chi-square test implemented in FSTAT version 2.9.3.2 (Goudet 1995). Multi-locus genotypes were randomized between
collections. The G-statistic for observed data was compared to G-statistic distributions from randomized datasets (i.e., null distribution of no differentiation between collections). Population differentiation was also investigated using pairwise estimates of $\mathrm{F}_{\text {ST }}$. Multi-locus estimates of pairwise $\mathrm{F}_{\text {ST }}$, estimated by a "weighted" analysis of variance (Weir and Cockerham, 1984), were calculated using GENETIX version 4.05 (Belkhir et al.1996). F_{ST} was used to quantify population structure, the deviation from statistical expectations (i.e., excess homozygosity) due to non-random mating between populations. To determine if the observed F_{ST} estimate was consistent with statistically expectations of no population structure, a permutation test was implemented in GENETIX (1000 permutations).

Effective population size $\left(\mathbf{N}_{\mathbf{e}}\right)$ - Estimates of the effective population size were obtained using a multi-collection temporal method (Waples 1990a). The temporal method assumes that cohorts are used, but we did not decompose the collection year samples into their respective cohorts using age data. Therefore, N_{e} estimates that pertain to individual year classes of breeders are not valid; however the harmonic mean over all samples will estimate an N_{e} that pertains to the time period from which the collections are derived. Comparing samples from years i and j, Waples’ (1990a) temporal method estimates the effective number of breeders ($\left.\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right)$ according to:

$$
\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}=\frac{\mathrm{b}}{2\left(\hat{\mathrm{~F}}-1 / \widetilde{\mathrm{S}}_{\mathrm{i}, \mathrm{j}}\right)}
$$

The standardized variance in allele frequency ($\hat{\mathrm{F}}$) is calculated according to Pollack (1983). The parameter b is calculated analytically from age structure information and the number of years between samples (Tajima 1992). The age-at-maturity information required to calculate b was obtained from ecological data (Hillman et al. 2007). The harmonic mean of sample sizes from years i and j is $\widetilde{\mathrm{S}}_{\mathrm{i}, \mathrm{j}}$. The harmonic mean over all pairwise estimates of $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ is $\widetilde{\mathrm{N}}_{\mathrm{b}}$. SALMONNb (Waples et al. 2007) was used to calculate $\widetilde{\mathrm{N}}_{\mathrm{b}}$.

Results and Discussion

In this section we combine our presentation and interpretations of the genetic analyses. Additionally, this section is organized based on the task list presented in the study plan.

Task 1 - Document the observed genetic diversity.

Substantial genetic diversity was observed over all Lake Wenatchee sockeye collections analyzed (Table 1), with heterozygosity estimates over all loci having a mean of 0.79 . Genetic diversity was consistent with expected Hardy-Weinberg random mating genotypic proportions for all collections. The $\mathrm{F}_{\text {IS }}$ observed for each collection was not statistically significant given the distribution of $\mathrm{F}_{\text {IS }}$ generated using a randomization procedure. Additionally, there were no statistically significant associations observed between alleles across loci (i.e., linkage equilibrium) (data not shown). We concluded from these results that the genetic data from each collection was consistent with statistical expectations for random association of alleles within and between loci. In other words, each collection represents samples from a single gene pool (i.e., populations), and the genetic diversity observed has no detectable technical artifacts or evidence of natural selection.

Task 2 - Test for differentiation among Lake Wenatchee collections and the associated supplementation program.

We explicitly tested the hypothesis of no significant differentiation within natural-origin or broodstock collections from Lake Wenatchee using a randomization chi-square test. The null hypothesis for these tests was that the allele frequencies from two different populations were drawn from the same underlying distribution. We show the results for the pairwise comparisons among eight temporally replicated natural-origin collections from Lake Wenatchee (28 pairwise tests), and report all tests were non-significant (Table 2A). Similarly, for five temporally replicated broodstock collections, 10 of 10 pairwise tests were non-significant (Table 2B). We also tested if natural-origin and broodstock
collections were differentiated from each other over time, and report that 40 of 40 tests were non-significant (Table 2C). The nominal level of statistical significance ($\alpha=0.05$) was adjusted for multiple comparisons using strict Bonferroni correction (Rice 1989). Yet, there are perhaps slight differences between paired natural-broodstock collections. Note that the p-values for comparisons regarding 2006 and 2007 paired collections are lower than for comparisons regarding 2000, 2001, and 2004. The small sample sizes for broodstock collections in 2006 and 2007 may not have been random samples from the Lake Wenatchee sockeye population.

Given the consistencies observed for allele frequency distributions over time, metrics of population structure were expected to be small. This was the case, as the estimated $\mathrm{F}_{\text {ST }}$ over all thirteen collections was 0.0003 . This observed value fell within the distribution of F_{ST} values expected if there were no population structure present (permutation test pvalue 0.12). Analysis of the paired natural-broodstock collections corroborated this result. Pairwise estimates of $\mathrm{F}_{\text {ST }}$ were 0.000 for years 2000, 2001, 2004, and 2007, and 0.002 for 2006. All five estimates were non-significant. Essentially, all 13 sockeye collections could be considered samples from the same population. Given these results, it is valid to combine all collections for statistical analysis. Therefore, we did not calculate genetic distances among any collections, as it is inappropriate to estimate distances that are effectively zero.

Conclusions

We interpret these data to indicate that there appears to be no significant year-to-year differences in allele frequencies among natural-origin or broodstock collections, nor are there observed differences between collections pre- and post-supplementation. As a result, we accept the null hypothesis that the allele frequencies of the broodstock collections equal the allele frequencies of the natural collections, which equals the allele frequency of the donor population. Furthermore, the observed genetic variance that can be attributed to among collection differences was negligible.

Task 3 - Calculate N_{e} using the temporal method for multiple samples from the same location to document trend.

The fundamental parameter for inferring N_{e} using genetic data is the standardized variance in allele frequency ($\hat{\mathrm{F}}$) (Pollack 1983). Methods estimate N_{e} from observed changes in \hat{F} over temporally replicated collections from the same location. Yet, as previously shown, there were no statistically significant differences detected in allele frequencies. The underlying model for estimating N_{e} produced estimates with extremely large variances, given small temporal differences in \hat{F}, which rendered any trend in N_{e} unobservable. Table 3 shows N_{e} estimates calculated using temporally replicated natural collections.

Task 4-Compare N_{e} estimates with trend in census size for Lake Wenatchee sockeye.

See Task 3

Acknowledgements

We would like to thank Jeff Fryer (CRITFC) for providing critical collections of naturalorigin sockeye from Lake Wenatchee. We would like to thank Norm Switzler for collection curation and Ken Warheit and Denise Hawkins for helpful comments regarding this project. This project was funded by Chelan County PUD and the Washington State General Fund.

Literature Cited

Allen RL and Meekin TK (1980) Columbia River sockeye salmon study, 1971-1974. Wash. Dep. Fish. Prog. Rep. 120, 75 p.

Banks MA, Blouin MS, Baldwin BA, Rashbrook VK, Fitzgerald HA, Blankenship SM, Hedgecock D (1999) Isolation and inheritance of novel microsatellites in chinook salmon (Oncorhynchus tschawytscha). Journal of Heredity, 90:281-288.

Bartley D, Bentley B, Brodziak J, Gomulkiewicz R, Mangel M, and Gall GAE (1992) Geographic variation in population genetic structure of chinook salmon from California and Oregon. Fish. Bull., U.S. 90:77-100.

Blankenship SM, Von Bargen J, Warheit KI, and Murdoch AR (2007) Assessing the Genetic Diversity of Natural Chiwawa River Spring Chinook Salmon and Evaluating the Effectiveness of its Supportive Hatchery Supplementation Program. WDFW report to Chelan County PUD, March 2007.

Belkhir K, Borsa P, Chikhi L et al (1996) GENETIX, logiciel sous Windows TM pour la Génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France).

Chapman D, Peven C, Giorgi A, Hillman T, and Utter F (1995) Status of spring chinook salmon in the mid-Columbia River. Don Chapman Consultants, Inc., 477 p. (Available from Don Chapman Consultants, 3653 Rickenbacker, Ste. 200, Boise, ID 83705.)

Crawford BA (1979) The origin and history of trout brood stocks of the Washington Department of Game. Wash. State Game Dep., Fish. Res. Rep. 76 p.

Dawson JJ, Thorne RE, and Traynor JJ (1973) Acoustic surveys of Lake Wenatchee and Lake Osoyoos in 1973. Final Report, Service Contr. 526, to Wash. Dep. Fish., by Fish. Res. Inst., Coll. of Fish., Univ. Washington, Seattle, WA, 18 p.

Fryer JK and Schwartzberg M (1994) Identification of Columbia Basin sockeye salmon stocks using scale pattern analyses in 1993. Columbia River Inter-Tribal Fish Commission, Tech. Rep. 94-2, 39 p.

Gangmark HA and Fulton LA (1952) Status of Columbia blueback salmon runs, 1951. U. S. Fish Wildl. Serv. Spec. Sci. Rep. 74, 29 p.

Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86: 485-486.

Gustafson RG, Wainwright TC, Winans GA, Waknitz FW, Parker LT, and Waples RS (1997) Status review of sockeye salmon from Washington and Oregon. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-33, 282 p.

Hedrick PW (1983) Genetics of Populations, Science Books International, Boston
Hillman T, Miller M, Peven C, Tonseth M, Miller T, Truscott K, and Murdoch A (2007) Monitoring and Evaluation of the Chelan County PUD Hatchery Programs: 2007 Annual Report.

Knutzen D (1995) Letter to R. Gustafson, NMFS, from D. Knutzen, WDFW, re. Historical kokanee planting records for Lake Wenatchee, Lake Pleasant, Lake Ozette, Lake Shannon, and Baker Lake from 1981-1994, dated 17 July 1995. 1 p. plus attachment. (Available from West Coast Sockeye Salmon Administrative Record, Environmental and Technical Services Division, Natl. Mar. Fish. Serv., 525 N. E. Oregon Street, Portland, OR 97232.)

Mullan JW (1986) Determinants of sockeye salmon abundance in the Columbia River, 1880's-1982: A review and synthesis. U.S. Fish Wildl. Serv. Biol. Rep. 86(12), 135 p .

Murdoch AR and Peven C (2005) Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Hatchery Programs, Final Report.

Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-590.

Olsen JB, Wilson SL, Kretschmer EJ, Jones KC, Seeb JE (2000) Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon. Molecular Ecology 9, 2185-2187.

Park SDE (2001) Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection [Ph.D. thesis], University of Dublin

Peven CM (1987) Downstream migration timing of two stocks of sockeye salmon on the Mid-Columbia River. Northwest Sci. 61(3):186-190.

Pollak E (1983) A new method for estimating the effective population size from allele frequency changes. Genetics 104, 531-548.

Quinn TP and Adams DJ (1996) Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 77:1151-1162.

Rexroad CE, Coleman RL, Martin AM, Hershberger WK, Killefer J (2001) Thirty-five polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Animal Genetics, 32:317-319.

Rice WR, (1989) Analyzing tables of statistical tests. Evolution. 43:223-225.
Scribner KT, Gust JR, Fields RL (1996) Isolation and characterization of novel salmon microsatellite loci: cross-species amplification and population genetic applications. Candian Journal of Fisheries and Aquatic Sciences. 53, 833-841.

Shaklee JB, Klaybor DC, Young S, and White BA (1991) Genetic stock structure of oddyear pink salmon, Oncorhynchus gorbuscha (Walbaum), from Washington and British Columbia and potential mixed-stock fisheries applications. J. Fish. Biol. 39(A):21-34.

Small MP, Beacham TD, Withler RE, and Nelson RJ (1998) Discriminating coho salmon (Oncorhynchus kisutch) populations within the Fraser River, British Columbia. Molecular Ecology 7: 141-155.

Tajima F (1992) Statistical Method for Estimating the Effective Population Size in Pacific Salmon. J Hered 83, 309-311.

Utter F, Aebersold P, Helle J, and Winans G (1984) Genetic characterization of populations in the southeastern range of sockeye salmon. In J. M. Walton and D. B. Houston (editors), Proceedings of the Olympic wild fish conference, p. 17-31. Fisheries Technology Program, Peninsula College, Port Angeles, WA.

Utter F, Milner G, Stahl G, and Teel D (1989) Genetic population structure of chinook salmon, Oncorhynchus tshawytscha, in the Pacific Northwest. Fish. Bull., U.S. 87:239-264.

Varnavskaya NV, Wood CC, and Everett RJ (1994) Genetic variation in sockeye salmon (Oncorhynchus nerka) populations of Asia and North America. Can. J. Fish. Aquat. Sci. 51(Suppl. 1):132-146.

Waples RS (1990a) Conservation genetics of Pacific salmon. III. Estimating effective population size. Journal of Heredity 81:277-289

Waples RS, Masuda M, Pella J (2007) SALMONNb: a program for computing cohortspecific effective population sizes $\left(\mathrm{N}_{\mathrm{b}}\right)$ in Pacific salmon and other semelparous species using the temporal method. Molecular Ecology Notes 7, 21-24.

Washington Department of Fisheries (WDF), Washington Department of Game (WDG), and United States Bureau of Fisheries (USBF) (1938) A report on the preliminary investigations into the possible methods of preserving the Columbia River salmon and steelhead at the Grand Coulee Dam. Wash. Dep. Fish, Olympia, WA, 120 p.

Washington Department of Fisheries (WDF), Washington Department of Wildlife (WDW), and Western Washington Treaty Indian Tribes (WWTIT) (1993) 1992 Washington State salmon and steelhead stock inventory (SASSI). Wash. Dep. Fish Wildl., Olympia, WA, 212 p. plus 5 regional volumes.

Washington Department of Fish and Wildlife (WDFW) (1996) Letter to M. Schiewe, NMFS, from R. Lincoln, Assistant Director, Fish Management Program, Washington Department of Fish and Wildlife, dated 12 July 1996. 3 p. plus appendix. (Available from West Coast Sockeye Salmon Administrative Record, Environmental and Technical Services Division, Natl. Mar. Fish. Serv., 525 N. E. Oregon Street, Portland, OR 97232.)

Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35:235-254.
Weir BS, Cockerham CC (1984) Estimating F-Statistics for the Analysis of PopulationStructure. Evolution 38:1358-1370.

Winans GA, Aebersold PB, Urawa S, and Varnavskaya NV (1994) Determining continent of origin of chum salmon (Oncorhynchus keta) using genetic stock identification techniques: status of allozyme baseline in Asia. Can. J. Fish. Aquat. Sci. 51 (Suppl. 1):95-113.

Winans GA, Aebersold PB, and Waples RS (1996) Allozyme variability of Oncorhynchus nerka in the Pacific Northwest, with special consideration to populations of Redfish Lake, Idaho. Trans. Am. Fish. Soc. 205:645-663.

Wood CC, Riddell BE, Rutherford DT, and Withler RE (1994) Biochemical genetic survey of sockeye salmon (Oncorhynchus nerka) in Canada. Can. J. Fish. Aquat. Sci. 51(Suppl. 1):114-131.

Wood CC (1995) Life history variation and population structure in sockeye salmon. In J. L. Nielsen (editor), Evolution and the aquatic ecosystem: defining unique units in population conservation. Am. Fish. Soc. Symp. 17:195-216.

Table 1 Lake Wenatchee sockeye collections analyzed. MNA is the mean number of alleles per locus, Hz is unbiased heterozygosity, Obs Hz is observed heterozygosity, and HW is the p-value of the null hypothesis of random association of alleles (i.e., Hardy - Weinberg equilibrium). For reference, the nominal level of statistical significance at $\alpha=0.05$ is 0.0002 after correction for multiple tests.

Year	Collection Code	Tissue Type	Source	N	MNA	Hz	Obs Hz	HW
1989	89^{1}	Scales	Natural	96	14.35	0.792	0.791	0.424
1990	90^{1}	Scales	Natural	96	13.19	0.793	0.779	0.131
2000	00AAE	Scales	Broodstock	96	12.31	0.787	0.776	0.213
2000	00^{1}	Scales	Natural	96	11.76	0.801	0.826	0.868
2001	01AAS	Scales	Broodstock	53	9.47	0.788	0.793	0.392
2001	01^{1}	Scales	Natural	96	14.35	0.786	0.794	0.456
2002	02^{1}	Scales	Natural	96	14.53	0.794	0.777	0.780
2004	04^{1}	Scales	Natural	96	14.65	0.798	0.803	0.704
2004	04AAV	Scales	Broodstock	43	14.35	0.796	0.795	0.051
2006	06CN	Tissue	Broodstock	38	14.59	0.793	0.785	0.688
2006	06 CO	Tissue	Natural	96	14.53	0.806	0.803	0.408
2007	07EE	Tissue	Broodstock	18	14.00	0.790	0.790	0.221
2007	07EF	Tissue	Natural	96	14.35	0.789	0.800	0.347

[^16]Table 2 Allelic differentiation for Lake Wenatchee sockeye collections. A single analysis tested (pairwise) the allelic differentiation between all thirteen collections; however p-values for G-statistics are partitioned in the table by A) natural-origin, B) broodstock, and C) natural versus broodstock. Underlined values are for paired naturalbroodstock collections from the same year. For reference, the nominal level of statistical significance at $\alpha=0.05$ is 0.0006 after correction for multiple tests. No significant values were observed.
A) Natural-Origin Collections

	89	90	00	01	02	04	06 CO
89		0.257	0.359	0.531	0.331	0.127	0.031
90		0.953	0.148	0.753	0.903	0.077	0.283
00			0.328	0.527	0.607	0.604	0.400
01				0.209	0.081	0.127	0.093
02					0.085	0.707	0.235
04						0.312	0.577
06 CO							0.435
07 EF							

B) Broodstock Collections

	00 AAE	01 AAS	04 AAV	06 CN
0.189	0.090	0.008	0.058	
00 AAE	0.189	0.122	0.020	0.116
01AAS			0.008	0.031
04AAV				0.326
06CN				
07 EE				

C) Natural vs. Broodstock

	89	90	00	01	02	04	06 CO	07 EF
00AAE	0.027	0.309	$\underline{0.572}$	0.018	0.041	0.012	0.093	0.040
01AAS	0.115	0.471	0.160	$\underline{0.219}$	0.519	0.049	0.654	0.133
04AAV	0.136	0.219	0.210	0.423	0.208	$\underline{0.328}$	0.037	0.153
06CN	0.029	0.004	0.053	0.007	0.022	0.004	$\underline{0.019}$	0.001
$\underline{07 E E}$	0.099	0.229	0.053	0.015	0.093	0.178	0.090	$\underline{0.037}$

Table 3 Estimation of N_{e} for temporally replicated natural-original sockeye collections. Above the diagonal are pairwise estimates of N_{e}, where negative values mean sampling variance can account for genetic variance observed (i.e., genetic drift unnecessary).
Below the diagonal are variances for pairwise estimates of N_{e}. Absent variance values (denoted by -) were too large for SalmonNb to display.

Collection	89	90	00	01	02	04	06 CO	07 EF
89		-3936.6	-1414	-2636.3	671.4	1871.1	1066.1	1951.2
90	$2.59 \mathrm{E}+09$		-1490.3	3649.1	-31144	-6808.4	817.6	93190.2
00	$1.40 \mathrm{E}+09$	$4.45 \mathrm{E}+09$		-592.2	-6842.2	-667.1	-1736.9	-1350.1
01	$1.21 \mathrm{E}+09$	$1.47 \mathrm{E}+09$	$2.33 \mathrm{E}+09$		977.1	6160.4	387.8	2531.5
02	$1.91 \mathrm{E}+09$	$1.33 \mathrm{E}+09$	$1.16 \mathrm{E}+09$	$2.29 \mathrm{E}+09$		1495.6	-848.5	3213.6
04	$2.21 \mathrm{E}+09$	$3.62 \mathrm{E}+09$	$4.08 \mathrm{E}+09$	$1.27 \mathrm{E}+09$	$1.14 \mathrm{E}+09$		896.6	2155.3
06 CO	$1.34 \mathrm{E}+09$	$1.39 \mathrm{E}+09$	$1.73 \mathrm{E}+09$	-	$4.51 \mathrm{E}+09$	$1.2 \mathrm{E}+09$		3278.6
07 EF	$2.15 \mathrm{E}+09$	$1.51 \mathrm{E}+09$	$1.18 \mathrm{E}+09$	$1.68 \mathrm{E}+09$	-	$1.36 \mathrm{E}+09$	$2.65 \mathrm{E}+09$	

APPENDIX I

Genetic Diversity of Natural Chiwawa River Spring Chinook Salmon.

Assessing the Genetic Diversity of Natural Chiwawa River Spring Chinook Salmon and Evaluating the Effectiveness of its Supportive Hatchery Supplementation Program

Developed for
Chelan County PUD
and the
Habitat Conservation Plan's Hatchery Committee

Developed by
Scott M. Blankenship, Jennifer Von Bargen, and Kenneth I. Warheit
WDFW Molecular Genetics Laboratory
Olympia, WA
and
Andrew R. Murdoch
Supplementation Research Team
Wenatchee, WA

March 30, 2007

Table of Contents

Executive Summary 3
Introduction
Reasons for evaluation project 7
History of artificial propagation 8
Previous genetic analyses 10
Study objectives 12
Methods
Tissue collection 13
Laboratory Analysis 13
Genetic Analysis
Assessing within population genetic diversity 14
Within- and among-population genetic differentiation 15
Effective population size 17
Individual assignment 18
Results/Discussion 19
Conclusions 44
Acknowledgements 46
Literature Cited 47
Figures 52
Tables 59

Executive Summary

The main objective of this study was to determine the potential impacts of the Chiwawa River Supplementation Program on natural spring Chinook in the upper Wenatchee system. We did this by investigating population differentiation between temporally replicated Chiwawa River natural and hatchery samples from the Wenatchee River watershed using microsatellite DNA allele frequencies and the statistical assignment of individual fish to specific populations. Additionally, to assess the genetic effect of the hatchery program, we investigated the relationship between census and effective population sizes using collections obtained before and after the supplementation program. In this summary, we briefly describe the salient results contained within this report; however, each "Task" within the Results/Discussion section below contains extended coverage for each topic along with an expanded interpretation of each result.

Overall, we observed substantial genetic diversity within collections, with heterozygosities equal to roughly 80%, over thirteen microsatellite markers. Microsatellite allele frequencies among temporally replicated collections from the same population (i.e., location) were variable, resulting in significant genetic differentiation among these collections. However, these difference are likely the result of salmon life history in this area, as four-year-old Chinook comprise a majority of returns each year. That is, the genetic tests are detecting the differences of contributing parents from each cohort, rather than a hatchery effect.

Analysis of Chiwawa River Collections

To assess the multiple competing hypotheses regarding population differentiation within and among Chiwawa River collections, we found it necessary to organized the Chiwawa genetic data into three data sets: (1) fish origin (hatchery versus natural), (2) spawning location (hatchery broodstock versus in-river (natural) spawners), and (3) four "treatment" groups (1. hatchery-origin hatchery broodstock, 2. hatchery-origin natural spawner, 3. natural-origin natural spawner, and 4. natural-origin hatchery broodstock). We conducted separate analyses using each of the three data sets, with each analysis
touching on some aspect of the components necessary to move through the Conceptual Process outlined by Murdoch and Peven (2005).

Origin Dataset - We report that allele frequencies within and between natural- and hatchery-origin collections are significantly different, but there does not appear to be a robust signal indicating that the recent natural-origin collections have diverged greatly from the pre- or early post-supplementation collections. Genetic drift will occur in all populations, but does not appear to be a major factor affecting allele frequencies within the Chiwawa collections.

Spawning Location Dataset - There are significant allele frequency differences within and between hatchery broodstock and natural spawner collections. However, in recent years the allele frequency differences between the hatchery broodstock and natural spawner collections have declined. Furthermore, based on linkage disequilibrium, there is a genetic signal that is consistent with increasing homogenization of allele frequencies within hatchery broodstock collections, but a similar homogenization within the natural spawner collection is not apparent. These data suggest that there exists consistent year-to-year variation in allele frequencies among hatchery and natural spawning collections, but there is a trend toward homogenization of the allele frequencies of the natural- and hatchery-origin fish that compose the hatchery broodstock.

Four Treatment dataset - Although there are signals of allelic differentiation among Chiwawa River collections, there are no robust signs that these collections are substantially different from each other. We used two different analyses to measure the degree of genetic variation that exists among individuals and collections within the Chiwawa River. First, we conducted a principal component analysis using all Chiwawa samples with complete genotypes (i.e., no missing alleles from any locus). Although the first two principal component axes account for only 10.5% of the total molecular variance, a substantially greater portion of that variance is among individual fish, regardless of their identity, rather than among hatchery and natural collections. The
variances in principal component scores among individuals are 11 and 13 times greater than the variance in scores among collections.

Secondly, using an Analysis of Molecular Variance (AMOVA), we were able to determine how best to group populations, with "best" being defined as that grouping that accounts for the greatest proportion of among group (i.e., population) variance. Furthermore, by partitioning molecular variance into different hierarchical components, we are able to determine what level accounts for the majority of the molecular variance. The AMOVA results clearly show that nearly all molecular variation, no matter how the data are organized, resides within a collection. The percentage of total molecular variance occurring within collections ranged from 99.68% to 99.74%. These results indicate that the significant differences among collections of Chiwawa fish account for less than one percent of the total molecular variance, and these differences cannot be attributed to fish origin or spawning location.

Effective Population Size $\left(N_{e}\right)$

The contemporary estimate of N_{e} calculated using genetic data combined for Chiwawa natural-origin spawners (NOS) and hatchery-origin spawners (HOS) Chinook is $\mathrm{N}_{\mathrm{e}}=386.8$, which is slightly larger than the pre-hatchery N_{e} we estimated using demographic data from 1989 - 1992. Additionally, the $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio calculated using 386.8 for N_{e} and the arithmetic mean yearly census of NOS and HOS Chinook from 1989 2005 for N is 0.40 . These results suggest the N_{e} has not declined during the period of Chiwawa Hatchery Supplementation Program operation.

Analysis Of Upper Wenatchee Tributary Collections

We compared genetic data for spring Chinook collected from the major spawning aggregates of the Wenatchee River. We observed significant differences in allele frequencies among temporally replicated collections within populations, and among populations within the upper Wenatchee. However, these differences account for a very small portion of the overall molecular variance, and these populations overall are very similar to each other. Of all the populations within the Wenatchee River, the White River
appears to be the most distinct. Yet, this distinction is more a matter of detail than of large significance, as the median $\mathrm{F}_{\text {ST }}$ between White River collections and all other collections (except the Little Wenatchee collection; see Results/Discussion) is less than 1.5% among population variance. We consider the implications of these results in the Conclusion section that follows the Results/Discussion section. Additionally, there is no evidence that the Chiwawa River Supplementation Program has changed the allele frequencies in the Nason Creek and White River populations, despite the presence of hatchery-origin fish in both these systems.

Introduction

Murdoch and Peven (2005) outlined 10 objectives to assess the impact (positive or negative) of hatchery operations mitigating the operation of Rock Island Dam. Two objectives relate to monitoring the genetic integrity of populations:

Objective 3: Determine if genetic diversity, population structure, and effective population size have changed in natural spawning populations as a result of the hatchery program. Additionally, determine if hatchery programs have caused changes in phenotypic characteristics of natural populations.

Objective 5: Determine if the stray rate of hatchery fish is below the acceptable levels to maintain genetic variation between stocks.

This study addresses Objective 3 (above), and documents analyses and results WDFW completed for populations of spring Chinook (Oncorhynchus tshawytscha) in the Wenatchee River watershed. This study was not intended to specifically address Objective 5 (above); however, genetic data provide results relevant to Objective 5. The critical component of Objective 3 is to determine if hatchery supplementation has effected change. Furthermore, change in this context means altering census size and/or genetic marker allele frequencies; we did not attempt to measure changes in fitness. Perhaps a more meaningful rewording of Objective 3 is, "Did the hatchery supplementation program succeed at increasing the census size of a target population while leaving genetic integrity intact?" In order to evaluate cause and effect of hatchery supplementation, we surveyed and compared genetic variation in samples collected before and after potential effects from the Chiwawa Hatchery Supplementation Program. Samples were acquired from the primary spawning aggregates in the upper Wenatchee River watershed: Nason Creek, Little Wenatchee River, White River, and Chiwawa River. Hatchery samples were acquired from programs that could potentially affect genetic composition of Wenatchee stocks, the integrated Chiwawa River stock (local stock), Leavenworth National Fish Hatchery spring Chinook (Carson Stock - non local), and Entiat NFH (Carson Stock - non local). Additionally, the genetic markers used were the Genetic Analysis of Pacific Salmonids (GAPS) (Seeb et al. in review) standardized
microsatellites, so all data from the Wenatchee study will be available for inclusion in the GAPS Chinook coastwide microsatellite baseline.

History of Artificial Propagation

Artificial propagation in the upper Columbia River began in 1899 when hatcheries were constructed on the Wenatchee and Methow rivers (Mullan 1987). These initial operations were small, with the Tumwater Hatchery on the Wenatchee River releasing several hundred thousand fry, and the Methow River hatchery producing few Chinook salmon before it was closed in 1913 (Craig and Suomela 1941, Nelson and Bodle 1990). The Leavenworth State Hatchery operated in the Wenatchee River Basin between 1913 and 1931 using eggs from non-native stocks (Willamette River spring-run and lower Columbia Chinook hatchery fall-run). These early attempts at hatchery production were largely unsuccessful for spring-run Chinook (WDF 1934). Between 1931 and 1939, no Chinook salmon hatcheries were in operation above Rock Island Dam (Rkm 730).

In 1938, the last salmon was allowed to pass upstream through the uncompleted Grand Coulee Dam (Rkm 959). To mitigate the loss of habitat, adult Chinook salmon were trapped, under the auspices of the Grand Coulee Fish Maintenance Project (GCFMP), at Rock Island Dam beginning in May 1939, and relocated into three of the remaining accessible tributaries to the upper Columbia River: the Wenatchee, Entiat, and Methow Rivers. GCFMP transfers continued through the autumn of 1943. Spring- and summer/fall-run fish were differentiated at Rock Island Dam based on a 9 July cutoff date for Chinook arrivals at Rock Island Dam (Fish and Hanavan 1948). Spring-run adults collected at Rock Island Dam (pre 9 July fish) were either transported to Nason Creek on the Wenatchee River to spawn naturally (1939-43), or to the newly constructed Leavenworth NFH (1940) for holding and subsequent spawning (1940-43). Eggs were incubated on site or transferred to the Entiat NFH (1941) and Winthrop NFH (1941). In 1944 spring-run adults were allowed to freely pass Rock Island Dam. The GCFMP did not differentiate among late-run stocks (post 9 July fish) passing Rock Island Dam. Laterun offspring reared at the Leavenworth NFH, Entiat NFH, and Winthrop NFHs were an
amalgamation of summer and fall upper Columbia River populations (Fish and Hanavan 1948). Late-run fish were transplanted into the upper and lower Wenatchee, Methow, and Entiat Rivers.

After 1943, the Winthrop NFH continued to use local spring-run Chinook for hatchery production, while the other NFHs largely focused on summer-run Chinook salmon. Renewed emphasis on spring run production in the mid-1970s saw the inclusion of local and non-local eggs (Carson NFH stock, Klickitat River stock, and Cowlitz River stock) to the NFHs. In the early 1980s, imports of non-native eggs were reduced significantly, and thereafter the Leavenworth, Entiat, and Winthrop NFHs have relied on adults returning to their facilities for their egg needs (Chapman et al. 1995). Regarding late-run Chinook, due to the variety of methods employed to collect broodstock at dams, hatcheries, or the result of juvenile introductions into various areas, Chinook populations and runs (i.e., summer and fall) have been mixed considerably in the upper Columbia system over the past five decades (reviewed in Chapman et al. 1994).

Washington Department of Fish and Wildlife (WDFW) operates two facilities producing spring-run Chinook, the Methow Fish Hatchery (MFH) owned by Douglas County PUD that began operation in 1992 and Eastbank Fish Hatchery (EFH) owned by Chelan County PUD that began operation in 1989. Both programs were designed to implement supplementation (supportive breeding) programs for naturally spawning populations on the Methow and Wenatchee Rivers, respectively (Chapman et al. 1995). As part of the Rock Island Mitigation Agreement between Chelan County Public Utility District and the fishery management parties (RISPA 1989), a supplementation (supportive breeding) program was initiated in 1989 on the Chiwawa River to mitigate smolt mortality resulting from the operation of Rock Island Hydroelectric Project. EFH uses broodstock collected at a weir on the Chiwawa River, although in recent years hatchery fish have been collected at Tumwater Dam. Similarly, the MFHC uses returning adults collected at weirs on the Methow River and its tributaries, the Twisp and Chewuch Rivers (Chapman et al. 1995; Bugert 1998). Although low run size and trap efficiency has resulted in most broodstock being collected from the hatchery outfall or in some years Wells Dam,
progeny produced from these programs are reared at and released from satellite sites on the tributaries where the adults were collected. Numerous other facilities have reared spring-run Chinook salmon on an intermittent basis.

Previous Genetic Studies - Population differentiation

Waples et al. (1991a) examined 21 polymorphic allozyme loci in samples from 44 populations of Chinook salmon in the Columbia River Basin. These authors reported three major clusters of Columbia River Basin Chinook salmon: 1) Snake River springand summer-run Chinook salmon, and mid and upper Columbia River spring-run Chinook salmon, 2) Willamette River spring-run Chinook salmon, 3) mid and upper Columbia River fall- and summer-run Chinook salmon, Snake River fall-run Chinook salmon, and lower Columbia River fall- and spring-run Chinook salmon. Utter et al. (1995) examined allele frequency variability at 36 allozyme loci in samples of 16 upper Columbia River Chinook populations. Utter et al. (1995) indicated that spring-run populations were distinct from summer- and fall-run populations, where the average genetic distance between spring-run and late-run Chinook were about eight times the average of genetic distances between samples within each group. Additionally, allele frequency differences among spring-run populations were considerably greater than that among summer- and fall-run populations in the upper Columbia River. Utter et al. (1995) also reported hatchery populations of spring-run Chinook salmon were genetically distinct from natural spring-run populations, but hatchery populations of fall-run Chinook salmon were not genetically distinct from natural fall-run populations.

As part of an evaluation of the relative reproductive success for the Chiwawa River supplementation program, Murdoch et al. (2006), used eleven microsatellite loci to assess population differentiation among spring Chinook salmon population samples in the upper Wenatchee River. Murdoch et al. (2006) reported a $>99 \%$ accuracy of correctly identifying spring-run and fall-run Chinook from the Wenatchee River. They also reported slight, but significantly different genetic variation among wild spring populations and between wild and hatchery stocks. Yet, since the spring-run populations
are genetically similar, identifying individuals genetically from the upper tributaries of the Wenatchee River was difficult. This result is exemplified in their individual assignment results, where $<8 \%$ of spring-run individuals, hatchery or wild, were correctly assigned using their criterion of an LOD (log of odds) score greater than 2. Murdoch et al. (2006) also reported contemporary natural spring Chinook show heterozygote deficit and low linkage disequilibrium (LD), while contemporary hatchery spring Chinook show heterozygote excess and high LD.

Williamson et al. (submitted) have continued the work of Murdoch et al. (2006) by analyzing Chiwawa River demographic data from 1989 - 2005 to estimate the proportions of recruits that were produced by Chinook with hatchery or wild origin. In an "ideal" population, the genetic size (i.e., effective size or N_{e}) and the census size are equal; however various demographic factors such as unequal sex ratios and variance in reproductive success among individuals reduces the genetic size below the census size. It is generally thought that the genetic size is approximately $10-33 \%$ the census size (Bartley et al. 1992; RS Waples pers. comm.), although values have been reported outside this range (Araki et al. 2007; Arden and Kapuscinski 2003; Heath et al. 2002). Despite being difficult to estimate, the effective population size in many respects is a more important parameter to know than census size, because N_{e} determines how genetic diversity is distributed within populations and how the forces of evolution (i.e., forces that change genetic diversity over time) will affect the genetic variation present.

Williamson et al. (submitted) used demographic data to 1) investigate the effect of unequal sex ratio on genetic diversity, 2) investigate the effect of variation in reproductive success on genetic diversity, 3) investigate the effect of fluctuations in population size on genetic diversity, and 4) estimate the effective population size, using the inbreeding method (Ryman and Laikre 1991). Most importantly, they use demographic data from 1989 - 2000 to assess the impact of the Chiwawa Hatchery Supplementation Program on the effective population size of natural-origin Chiwawa River spring Chinook. They estimate that the N_{e} of naturally spawning Chiwawa Chinook (i.e., both hatchery- and wild-origin fish on the spawning grounds) from 1989 -

1992 was $\mathrm{N}_{\mathrm{e}}=2683$ and in $1997-2000$ was $\mathrm{N}_{\mathrm{e}}=989$. They compare spawning ground N_{e} to estimates calculated from combined broodstock and naturally spawning Chinook demographic data. The combined inbreeding N_{e} estimate from 1989-1992 was $\mathrm{N}_{\mathrm{e}}=$ 147 and in $1997-2000$ was $\mathrm{N}_{\mathrm{e}}=490$. Williamson et al. (submitted) argue that since the combined N_{e} estimate is lower than the naturally spawning estimate, the supplementation program has had a negative impact on the Chiwawa River N_{e}.

Williamson et al. (submitted) also present genetic data for Chinook recovered on spawning grounds in upper Wenatchee River tributaries in 2004 and 2005. These genetic data are derived from the Murdoch et al. (2006) study. They compare samples collected from Chiwawa River (i.e., hatchery and wild), White River, Nason Creek, and Leavenworth Hatchery. Additionally, they include a 1994 Chiwawa River wild smolt sample for comparison with the 2004 brood year. Williamson et al. (submitted) report statistically significant genetic differentiation among Chiwawa River, White River and Nason Creek. Additionally, they report that the 1994 and 2004 Chiwawa River wild samples are not statistically different, but the 2004 Chiwawa wild and hatchery collections are statistically different.

Study Objectives

This study investigated within and among population genetic diversity to assess the effect of the Chiwawa Hatchery's supplemental program on the natural Chiwawa River spring Chinook population. Differences among temporal population samples, the census size, heterozygosity, and allelic diversity were documented. We investigated population differentiation between the Chiwawa River natural and hatchery samples, and among all temporally replicated samples from the Wenatchee River watershed using microsatellite DNA allele frequencies and the statistical assignment of individual fish to specific populations. To assess the genetic effect of the hatchery program, correlation between census and effective population sizes were investigated using temporally replicated samples obtained before and after the supplementation program operation. To address the hypotheses associated with Objective 3 in Murdock and Peven (2005) we developed
eleven specific "Tasks" (Blankenship and Murdoch 2006), to which we analyzed specific genetic data. We present the results from these analyses specific to each individual Task.

Methods and Materials

Tissue collection and DNA extraction

We analyzed thirty-two population collections of adult spring Chinook salmon (Oncorhynchus tshawytscha) obtained from the Wenatchee River between 1989 and 2006 (Table 1). Nine collections of natural Chinook adults from the Chiwawa River ($\mathrm{n}=501$), and nine collections of Chiwawa Hatchery Chinook ($\mathrm{n}=595$) were collected at a weir located in the lower Chiwawa River. The 1993 and 1994 Chiwawa Hatchery samples are smolt samples from the 1991 and 1992 hatchery brood years, respectively. Additional samples were collected from upper Wenatchee River tributaries, White River, Little Wenatchee River, and Nason Creek. Six collections of natural White River Chinook ($\mathrm{n}=179$), one collection from the Little Wenatchee ($\mathrm{n}=19$), and six collections from Nason Creek ($\mathrm{n}=268$) were obtained. Single collections were obtained for Chinook spawning in the mainstem Wenatchee River and Leavenworth National Fish Hatchery. An additional out-of-basin collection from Entiat River was also included in the analysis. Samples collected in 1992 or earlier are scale samples. All other samples were either fin clips or operculum punches, stored immediately in ethanol after collection. DNA was extracted from stored tissue using Nucleospin 96 Tissue following the manufacturer's standard protocol (Macherey-Nagel, Easton, PA, U.S.A.).

Laboratory analysis

We performed polymerase chain reaction (PCR) amplification on each fish sample using the 13 fluorescently end-labeled microsatellite marker loci standardized as part of the GAPS project (Seeb et al. in review). GAPS genetic loci are: Ogo2, Ogo4 (Olsen et al. 1998); Oki 100 (unpublished); Omm 1080 (Rexroad et al. 2001); Ots201b (unpublished); Ots208b, Ots211, Ots212, and Ots213 (Grieg et al. 2003); Ots3M, Ots9 (Banks et al.
1999); OtsG474 (Williamson et al. 2002); Ssa408 (Cairney et al. 2000). PCR reaction volumes were $10 \mu \mathrm{~L}$, and contained $1 \mu \mathrm{~L} 10 \mathrm{x}$ PCR buffer (Promega), $1.0 \mu \mathrm{~L} \mathrm{MgCl} 2$ (1.5 mM final) (Promega), $0.2 \mu \mathrm{~L} 10 \mathrm{mM}$ dNTP mix (Promega), and 0.1 units/mL Taq DNA polymerase (Promega). Loci were amplified as part of multiplexed sets, so primer molarities and annealing temperatures varied. Multiplex one had an annealing temperature of $50^{\circ} \mathrm{C}$, and used 0.37 Molar (M) Oki100, 0.35 M Ots201b, and 0.20 M Ots208b, and 0.20 M Ssa 408 . Multiplex two had an annealing temperature of $63^{\circ} \mathrm{C}$, and used $0.10 \mathrm{M} \mathrm{Ogo2}$, and 0.25 M of a non-GAPS locus (Ssa 197). Multiplex three had an annealing temperature of $56^{\circ} \mathrm{C}$, and used $0.18 \mathrm{M} \mathrm{Ogo4}, 0.18 \mathrm{M} \mathrm{Ots} 213$, and 0.16 M OtsG474. Multiplex four had an annealing temperature of $53^{\circ} \mathrm{C}$, and used 0.26 M Omm1080, and 0.12 M Ots3M. Multiplex five had an annealing temperature of $60^{\circ} \mathrm{C}$, and used 0.30 M Ots212, 0.20 M Ots211, and 0.10 M Ots 9 . Thermal cycling was conducted on either a PTC200 thermal cycler (MJ Research) or GeneAmp 9700 (Applied Biosystems) as follows: $95^{\circ} \mathrm{C}(2 \mathrm{~min}) ; 30$ cycles of $95^{\circ} \mathrm{C}$ for $30 \mathrm{sec} ., 30 \mathrm{sec}$. annealing, and $72^{\circ} \mathrm{C}$ for 30 sec .; a final $72^{\circ} \mathrm{C}$ extension and then a $10^{\circ} \mathrm{C}$ hold. PCR products were visualized by electrophoresis on an ABI 3730 automated capillary analyzer (Applied Biosystems). Fragment analysis was completed using GeneMapper 3.7 (Applied Biosystems). Standardization of genetic data to GAPS allele standards was conducted following Seeb et al. (in review).

Genetic data analysis

Assessing within population genetic diversity - Heterozygosity measurements are reported using Nei's (1987) unbiased gene diversity formula (i.e., expected heterozygosity) and Hedrick's (1983) formula for observed heterozygosity. Both tests are implemented using the microsatellite toolkit (Park 2001). We used GENEPOP version 3.4 (Raymond and Rousset 1995) to assess Hardy-Weinberg equilibrium (HWE), where deviations from the neutral expectation of random associations among alleles are calculated using a Markov chain method (5000 iterations in this study) to obtain unbiased estimates of Fisher's exact test. Global estimates of $\mathrm{F}_{\text {IS }}$ according to Weir and Cockerham (1984) were calculated using GENEPOP version 3.4. Genotypic linkage disequilibrium was calculated following Weir (1979) using GENEPOP version 3.4.

Linkage results for population collections are reported as the proportion of pairwise (locus by locus) tests that are significant (alpha $=0.01$). Linkage disequilibrium is considered statistically significant if more than 5% of the pairwise tests based on permutation are significant for a collection.

Within- and among-population genetic differentiation - The temporal stability of allele frequencies within populations, and pairwise differences in allele frequencies among populations were assessed using several different procedures. First, we tested for differences in allele frequencies among populations defined in Table 1 using a randomization chi-square test implemented in GENEPOP version 3.4 (Raymond and Rousset 1995). This procedure tests for differences between pairs of populations where alleles are randomized between the populations (i.e., genic test). The null hypothesis for this test is that the allele frequency distributions between two populations are the same. A low p-value should be interpreted as the allele frequency distributions being compared are unlikely to be samples drawn from the same underlying distribution.

Second, to graphically describe allele frequency differences among populations we conducted a nonmetric multidimensional scaling analysis using allele-sharing distance matrices from two different data sets. Pairwise allele-sharing distances are calculated as 1 - (mean over all loci of the sums of the minima of the relative frequencies of each allele common to a pair of populations). To calculate the allele-sharing distances for each pair of populations we used PowerMarker v3.25 (Liu and Muse 2005). Nonmetric multidimensional scaling is a technique designed to construct an n-dimensional "map" of populations, given a set of pairwise distances between populations (Manly 1986). The output from this analysis is a set of coordinates along n -axes, with the coordinates specific to the number of n-dimensions selected. To simplify our analysis we selected a 2-dimensional analysis to represent the relative positions of each population in a typical bivariate plot. The goodness of fit between the original allele-sharing distances and the pairwise distances between all populations along the 2-dimensional plot is measured by a "stress" statistic. Kruskal (in Rohlf 2002) developed a five-tier guide for evaluating stress levels, ranging from a perfect fit (stress $=0$) to a poor fit (stress=0.40). We
conducted the nonmetric multidimensional scaling analysis for one data set containing Chiwawa natural- and hatchery-origin collections, and another data set containing Chiwawa broodstock and in-river spawner collections. We used the mdscale module in MATLAB R2006b (The Mathworks 2006) to generate the nonmetric multidimensional scaling coordinates.

We examined the geographic and temporal structure of populations in the upper Wenatchee (Chiwawa River, Nason Creek, and White River, only) using a series of analyses of molecular variance (AMOVAs). Here, we defined an AMOVA as an analysis of variance of allele frequencies, as originally designed by Cockerham (1969), but implemented in Arlequin v2.1 (Schneider et al. 2000). These analyses permit populations to be aggregated into groups, and molecular variance is then partitioned into within collections, among collections, but within groups, and among group components. With this approach, we were able to determine how best to group populations, with "best" being defined as that grouping that accounts for the greatest proportion of among group variance. Furthermore, by partitioning molecular variance into three different hierarchical components, we are able to determine what level accounts for the majority of the molecular variance.

Finally, we explored the partitioning of molecular variance between among-individuals and among-populations using a principal component analysis and multi-locus estimates of pairwise $\mathrm{F}_{\text {ST }}$, estimated by a "weighted" analysis of variance (Weir and Cockerham, 1984). Principal component analysis is a data-reduction technique whereby the correlation structure among variables can be used to combine variables into a series of multivariate components, with each original variable receiving a weighted value for each component based on its correlation with that component. Here, we used a program written by Warheit in MATLAB R2006b (The Mathworks 2006) that treats each allele for each locus as a single variable (13 loci $=26$ alleles or variables), and these 26 "variables" were arranged into 26 components, with each component accounting for a decreasing amount of molecular variance. Estimates of $\mathrm{F}_{\text {ST }}$ were calculated using GENETIX version 4.05 (Belkhir et al.1996). To determine if the $\mathrm{F}_{\text {ST }}$ estimates were
statistically different from random (i.e., no structure), 1000 permutations were implemented in GENETIX version 4.05 (Belkhir et al.1996).

Effective population size ($\mathbf{N}_{\mathbf{e}}$) - Estimates of the effective population size were obtained using two methods, a multi-collection temporal method (Waples 1990), and a singlecollection method (Waples 2006) using linkage disequilibrium data. The temporal method assumes that cohorts are used, but we did not decompose the collection year samples into their respective cohorts using age data. Therefore, N_{e} estimates that pertain to individual year classes of breeders are not valid; however the harmonic mean over all samples will estimate the contemporary N_{e}. Comparing samples from years i and j, Waples' (1990) temporal method estimates the effective number of breeders ($\left.\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j}}\right)$ according to:

$$
\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}=\frac{\mathrm{b}}{2\left(\hat{\mathrm{~F}}-1 / \hat{\mathrm{S}}_{\mathrm{i}, \mathrm{j}}\right)}
$$

The standardized variance in allele frequency ($\hat{\mathrm{F}}$) is calculated according to Pollack (1983). The parameter b is calculated analytically from age structure information and the number of years between samples (Tajima 1992). The age-at-maturity information required to calculate b was obtained from Murdoch et al. (2006) for this analysis. They observed for Chiwawa Hatchery Chinook that 8.6% matured at age 2, 4% at age 3, 87% at age 4 , and 0.4% at age 5. For Chiwawa natural Chinook, Murdoch et al. (2006) observed that 1.8% matured at age $3,81.6 \%$ at age 4 , and 16.7% at age 5 . The harmonic mean of sample sizes from years i and j is $\widetilde{\mathrm{S}}_{\mathrm{i}, \mathrm{j}}$. Over all pairwise comparisons the harmonic mean of all $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ is $\widetilde{\mathrm{N}}_{\mathrm{b}}$, the contemporary estimate of the effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$. SALMONNb (Waples et al. 2007) was used to calculate $\widetilde{\mathrm{N}}_{\mathrm{b}}$. As suggested by authors, alleles with a frequency below 0.05 were excluded from the analysis to reduce potential bias.

The method of Waples (2006) uses linkage disequilibrium (i.e., mean squared correlation of allele frequencies at different gene loci) as a means of estimating effective population size $\left(N_{e}\right)$ from a single sample. While this method is biased in some cases where N_{e} / N
ratio is less the 0.1 and the sample size is less than the true N_{e}, it has been shown to produce comparable results to the temporal method. Burrows' delta method is used to estimate LD, and a bias corrected estimate of N_{e} is calculated after eliminating alleles with frequency less than 0.05 . This test was implemented using $\operatorname{LDN}_{\mathrm{e}}(\mathrm{Do}$ and Waples unpublished). In age-structured species, N_{e} estimates based on LD are best interpreted as the effective number of breeders $\left(\mathrm{N}_{\mathrm{b}}\right)$ that produced the sample (Waples 2006). N_{b} should be multiplied by the mean generation length (i.e., 4 in this case) to obtain an overall estimate of N_{e} based on an N_{b} estimate. We analyzed collections categorized by spawning location (i.e., hatchery broodstock or in-river) and did not analyze collections categorized by origin (i.e., hatchery or natural). Waples' (2006) method estimates N_{e} from observed LD, therefore the corresponding N_{e} estimates for the hatchery collections would be low and the estimates for the natural collections would be high. Yet, since the supplementation program is integrated, and hatchery fish can spawn naturally, we feel it inappropriate to analyze the hatchery and natural samples as if they were separate, which would essentially partition all the LD into the hatchery samples.

Each collection has an N_{b} estimate and an associated confidence interval. If the confidence interval includes infinity, it means that sampling error accounts for all the LD observed (i.e., empirical LD is less than expected LD). The usual interpretation is that there is no evidence for any disequilibrium caused by genetic drift in a finite number of parents. Since the LD method estimates the number of breeders that contributed to the sample being analyzed, in order to calculate an $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio, the appropriate census size must be used. The census size used to derive a ratio was the estimate four years prior to the collection analyzed using LD, which assumed a strict four-year-old lifecycle, although the observed proportion of four-year-olds was approximately 85% each year. The census numbers (Table 2) used to calculate the ratios for Chiwawa broodstock and in-river spawners were combined NOS (natural-origin spawners) and HOS (hatcheryorigin spawners) census estimates.

Individual assignment - A population baseline file was constructed containing all 1704 individual Chinook from 34 population collections (Table 1; Chiwawa origin data set
plus all samples from other populations). All individuals in the baseline had geneotypes that included nine or more loci. Individual Chinook were assigned to their most likely population of origin based on the partial Bayesian criteria of Rannala and Mountain (1997), using a "jack-knife" procedure, where each individual to be assigned was removed from the baseline prior to the calculation of population likelihoods. This procedure was implemented in a program written by Warheit in MATLAB R2006b (The Mathworks 2006). Two assignment criteria were used, 1) the population with the largest posterior probability for an individual was the "most-likely" population of origin (i.e., all individuals assigned to a collection), and 2) an assignment was consider valid only if the posterior probability was greater than or equal to 0.9 . Please note that while the analysis used 34 population collections to assign Rannala and Mountain likelihoods for each individual, these likelihoods were aggregated based on "population" (i.e., Chiwawa, Nason, White, and so on) and posterior probabilities were calculated for population location, rather than individual collections.

Results and Discussion

In this section we combine our presentation and interpretations of the genetic analyses. Additionally, this section will be organized based on the task list presented in the study plan. Overall conclusions are provided following this section.

Task 1: Determine trend in census size for Chiwawa River spring Chinook.

Census data from 1989 - 2005 are provided in Table 2 for the Chiwawa Hatchery broodstock and spring Chinook present in the Chiwawa River. The demographic data for naturally spawning Chinook are based on redd sampling and carcass surveys, while broodstock data are based on Chiwawa hatchery records. As the supplementation program is integrated by design, we also present the proportion of natural-origin broodstock (pNOB) incorporated into the hatchery, in addition to the number of naturalorigin (NOS) and hatchery-origin (HOS) spawners present in Chiwawa River. The
census size fluctuated yearly, and a general reduction in census size was observed in the mid to late 1990's. This trend was apparent in both the broodstock and in the river. The arithmetic mean census size from 1989-2005 for the Chiwawa Hatchery (i.e., broodstock) was $\mathrm{N}=87.5$ per year. The arithmetic mean census size from 1989 - 2005 for the Chiwawa River (i.e., NOS and HOS combined) was N=961.9 per year. For collection years when adult Chiwawa hatchery-origin fish would have been absent in the Chiwawa River (1989 - 1992), the arithmetic mean of natural Chiwawa Chinook census size is $\mathrm{N}=962.7$. We will use this number as the baseline census size to assess if census size has changed. We used two different values for the contemporary census size in the Chiwawa River, NOS only and NOS + HOS. Additionally, we used collection years 2002-2005 for the contemporary NOS and HOS estimates, as these are the most recent data and the number of years included for estimation is the same as the pre-hatchery estimate above (i.e., four years). For NOS only, the arithmetic mean census size from 2002-2005 was $\mathrm{N}=536.0$. For total census size (i.e., NOS and HOS combined), the arithmetic mean census size from 2002 - 2005 was $\mathrm{N}=1324.0$. For the demographic data presented here, the contemporary census size is larger than the census estimate derived from the years prior to hatchery operation.

Task 2: Document the observed genetic diversity.

Genetic Diversity Categorized By Origin

For Chiwawa River collections categorized by origin (Table 1A), substantial genetic diversity was observed, with heterozygosity estimates over all loci, having a mean of 0.80. Genetic diversity was consistent with expected Hardy-Weinberg random mating genotypic proportions for ten of the eighteen collections. Eight of the nine Chiwawa natural collections were consistent with HWE, and two of nine Chiwawa Hatchery collections were consistent with HWE. $\mathrm{F}_{\text {IS }}$ is observed to be slight for all Chiwawa population collections, suggesting individuals within collections do not show excessive homozygosity.

The deviations from HWE observed were generally associated with hatchery collections. The two smolt collections (i.e., 1993 and 1994) showed significant deviations from HWE, which may be a function of non-random hatchery practices involving the contributing natural-origin parental broodstocks (i.e., 1991 and 1992 cohort). Deviations from HWE in the remaining hatchery collections may be the result of few individuals being represented in the broodstock (see below).

Additionally, linkage disequilibrium (LD) was also common for Chiwawa hatcheryorigin collections and minimal for Chiwawa natural-origin collections. The random association of alleles between loci (i.e., linkage equilibrium) is expected under ideal conditions. LD is observed when particular genotypes are encountered more than expected by chance. Laboratory artifacts (e.g. null alleles) or physical linkage of loci on the same chromosome can cause LD, but the LD we observed was not associated with certain locus combinations, which you would expect if either artifacts or physical linkage were the cause of LD. LD was observed for seven of the nine hatchery-origin collections. As with the deviations from HWE, the high LD in the 1993 and 1994 hatchery-origin collections may be a result of non-random hatchery practices. The substantial LD observed in the hatchery-origin adult collections (collection years 2000, 2001, 2004, and 2006) might be the result of small parental broodstock sizes contributing to those returning adults. During the mid 1990's, the Chiwawa broodstock size was low, with zero individuals collected in 1995 and 1999; so fewer individuals would be contributing to the hatchery adult returns than the natural. This idea is corroborated by the lower LD observed for the 2005 hatchery-origin collection, which had a contributing parental broodstock size in 2001 (i.e., the major contributing parental generation) approximately eight times as large as the previous few collection years (Table 2). LD reappears in the 2006 Chiwawa hatchery-origin collection, which had a contributing parental broodstock size (i.e., for the most-part, the 2002 hatchery brood year) five times lower (Table 2) than that of the 2005 collection.

While seven of nine hatchery-origin collections showed significant LD, only one natural origin collection showed LD, and for this collection, only 10% of the loci-pairs were in
disequilibrium (Table 1). The fact that LD predominated in the hatchery samples, suggests that variance in reproductive success (i.e., overrepresentation of particular parents) is higher in the hatchery-origin than in natural-origin collections.

Genetic Diversity Categorized By Spawning Location

For upper Wenatchee River collections categorized by spawning location (Table 1B), substantial genetic diversity was observed, with heterozygosity estimates over all loci, having a mean of 0.79 and ranging from a low of 0.69 (1993 White River) to 0.85 (1993 Little Wenatchee). Genetic diversity was consistent with HWE for nineteen of twentynine population collections. For the collections that departed from HWE, seven were from the Chiwawa River, one was from Leavenworth Hatchery, one was the Wenatchee mainstem collection of hatchery-origin - naturally spawning fish, and one was from the White River. $\mathrm{F}_{\text {IS }}$ is observed to be slight for all population collections except the 1993 White River collection (10% heterozygote deficit) (Table 1B). Collections deviating with HWE generally correlated with collections having high LD. Twelve population collections showed a proportion of pairwise linkage disequilibrium tests (across all loci) greater than 5% (Table 1B), eight of which were Chiwawa collections.

Starting in 1996, spawning location collections are composed of both natural- and hatchery-origin samples. The LD seen in the later spawning location collections may be caused by an admixing effect (i.e., mixing two populations), where random mating has not had the chance to freely associate alleles into genotypes. Interestingly, there appears to be a trend of reducing LD through time within the broodstock collections (Table 1B), which suggests that a "homogenizing" effect is taking place within the Chiwawa River. This observation is discussed more fully in Task 3 below.

Task 3: Test for population differentiation among collections within the Chiwawa River and associated supplementation program.

Introduction

Task 3 was designed to address two hypotheses listed as part of Objective 3 in Murdoch and Peven (2005):

- Ho: Allele frequency Hatchery $=$ Allele frequency ${ }_{\text {Naturally produced }}=$ Allele frequency Donor pop. .
- Ho: Genetic distance between subpopulations Year $x=$ Genetic distance between subpopulations $_{\text {Year } y}$

Murdoch and Peven (2005) proposed these two hypotheses to help evaluate the Chiwawa supplementation program through the "Conceptual Process" (Figure 5 in Murdoch and Peven 2005; repeated here as Figure 1). There are two components to the first hypothesis, which must be considered separately. The first component involves comparisons between natural-origin populations in the Chiwawa to determine if there have been changes in allele frequencies or genetic distances, through time starting with the donor population. Documenting a change does not necessarily indicate that the supplementation program has directly affected the natural origin fish, as additional tests would be necessary to support that hypothesis. The intent of the second component is to determine if the hatchery produced populations have the same genetic composition as the naturally produced populations.

Although on the surface these two components and their associated comparisons may appear simple, from a hypothesis-testing perspective the analyses are complicated by the fact that natural-origin fish may have had hatchery-origin parents, and hatchery-origin fish may have had natural-origin parents. As such, we organized the Chiwawa genetic data into three data sets: (1) fish origin (hatchery versus natural), (2) spawning location (hatchery broodstock versus in-river (natural) spawners), and (3) four "treatment" groups (1. hatchery-origin hatchery broodstock, 2 . hatchery-origin natural spawner, 3. naturalorigin natural spawner, and 4. natural-origin hatchery broodstock). We conducted separate analyses using each of the three data sets, with each analysis touching on some aspect of the components necessary to move through the Conceptual Process (Figure 1).

Hatchery- Versus Natural-Origin

We address the following questions with the origin data set:

1. Are there changes in allele frequencies and allele sharing distances in the naturalorigin collections from pre-supplementation to today?
2. Are there changes in allele frequencies and allele sharing distances in the hatchery-origin collections from early supplementation to today?
3. Are there significant differences in allele frequencies and large allele sharing distances between hatchery- and natural-origin adults from a collection year, and has this pattern changed through time?

Genic Differentiation Tests - We explicitly tested the hypothesis of no significant differentiation within natural- or hatchery-origin collections from the Chiwawa River using a randomization chi-square test. We show the results for the pairwise comparisons among natural-origin collections from the Chiwawa River populations in the first block of the second page of Table 3. Ten of the 36 (28\%) pairwise comparisons have highly significant allele frequency differences, while only 12 of the 36 comparisons (33%) showed no significant differences. Eight of these 12 comparisons involved the 1996 collection, which included only eight samples and therefore provided little power to differentiate allele frequencies. If we exclude the 1996 collection, only 14% of the pairwise comparisons showed no significant differences, and here all but one of these comparisons involved the 1989 collection. The 1989 collection appeared to be the least differentiated collection in the natural-origin data set in that all pairwise comparisons were either not significant, or only mildly significant at the nominal critical value. No comparisons involving the 1989 collection were significant using a Bonferroni-corrected critical value, and 1989 is the only natural-origin collection in our data set that can be classified as "pre-supplementation."

We can interpret these results to indicate that although there appears to be significant year-to-year differences in allele frequencies among post-supplementation collections, the allele frequencies between each post-supplementation collection and the 1989 presupplementation collection are not greatly different. However, the level of differentiation
does increase from the early post-supplementation years to the more recent years (2001, 2004-2006), although the statistical level of this significance never exceeds the Bonferroni-corrected critical value. Finally, sample sizes were also small for the 1989 collection ($\mathrm{n}=36$) and we cannot eliminate a reduction in power as a contributing factor for the lack of significance for these tests.

As with the hatchery-origin collections, most pairwise comparisons of allele frequencies between hatchery-origin samples were significant (Table 3, first page, upper block). Out of the 36 pairwise comparisons, all but three are significant at some level, and most comparisons are highly significant. Similar to the natural-origin analysis, the nonsignificant results were limited to comparisons involving the 1996, which included only eight samples.

As a result of this analysis we reject the hypothesis that there was no significant differentiation among natural- or hatchery-origin collections from the Chiwawa River. Furthermore, the allele frequencies of the hatchery-origin collections are significantly different from those of natural-origin collections (Table 3, first page, second block). For those fish collected in the same year, allele frequencies are significantly different between hatchery- and natural-origin collections, although in 2005 the level of significance was below the Bonferroni critical value (Table 3). The next step is to examine the pattern of allelic differentiation to discover first if there is a trend among the data, and second, if this trend suggests that the allele frequency differences among Chiwawa River natural-origin fish collections has been affected by the hatchery-origin fish.

Allele-sharing and Nonmetric Multidimensional Scaling - We constructed a pairwise allele-sharing distance matrix for all hatchery- and natural-origin collections from the Chiwawa River and subjected this matrix to a nonmetric multidimensional scaling analysis, restricting the analysis to two dimensions (Figure 2). The stress statistic for this analysis is 0.09 , a value Kruskal (in Rohlf 2002) listed as a good to excellent fit between the actual allele-sharing distances and the Euclidean (straight-line) distances in the plot.

In other words, Figure 2 is a good visual representation of the allele sharing distance matrix; collections with a high percentage of alleles shared will be closer to each other than collections with a lower percentage of alleles shared.

With the exception of the two outlier years (1996 and 1998) the Chiwawa natural-origin collections form a tight cluster indicating an overall common set of shared alleles among these collections. Even if we ignore the 1996 and 1998 hatchery-origin collections, there appears to be a greater variance in shared alleles among the Chiwawa hatchery-origin collections than the natural-origin collections (Figure 2). In fact, the median percentage of alleles shared among the Chiwawa natural-origin collections is 76% compared with 69% alleles shared among the Chiwawa hatchery-origin collections.

Also, there appears to be a convergence in allele sharing distances (i.e., a decrease in allele frequency differences) between the hatchery- and natural-origin fish from the late 1980s/early 1990s to 2006. The series of red arrows in Figure 2 represent the progression of change in hatchery-origin allele sharing distances from 1996 (first adult hatchery origin fish in our analysis) to 2006 and this progression is decidedly in the direction of the natural-origin cluster. However, the most recent natural-origin collections (2001, 2004-2006) appear to have pulled closer to the hatchery-origin collections, compared with the 1989 natural-origin collection (note the close proximity of the 2000 and 1989 natural-origin collections). Nevertheless, the cluster of natural-origin collections adjacent to the hatchery-origin collections in Figure 2 also includes the 1993 natural-origin collection. Qualitatively, it appears that the initial hatchery-origin and natural-origin collections were more different from each other in terms of the percentage of shared alleles than are the most recent hatchery- and natural-origin collections. This may have been a result of a non-random sample of natural-origin fish that was used as broodstock in the initial years of the supplementation program (see discussion in Task 2 concerning deviations from HWE and linkage disequilibrium).

That being said, we do need to emphasize that Figure 2 is dominated by five outlier collections (two each from the 1996 and 1998 collections, and the 1994 smolt collection).

The 1996 and 1998 collections are characterized by small samples sizes, and the 1994 smolt collection has nearly all pairs of loci in linkage disequilibrium (Table 1). If we eliminate these five outlier groups, both the hatchery- and natural-origin collections form a relatively tight cluster. Excluding the five outliers, the median percentage of shared alleles among all pairwise combinations of Chiwawa hatchery versus Chiwawa natural collections is 76%. This compares with a median pairwise percentage of 79% among only Chiwawa natural-origin collections. That is, there are nearly as many alleles shared between the hatchery-origin and natural-origin collections as there are among the naturalorigin collections themselves. There is also a narrowing of differences between naturaland hatchery-origin fish from the same collection years from 1993 (76% shared alleles) through 2006 (83% shared alleles).

If allelic differentiation among collections is a function of genetic drift, we would expect a positive correlation between the number of years between two collections and the allele sharing distance. That is, if genetic drift is the primary cause of allele frequency differences between two collections, the greater the number of years between the two collections the larger the allele-sharing distance. For both the natural- and hatcheryorigin collections we examined the relationship between the number of years between a pair of collections and the collections' allele-sharing distance (Figure 3). Although the relationship between time interval and allele distance appears to be a positive function in the natural collections, the slope of the regression line is 0.0017 , and is not significantly different from zero. Furthermore, the correlation coefficient $\left(\mathrm{r}^{2}\right)$ equals 0.1068 , which means that the time interval between collections accounts for only 10% of the pairwise differences in allelic distance. The hatchery-origin collections do show a significantly positive slope ($0.0037 ; \mathrm{p}=0.0254$) and a regression coefficient nearly three times greater than that for the natural-origin collections. However, the correlation coefficient is still relatively small ($r^{2}=0.3290$), indicating that the time interval between collections accounts for one-third of the pairwise differences in allelic distance. The results suggest that if genetic drift is a factor in allelic differentiation between collections, it is only a minor factor, and appears to have affected the hatchery-origin collections more than the natural-origin collections.

If four-year-old fish dominate each collection year, we would expect a closer relationship among collections that are spaced at intervals of four years. The average percentage of alleles shared between two natural-origin collections that are separated by four years or a multiple of four years is 81%, compared with 78% for natural-origin collections separated by years that are not divisible by four. Likewise, for hatchery-origin collections the average percentage of alleles shared is 80% and 75% for collections separated by years divisible and not divisible by four, respectively. Although the percent differences described above are relatively small, they are consistent with the idea that allelic differences between collections are a function of year-to-year variability among different cohorts of four year-old fish.

Summary - The allele frequencies within and between natural- and hatchery-origin collections are significantly different, but there does not appear to be a robust signal indicating that the recent natural-origin collections have diverged greatly from the pre- or early post-supplementation collections. Genetic drift will occur in all populations, but does not appear to be a major factor with the Chiwawa collections. We propose that the differences among collections are a function of differences in allele frequencies among cohorts of the four year-old fish that dominate each collection.

Hatchery Broodstock Versus Natural (In-River) Spawners

We address the following questions with the spawner data set:

1. Are there changes in allele frequencies and allele sharing distances in the natural spawning collections from pre-supplementation to today?
2. Are there changes in allele frequencies and allele sharing distances in the hatchery broodstock collections from early supplementation to today?
3. Are there significant differences in allele frequencies and large allele sharing distances between hatchery and natural spawning adults from a collection year, and has this pattern changed through time?

Genic Differentiation Tests - For the most part there are significant differences in allele frequencies among collections for both the hatchery broodstock and natural spawners (Table 4), and these differences are consistent with the origin data set (Table 3). There are four collection years with paired samples (2001, 2004-2006) where we can compare allele frequency differences between the hatchery broodstock and natural spawners, within the same year. The 2001 hatchery broodstock and natural spawner collections have significantly different allele frequencies, but the level of significance decreased from 2001 to 2004, and become non-significant in 2005 and 2006 (Table 4). This indicates that by 2005, the hatchery broodstock and natural spawners collections were effectively sampling from the same population of fish. Additionally, the percentage of alleles shared between the hatchery broodstock and the natural spawners increased from 76% in 2001 to 86% in 2006 (allele sharing distance matrix, not shown). From this analysis, we conclude that although there are year-to-year differences in allele frequencies within the natural and hatchery spawner collections, there appears to be a convergence of allele frequencies within collection-year, between the natural and hatchery spawner populations.

Linkage Disequilibrium - Linkage disequilibrium is the correlation of alleles between two loci, and can occur for several reasons. If two loci are physically linked on the same chromosome, than alleles from each of these loci should be correlated. However, linkage between two loci can occur as a result of population bottlenecks, small population sizes, and natural selection. If any of these conditions had occurred or were occurring within the Chiwawa River system, we would expect to find substantial linkage disequilibrium in many or perhaps all Chiwawa collections. However, many Chiwawa collections, especially the natural-origin collections, do not show linkage disequilibrium (Table 1), and it would appear that the linkage disequilibrium within certain Chiwawa collections is not a function of the processes listed above. Linkage disequilibrium can also result if the collection is composed of an admixture. That is, if two or more reproductively isolated populations are combined into a single collection, the collection will show linkage disequilibrium. Each broodstock and natural spawning collection is composed of naturaland hatchery-origin fish. If these hatchery- and natural-origin fish are drawn from the
same population, the spawning collections should not show substantial linkage disequilibrium. However, if the hatchery- and natural-origin fish are from different populations (i.e., full hatchery - natural integration has not been achieved), the spawning collections should show substantial linkage disequilibrium.

There are only three Chiwawa spawning collections that are not composed of both hatchery- and natural-origin samples: 1989 (natural-origin, natural spawner), 1993 (natural-origin, hatchery broodstock), and 2001 (natural-origin, natural spawner). Of the 10 spawning collections with both hatchery- and natural-origin fish, seven show significant linkage disequilibrium. Two of the three collections that did not show linkage disequilibrium are the 1996 and 1998 hatchery broodstock collections, which are composed of only seven natural- and six hatchery-origin fish, and two natural- and 19 hatchery-origin fish, respectively. Within the hatchery broodstock collections with linkage disequilibrium, the percent of loci pairs showing linkage decreased from 32% in 2000 to 13% in 2001 and 2004, to only 1% and 5% in 2005 and 2006, respectively (Table 1). If the homogenization of allele frequencies of natural- and hatchery-origin fish was increasing from 2000 to 2006, we would expect a decrease in linkage disequilibrium among the broodstock collections. This is what occurred within the hatchery broodstock collections, but did not occur within the natural spawner collections, where the percent of loci pairs showing linkage was 18% in 2004, 6% in 2005, and 10% in 2006 (Table 1). Furthermore, the 2001 natural spawner collection, with no hatchery-origin component showed linkage disequilibrium with 9% of loci pairs.

There is no correlation between percent of loci pairs showing linkage disequilibrium and percent of broodstock composed of hatchery-origin fish $\left(r^{2}=0.0045\right)$. Furthermore, the natural spawner and hatchery broodstock collections were each composed of roughly the same average percentage of hatchery-origin fish (57% and 53%, respectively). If the decrease in linkage disequilibrium among the hatchery broodstock collections from 2000 to 2006 was a result of a homogenization of allele frequencies of natural- and hatcheryorigin fish in the broodstock, the same degree of homogenization did not occur within the
natural spawner collections. This would occur if natural- and hatchery-origin fish spawning within the river remain segregated, either by habitat or by fish behavior.

Summary - As with the origin data set, there are significant allele frequency differences within and between hatchery broodstock and natural spawner collections. However, in recent years the allele frequency differences between the hatchery broodstock and natural spawner collections has declined. Furthermore, based on linkage disequilibrium, there is a genetic signal that is consistent with increasing homogenization of allele frequencies within hatchery broodstock collections, but a similar homogenization within the natural spawner collection is not apparent. These data suggest that there exists consistent year-to-year variation in allele frequencies among hatchery and natural spawning collections, but there is a trend toward homogenization of the allele frequencies of the natural- and hatchery-origin fish that compose the hatchery broodstock.

Four Treatment Groups

Analyses of genetic differences between hatchery (broodstock) and natural spawner collections is confounded by the fact that each these two groups are composed of fish of natural- and hatchery-origin. To understand the effects of hatchery supplementation on natural-origin fish that spawn naturally, we needed to divide the Chiwawa data set into four mutually exclusive groups: (1) hatchery-origin hatchery broodstock, (2) hatcheryorigin natural spawner, (3) natural-origin hatchery broodstock, and (4) natural-origin natural spawner, with each group consisting of multiple collection years, for a total of 25 different groups.

Allele-sharing and Nonmetric Multidimensional Scaling -As with previous analyses discussed above, we constructed a pairwise allele-sharing distance matrix for all collections from each of these treatment groups and subjected this matrix to a nonmetric multidimensional scaling analysis, restricting the analysis to two dimensions. Figure 4 shows that five outlier groups dominate the allele-sharing distances within this data set. These outlier groups are also present in Figure 2, as discussed above, and Figure 2 and 4 resemble each other because the same fish are included in each analysis. The difference
between Figures 2 and 4 is that in Figure 4 the fish are grouped into collection year and the four treatment groups, rather than collection year and two treatment groups (hatcheryversus natural-origin).

Figure 4 does not provide useful resolution of the groups within the polygon, because the outlier groups dominate the allele sharing distances. We removed the five outlier groups from Figure 4, recalculated the allele sharing distances and subjected this new matrix to a multidimensional scaling analysis (Figure 5). Figure 5 shows separation among the 2001, 2004-2006 collections, but this separation does not necessarily indicate that within-year collections are more similar to each other than any collection is to a collection from another year. For example, the 2006 natural-origin natural spawner and the 2005 naturalorigin hatchery broodstock collections share 81% alleles, while the 2006 natural-origin natural spawner and 2006 hatchery-origin hatchery broodstock collections share 75% alleles. There does not appear to be any discernable pattern of change in allele-sharing distance among the collections relevant to pre- or post-supplementation. Although the 1989 pre-supplementation natural-origin collection appears distinct (Figure 5), the 1993 natural-origin hatchery broodstock collection appears quite similar to the 2005 and 2006 natural-origin collections (Figure 5). The 1993 natural-origin hatchery broodstock collection, although not technically pre-supplementation, is composed of fish whose ancestry cannot be traced to any Chiwawa hatchery fish. Therefore, there is no clear pattern of allele sharing change from pre-supplementation to recent collections.

There does appear to be some change in the average percentage of alleles shared within the 2001 to 2006 collections, with an increase from 74% in 2001 and 2004 to 78% and 79% in 2005 and 2006, respectively. The results provided by this analysis are consistent with the results presented in the origin and spawner data sets. That is, there are allele frequency and allele sharing differences among the collections, but analyses do not strongly suggest that these differences are a function of the supplementation program. Furthermore, there is also a weak signal that the hatchery and natural collections within the most recent years are more similar to each other than in the previous years.

Overall Genetic Variance - Although there are signals of allelic differentiation among Chiwawa River collections, there are no robust signs that these collections are substantially different from each other. We used two different analyses to measure the degree of genetic variation that exists among individuals and collections within the Chiwawa River. First, we conducted a principal component analysis using all Chiwawa samples with complete genotypes (i.e., no missing alleles from any locus). Although the first two principal component axes account for only 10.5% of the total molecular variance, a substantially greater portion of that variance is among individual fish, regardless of their identity, rather than among hatchery and natural collections (Figure 6). The variances in principal component scores among individuals are 11 and 13 times greater than the variance in scores among collections, along the first and second axes, respectively.

Second, we conducted a series of analyses of molecular variance (AMOVA) to ascertain the percentage of molecular variance that could be attributed to differences among collections. We organized these analyses to test also for differences in the hierarchical structure of the data. That is, we tested for differences among collections using the following framework:

- No organizational structure - all 25 origin-spawner collections considered separately
- Origin-spawner collections organized into 10 collection year groups
- Origin-spawner collections organized into 2 breeding location groups (hatchery versus natural)
- Origin-spawner collections organized into 2 origin groups (hatchery versus natural)
- Origin-spawner collections organized into the 4 origin-spawner groups

It is clear from this analysis that nearly all molecular variation, no matter how the data are organized, resides within a collection (Table 5). The percentage of total molecular variance occurring within collections ranged from 99.68% to 99.74%. The among group variance component was limited to less than 0.26% and in all organizational structures,
except "no structure," the among group percentage was not significantly greater than zero. Furthermore, none of the organizational structures provided better resolution than "no structure" in terms of accounting for molecular variance within the data set. These results indicate that if there are significant differences among collections of Chiwawa fish, these differences account for less than one percent of the total molecular variance, and these differences cannot be attributed to fish origin or spawning location.

Summary and Conclusions

We reject the null hypothesis that the allele frequencies of the hatchery collections equal the allele frequencies of the natural collections, which equals the allele frequency of the donor population. Furthermore, because the allele-sharing distances are not consistent within and among collections years, we also reject the second stated hypothesis discussed above. However, there is an extremely small amount of genetic variance that can be attributed to among collection differences. The allelic differentiation that does exist among collections does not appear to be a function of fish origin, spawning location, genetic drift, or collection year. Figure 5 and related statistics does suggest that hatchery and natural collections in 2005 and 2006 are more similar to each other than previous years' collections, and this would be expected in a successful integrated hatchery supplementation program.

Since each of these collection years are generally composed of four-year-old fish, the differentiation among these collections for the most part is differentiation among specific cohorts. The slightly greater percentage of alleles shared among collections that are separated in time by multiples of four years, compared with collections that are not separated in time as such, suggests that cohort differences may be the most important factor accounting for differences in allele frequencies among collections.

Task 4: Develop a model of genetic drift.

See Task 3

Task 5: Analyze spring Chinook population samples from the Chiwawa River and Chiwawa Hatchery from multiple generations.

See Task 3

Task 6: Analyze among population differences for upper Wenatchee spring Chinook.

Supplementation of the Chiwawa River spring Chinook population may affect populations within the Wenatchee River watershed other than the Chiwawa River stock. If the stray rate for Chiwawa hatchery-origin fish is greater than that for natural-origin fish, an increase in gene flow from the Chiwawa population into other populations may result. If this gene flow is high enough, Chiwawa River fish may alter the genetic structure of these other populations. Records from field observations indicate that hatchery-origin fish are present in all major spawning aggregates (A.R Murdoch, unpublished data), and these fish are successfully reproducing (Blankenship et al 2006). The intent of this task is to investigate if there have been changes to the genetic structure of the spring Chinook stocks within upper Wenatchee tributaries during the past 15-20 years, and if changes have occurred, are they a function of the Chiwawa River Supplementation Program? Therefore, we ask the following two questions:

1. Are allele frequencies within populations in the upper Wenatchee stable through time? That is, is there significant allelic differentiation among collections within upper Wenatchee populations?
2. Are the recent collections from the upper Wenatchee populations more similar to the Chiwawa population than earlier collections from the same populations?

For this task we analyzed natural spawning collections from the White River (naturalorigin), Little Wenatchee River (natural-origin), Nason Creek (natural-origin), and

Wenatchee mainstem (hatchery-origin), and hatchery collections from Leavenworth NFH and Entiat River NFH (Table 1). We also included in the analysis the natural- and hatchery-origin collections from the Chiwawa River. There are no repeated collections from Leavenworth, Entiat, Little Wenatchee, and Wenatchee mainstem (Table 1), so for many of the analyses we have limited our discussion to the Chiwawa River, White River, and Nason Creek collections. Furthermore, genetic structure of the Little Wenatchee collection, which consisted of only 19 samples, was unexpectedly quite different from the other collections. For example, the $\mathrm{F}_{\text {ST }}$ statistic measures the percent of total molecular variation that can be attributed to differences between populations. The median $\mathrm{F}_{\text {ST }}$ for all pairwise combinations of collections from all populations, except Little Wenatchee (33 populations, 528 individual $\mathrm{F}_{\text {ST }}$ statistics) equals 0.010 (1%), with a range of 0.000 to 0.037 (Table 6). The median $\mathrm{F}_{\text {ST }}$ for the Little Wenatchee paired with all other collections (33 individual $\mathrm{F}_{\text {ST }}$ statistics) equals 0.106 (10.6%), with a range of 0.074 to 0.121 . The ten-fold increase in the $\mathrm{F}_{\text {ST }}$ statistic indicates that either the Little Wenatchee spring Chinook is unique among the upper Wenatchee River stocks, or this 1993 collection is somehow aberrant. Therefore, we exclude the Little Wenatchee collection from many other analyses.

Population Differentiation - Table 3 provides the levels of significance for all pairwise genic differentiation tests. Most between-collection comparisons are highly significant, with no pattern of increasing or decreasing differentiation with time, and no differences when comparisons are made with Chiwawa hatchery- versus Chiwawa natural-origin fish. For example, excluding the outlier 1996 and 1998 Chiwawa hatchery- and naturalorigin collections, Nason Creek showed highly significant allele frequency differences between the Chiwawa hatchery- and natural-origin collections at 100% and 86% of the comparisons, respectively. The same comparisons with the White River produced 100% and 93% highly significant allele frequency comparisons, respectively. Allele frequencies between Nason Creek and White River were likewise differentiated from each other.

The collection allele frequencies within the upper Wenatchee system are significantly different, and these differences do not appear to change as a function of time (Table 3). Nason Creek shows greater within-population year-to-year variation in allele frequencies than does the White River, with 47\% of the pairwise comparisons showing highly significant differences, compared with only 13% for the White River. However, the 2005 and 2006 collections from the White River appear to be somewhat more differentiated from not only each other, but from the earlier collections from the White River.

Despite the high degree of temporal and spatial structure suggested by the genic differentiation tests, as described above for within-Chiwawa analysis (Task 3), most of the genetic variation within this data set occurs within populations, rather than between populations (Table 6). The $\mathrm{F}_{\text {ST }}$ values for most population comparisons are between 0.01 and 0.02 , indicating 1% to 2% among-population variance, with the remaining 98% to 99\% variance occurring within populations. The White River shows the highest median F_{ST} among the natural-origin collections, equal to 0.014 , compared with 0.009 for both the Nason Creek and Chiwawa natural-origin collections. The median $\mathrm{F}_{\text {ST }}$ for the Chiwawa hatchery-origin collections (0.012) was higher than that for the Chiwawa natural-origin collections.

Table 7 summarizes the information from the $\mathrm{F}_{\text {ST }}$ analyses, under five different temporal and spatial scenarios. Under all scenarios, over 99% of the molecular variance is within populations. There is significantly greater spatial structure among populations ("Origin") in 2005 and 2006 than from 1989 to 1996. That is, there appears to be more spatial structure among the Chiwawa hatchery-origin, Chiwawa natural-origin, White River, and Nason Creek now, than in 1989 to 1996, despite the potential homogenizing and cumulative effect of hatchery strays. However, we stress that the amount of molecular variance associated with the among population differences, despite being significantly greater than 0.00%, is limited to only 0.43%.

Allele-sharing and Nonmetric Multidimensional Scaling - As in the Chiwawa River data discussed above, we constructed an allele-sharing distance matrix and then subjected
that matrix to a multidimensional scaling analysis (Figure 7). Consistent with all previously discussed multidimensional scaling analyses, the 1996 and 1998 adult, and the 1994 smolt collections are outliers. There is clear separation between the White River collections and all other natural-origin and Chiwawa hatchery-origin collections, indicating that there are more alleles shared among the Nason Creek and Chiwawa collections, than with the White River collections. Furthermore, there is a slight separation between the Chiwawa natural-origin natural spawner collections and Nason Creek collections, suggesting different groups of shared alleles between these populations. There is more variation in the allele-sharing distances among collections involved with the Chiwawa hatchery (origin or broodstock) than any of the natural-origin collections, even if we exclude the 1994, 1996, and 1998 collections. This suggests that there is more year-to-year variation in the composition of hatchery-origin and hatchery broodstock than within natural-origin populations throughout the upper Wenatchee. All Wenatchee mainstem fish are hatchery-origin, and if these fish are from the Chiwawa Supplementation Program (rather than from Leavenworth), it is not unexpected that this collection would be plotted within the Chiwawa polygon (Figure 7).

Assignment of Individual to Populations - Finally, we conducted individual assignment tests whereby we assigned each individual fish to a population, based on a procedure developed by Rannala and Mountain (1997) (Table 8 and 9). Individual fish may be correctly assigned to the population from which they were collected, or incorrectly assigned to a different population. Incorrect assignments may occur if the fish is an actual migrant (i.e., source population different from population where collected), or because the genotype for that fish matches more closely with a population different from its source. If there are many individuals from a population incorrectly assigned to populations other than its source population, that original population is either unreal (i.e., an admixture), or there is considerable gene flow between that population and other populations. Furthermore, in assigning individuals to populations, we can either accept the assignment with the highest probability, regardless of how low that probability may be, or we can establish a more stringent criterion, such as to not accept an assignment unless the posterior probability is equal to or greater than 0.90 . This value is roughly
equal to having the likelihood of the most-likely population equal to 10 times that of the second most-likely population.

We provide a summary of the assignments in Tables 8 and 9. On average, nearly 50% of the fish are assigned incorrectly if we accept all assignments (Table 8), but the incorrect assignment rate drops to roughly 10% when we accept only those assignments with probabilities greater than 0.90 . However, with this more stringent criterion, nearly 64% of the fish go unassigned. These results indicate that the allele frequency distributions for these populations are very similar, and it would be very difficult to assign an individual fish of unknown origin to the correct population. If all fish are assigned, there is a 50% chance, overall, of a correct assignment. If you accept only those assignment with the 0.90 criterion, nearly two-thirds of the fish would be unassigned, but there is a 90% chance of correctly assigning those fish that are indeed assigned.

Of all the populations in the data set, there are fewer errors associated with assigning fish to the White River. If all fish are assigned (Table 8), 72% of those fish assigned to the White River, are actually from the White River (115 fish out of a total of 159 fish assigned to the White River). This compares to a rate of only 52% and 53% for Nason Creek and Chiwawa natural-origin, respectively, and 60% for the Chiwawa hatcheryorigin collections. With the 0.90 criterion (Table 9), 89% of the fish assigned to the White River, are actually from the White River, compared with 70% and 65% for Nason Creek and Chiwawa natural origin, respectively, and 81% for the Chiwawa hatchery origin.

When all fish are assigned, most of the incorrectly assigned fish from Nason Creek and White River are assigned to Chiwawa River, at roughly equal frequencies to the hatcheryand natural-origin populations. Incorrectly assigned fish to other populations occur at a slightly higher rate in Nason Creek than in the White River. However, when only those fish meeting the 0.90 criterion are assigned (Table 9), incorrectly assigned fish from Nason Creek are distributed among White and Chiwawa Rivers, as well as Leavenworth NFH, and the Entiat NFH. Mis-assignment to the Chiwawa hatchery-origin was the
highest among the Nason Creek collections, equal to nearly 14%. This contrasts with the White River where mis-assignments do not exceed 7% anywhere, and there is a roughly even distribution of mis-assignments among Nason Creek and Chiwawa River collections.

Summary and Conclusions - There is little geographic or temporal structure among populations within the upper Wenatchee systems. Among population molecular variance is limited to 1% or less. The little variance that can be attributed to among populations indicates that the White River is more differentiated from the Chiwawa and Nason populations than these populations are from each other. Furthermore, although we cannot rule out a hatchery effect on the Nason Creek and White River populations, there is no indication there has been any temporal changes in allele frequencies within these populations that can be attributed directly to the Chiwawa River Supplementation Program. In fact, Table 7 weakly suggests that there is more differentiation among these populations now, than there was before or at the early stages of Chiwawa supplementation.

Therefore, returning to our two original questions, there are significant differences in allele frequencies among collections within populations, and among populations within the upper Wenatchee spring Chinook stocks. However, these differences account for a very small portion of the overall molecular variance, and these populations overall are very similar to each other. There is no evidence that the Chiwawa River Supplementation Program has changed the allele frequencies in the Nason Creek and White River populations, despite the presence of hatchery-origin fish in both these systems. Finally, of all the populations within the Wenatchee River, the White River appears to be the most distinct. Yet, this distinction is more a matter of detail than of large significance, as the median F_{ST} between White River collections and all other collections (except the Little Wenatchee) is less than 1.5% among population variance.

Task 7: Calculate the inbreeding effective population size using demographic data for each sample year, and document the ratio of census to effective size.

This analysis was completed by Williamson et al. (submitted).

Task 8: Calculate LD \mathbf{N}_{b} using genetic data for each sample year, and document the ratio of census to effective size.

We report N_{e} estimated for the Chiwawa River collections based on the bias correction method of Waples (2006) implemented in LDNe (Do and Waples unpublished). N_{e} estimates based on LD are best interpreted as the effective number of breeders $\left(\mathrm{N}_{\mathrm{b}}\right)$ that produced the sample (Waples 2006).

For collections categorized by spawning location (i.e., hatchery broodstock or natural), estimates of N_{b} are shown in Table 10. Considering the hatchery broodstock, N_{b} estimates range from 30.4 (1996) to 274.3 (2005). To obtain $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratios, the N_{b} estimate is multiplied by four (i.e., mean generation length) and divided by the total in river (i.e., NOS [natural-origin spawners] plus HOS [hatchery-origin spawners]) census data from four years prior (i.e., major cohort; see Table 2). The observed $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratios for the broodstock collections range from 11% to 54% of the census estimate, excluding the 2000 collection which is 106%. A ratio greater than one is possible under special circumstances, and certain artificial mating schemes within hatcheries can inflate N_{e} above N ; yet, it is unknown if this is the case for this collection. While no direct comparisons are possible, the N_{b} estimates reported by Williamson et al. (submitted) for Chiwawa broodstock collections from 2000-2003 are similar in magnitude to our estimates. For Chiwawa natural spawner collections, the N_{b} estimates range from 5.2 (1989) to 231.5 (2005), with observed $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratios of $22 \%-48 \%$ of the census estimate.

Task 9: Calculate N_{b} using the temporal method for multiple samples from the same location.

Estimates of effective number of breeders $\left(\mathrm{N}_{\mathrm{b}}\right)$ derived from Waples' (1990) temporal method are shown in Tables 11-13. Eight collection years were used for the Chiwawa broodstock collections (Table 11). The harmonic mean of all pairwise estimates of N_{b} ($\widetilde{\mathrm{N}}_{\mathrm{b}}$) was 269.4. This estimate is the contemporary N_{e} for Chiwawa broodstock collections. For the five collection years of Chiwawa in-river spawners (Table 12), the estimated $\widetilde{\mathrm{N}}_{\mathrm{b}}=224.2$. This estimate is the contemporary N_{e} for Chiwawa River natural spawner collections. Since the Chiwawa Supplementation Program is integrated by design, we also performed another estimation of N_{e} using composite hatchery and natural samples. There are paired samples from 2004-2006. We combined genetic data for hatchery (HOS) and natural (NOS) origin fish from 2004-2006 to create a single Chiwawa River natural spawner sample for each year. The three composite samples from 2004 - 2006 were then analyzed using the temporal method (Table 13), resulting in a $\widetilde{\mathrm{N}}_{\mathrm{b}}$ $=386.8$. This estimate is the contemporary N_{e} for Chiwawa River.

Williamson et al. (submitted) estimated N_{e} using Waples' (1990) temporal method for Chinook captured in 2004 and 2005, and used age data to decompose brood years into consecutive cohorts from 2000 - 2003. They report for Chiwawa broodstock a $\widetilde{\mathrm{N}}_{\mathrm{b}}=$ 50.4. This estimate is not similar to our Chiwawa broodstock estimate. However, if we analyze the hatchery-origin Chinook only, our estimate is $\widetilde{\mathrm{N}}_{\mathrm{b}}=80.1$ for collection years 1989 - 2006 (data not shown). Williamson et al. (submitted) report for Chiwawa naturally spawning Chinook a $\widetilde{\mathrm{N}}_{\mathrm{b}}=242.7$, which is slightly higher than our estimate for in-river spawners from 1989 - 2006, but lower than our estimate from combined NOS and HOS Chinook from 2004-2006 collection years.

Task 10: Use available data and the Ryman-Laikre and Wang-Ryman models to determine the expected change of N_{e} for natural spring Chinook salmon in the Wenatchee River due to hatchery operation.

N_{e} is generally thought to be between 0.10 and 0.33 of the estimated census size (Bartley et al. 1992; RS Waples pers. comm.). We used this range to generate an estimate of N_{e} for Chiwawa natural spawners prior to hatchery operation. For brood years 1989 - 1992, the arithmetic mean census size was $\mathrm{N}=962.7$ (Table 2), resulting in an estimated N_{e} ranging from $96.3-317.7$. The contemporary estimate of N_{e} calculated using genetic data for the Chiwawa in-river spawners is $\mathrm{N}_{\mathrm{e}}=224.2$ (Table 12), falling in the middle of the pre-hatchery range. The $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio calculated using 224.2 and the arithmetic census of NOS Chinook from 1989 - 2005 is 0.42 . A more appropriate contemporary N_{e} to compare with the pre-hatchery estimate (i.e., $96.3-317.7$) is the combined NOS and HOS estimate from natural spawners, since the supplementation program is integrated. As discussed above, the contemporary estimate of N_{e} calculated using genetic data for Chiwawa NOS and HOS Chinook is $\mathrm{N}_{\mathrm{e}}=386.8$ (Table 13), which is slightly larger than the pre-hatchery range, suggesting the N_{e} has not declined during the period of hatchery operation. The $\mathrm{N}_{\mathrm{e}} / \mathrm{N}$ ratio calculated using 386.8 and the arithmetic census of NOS and HOS Chinook from 1989 - 2005 is 0.40 . These results suggest the Chiwawa Hatchery Supplementation Program has not resulted in a smaller N_{e} for the natural spawners from the Chiwawa River.

Williamson et al. (submitted) argued that since their combined (i.e., broodstock and natural) N_{e} estimate was lower than the naturally spawning estimate, the supplementation program likely had a negative impact on the Chiwawa River N_{e}. We disagree with this interpretation of these data. Since the natural spawning component is mixed hatchery and natural ancestry, the N_{e} estimates from natural spawning data are the results that bear on possible hatchery impacts. The census data show the population declined in the mid 1990's and rebounded by 2000 (Table 2). This trend is reflected in the N_{e} results, as shown above, and Williamson et al. (submitted) clearly show in their Table 4 the N_{e} was lower in $2000\left(\mathrm{~N}_{\mathrm{e}}=989\right)$ than it was in $1992\left(\mathrm{~N}_{\mathrm{e}}=2683\right)$. Yet, the important comparison
they make in our view was the natural spawning N_{e} versus the natural only component N_{e} (i.e., hypothetically excluding hatchery program). Williamson et al. (submitted) report the 1989 - $1992 \mathrm{~N}_{\mathrm{e}}$ estimated from naturally spawning Chinook (i.e., NOS and HOS integrated) was essentially the same as the natural only component estimate, 2683 and 2776, respectively. This result is not surprising since no HOS fish were present between 1989 - 1992. They also report that the $1997-2000 \mathrm{~N}_{\mathrm{e}}$ estimated from naturally spawning Chinook (i.e., NOS and HOS integrated) was $\mathrm{N}_{\mathrm{e}}=989$, while the natural-origin estimate of N_{e} in $1997-2000$ was $\mathrm{N}_{\mathrm{e}}=629$. Since the natural-origin estimate of 629 is lower than 989 , the N_{e} estimate from all in-river spawners, we argue that their analysis of demographic data show the N_{e} estimated from naturally spawning Chinook (i.e., NOS and HOS integrated) is larger only if the hatchery Chinook in the river are ignored.

Task 11: Use individual assignment methods to determine the power of self-assignment for upper Wenatchee River tributaries.

See "Assignment of Individual to Populations" in Task 6

Conclusions

Has the Chiwawa Hatchery Supplementation Program succeeded at increasing the census size of the target population while leaving genetic integrity intact? This is an important question, as hatcheries can impact natural populations by reducing overall genetic diversity (Ryman and Laikre 1991), reducing the fitness of the natural populations through relaxation of selection or inadvertent positive selection of traits advantageous in the hatchery (Ford 2002; Lynch and O’Hely 2001), and by reducing the reproductive success of natural populations (McLean et al. 2003). The census data presented here show that the current natural spawning census size is similar to the pre-supplementation census size. Despite large numbers of hatchery-origin fish on the Chiwawa River spawning grounds, the genetic diversity of the natural-origin collections appear unaffected by the supplementation program; heterozygosities are high, and contemporary N_{e} is similar (perhaps slightly higher) than pre-supplementation N_{e}. We did find
significant year-to-year differences in allele frequencies in both the origin and spawner datasets, but these differences do not appear to be related to fish origin, spawning area, or genetic drift. However, we do suggest that cohort differences may be the most important factor accounting for differences in allele frequencies among collections.

The main objective of this study was to determine the potential impacts of the hatchery program on natural spring Chinook in the upper Wenatchee system. We did this by analyzing temporally replicated collections from the Chiwawa River, and by comparing genetic diversity prior to the presumed effect of the Chiwawa Hatchery Supplementation Program, with contemporary collections. We report that the genetic diversity present in the Chiwawa River is unchanged (allowing for differences among cohorts) from 1989 2006, and the contemporary estimate of the effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$ using genetic data is approximately the same as the N_{e} estimate extrapolated from 1989-1992 census data (i.e., pre-hatchery collection years). We observed substantial genetic diversity, with heterozygosities $\sim 80 \%$ over thirteen microsatellite markers. Yet, temporal variation in allele frequencies was the norm among temporal collections from the same populations (i.e., location). The genetic differentiation of replicated collections from the same population is likely the result of salmon life history in this area, as four-year-old Chinook comprise a majority of returns each year. The genetic tests are detecting the differences of contributing parents for each cohort. An important point related to the temporal variation, is that the hatchery broodstock is composed in part of the natural origin Chinook from the Chiwawa River. When we compared the genetic data (within a collection year) for Chinook brought into the hatchery as broodstock with the Chinook that remained in the river (years 2001, 2004 - 2006), there was a trend of decreasing statistical differences in allele frequencies from 2001 to 2004, and no differences were detected for 2005 and 2006. While the replicated collections may have detectable differences in allele frequencies, those differences reflect actual differences in cohorts, not the result of hatchery operations, and the hatchery broodstock collection method captures the differences in returning Chiwawa River spring adults each year. We conclude from these results that the genetic diversity of natural spring Chiwawa Chinook has been maintained during the Chiwawa Hatchery Supplementation Program.

We observe slight, but statistically significant population differentiation between Chiwawa River, White River, and Nason Creek collections. Murdoch et al (2006) and Williamson et al. (submitted) also observed population differentiation between Chiwawa River, White River, and Nason Creek collections. Yet, 99.3% of the genetic variation observed was within samples, very little variance could be attributed to population differences (i.e., population structure). The AMOVA analysis and poor individual assignment results suggest the occurrence of gene flow among Wenatchee River locations or a very recent divergence of these groups. While Murdoch et al. 2006 did not perform an AMOVA analysis, their $\mathrm{F}_{\text {ST }}$ results provide comparable data to our amongpopulation results. Murdoch et al. 2006 report $\mathrm{F}_{\text {ST }}$ ranging from $2 \%-3 \%$ for pairwise comparisons between of Chiwawa, White, and Nason River collections. Since F_{ST} is an estimate of among-sample variance, these results also imply a majority of the genetic variance (i.e., $97 \%-98 \%$) resides within collections. To provide further context for the magnitude of these variance estimates, we present the among-group data from Murdoch et al. 2006 comparing summer-run and spring-run Chinook from the Wenatchee River. They report that approximately 91% of observed genetic variance is within-collection for comparisons between collections of summer- and spring-run Chinook. Ultimately, the information provided by this and other reports will be incorporated into the management process for Wenatchee River Chinook. However, we would like to emphasize that the application of these genetic data to management is more about the goals related to the distribution of genetic diversity in the future than specific data values reported. If Chinook are collected at Tumwater Dam instead of within the upper Wenatchee River tributaries, a vast majority of the genetic variation present in the basin would be captured, although any differences among tributaries would be mixed. Alternatively, management policies could be crafted to promote and maintain the among-group genetic diversity that genetic studies consistently observe to be non-zero within the Wenatchee River.

We agree with Murdoch et al. (2006) that it appears hatchery Chinook are not contributing to reproduction in proportion to their abundance. Additionally, if the total census size (i.e., NOS and HOS combined) within the Chiwawa River does not continue
to increase, genetic diversity may decline within this system, given the smaller N_{e} within the hatchery-origin collections compared with the natural-origin collections.

Acknowledgements

We would like to thank Denise Hawkins, Craig Busack, and Cheryl Dean for helpful comments regarding this project. This project was funded by Chelan County PUD and the Washington State General Fund.

Literature Cited

Araki H, Waples RS, Ardren WR, Cooper B, Blouin MS (2007) Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Molecular Ecology, 16:953966.

Arden WR and Kapuscinski AR (2003) Demographic and genetic estimates of effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$ reveals genetic compensation in steelhead trout. Molecular Ecology 12: 35-49

Banks MA, Blouin MS, Baldwin BA, Rashbrook VK, Fitzgerald HA, Blankenship SM, Hedgecock D (1999) Isolation and inheritance of novel microsatellites in chinook salmon (Oncorhynchus tschawytscha). Journal of Heredity, 90:281-288.

Banks MA, Rashbrook VK, Calavetta MJ et al (2000) Analysis of microsatellite DNA resolves genetic structure and diversity of chinook salmon (Oncorhynchus tshawytscha) in California's Central Valley. Canadian Journal of Fisheries and Aquatic Sciences 57:915-927.

Bartley D, Bentley B, Brodziak J, Gomulkiewicz R, Mangel M, and Gall GAE (1992) Geographic variation in population genetic structure of chinook salmon from California and Oregon. Fish. Bull., U.S. 90:77-100.

Blankenship SM, Von Bargen J, and Truscott KD (2006) Genetic analysis of White River juveniles retained for captive brood at AquaSeed to assess the hatchery status of contributing parents. Developed for Grant County PUD.

Blankenship SM and Murdoch AR (2006) Study Plan For Assessing the Genetic Diversity of Natural Chiwawa River Spring Chinook Salmon And Evaluating The Effectiveness Of Its Supportive Hatchery Supplementation Program. Developed for Chelan County PUD and the Habitat Conservation Plan's Hatchery Committee.

Bugert R (1998) Mechanics of supplementation in the Columbia River. Fisheries 23:1120.

Cairney M, Taggart JB, Hoyheim B (2000) Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol Ecol, 9:2175-2178.

Campton DE (1987) Natural hybridisation and introgression in fishes: methods of detection and genetic interpretations. In: Population genetics and fisheries management. (Eds. Ryman, N. and Utter, F.), pp. 161-192. Washington Sea Grant Program, University of Washington Press, Seattle, USA.

Chapman D, Giorgi A, Hillman T, Deppert D, Erho M, Hays S, Peven C, Suzumoto B, and Klinge R (1994) Status of summer/fall chinook salmon in the mid-Columbia region. Report for Chelan, Douglas, and Grant County PUDs. 412 p. + app. (Available from Don Chapman Consultants, 3653 Rickenbacker, Ste. 200, Boise, ID 83705.)

Chapman D, Peven C, Giorgi A, Hillman T, and Utter F (1995) Status of spring chinook salmon in the mid-Columbia River. Don Chapman Consultants, Inc., 477 p. (Available from Don Chapman Consultants, 3653 Rickenbacker, Ste. 200, Boise, ID 83705.)

Cockerham CC (1969) Variance of gene frequencies. Evolution 23:72-83.
Craig JA, and Suomela (1941) Time of appearance of the runs of salmon and steelhead trout native to the Wenatchee, Entiat, Methow, and Okanogan rivers. U.S. Fish Wildl. Serv.

Fish FF, and Hanavan MG (1948) A report on the Grand Coulee Fish Maintenance. Project 1939-1947. U.S. Fish Wildl. Serv. Spec. Sci. Rep 55.

Ford MJ (2002) Selection in captivity during supportive breeding may reduce fitness in the wild. Conservation Biology 16(3):815-825

Frankham R, Ballou JD, Briscoe DA (2002). Introduction to Conservation Genetics, Cambridge University Press, Cambridge, UK.

Greig C, Jacobson DP, Banks MA (2003) New tetranucleotide microsatellites for finescale discrimination among endangered chinook salmon (Oncorhynchus tshawytscha). Mol Ecol Notes, 3:376-379.

Heath DD, Busch C, Kelly J, and Atagi DY (2002) Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Molecular Ecology 11:197-214

Hedrick P, Hedgecock D (1994) Effective population size in winter-run chinook salmon. Conservation Biology, 8:890-892.

Hill WG (1981) Estimation of effective size from data on linkage disequilibrium. Genetical Research 38: 209-216.

Jensen LF, Hansen MM, Carlsson J et al (2005) Spatial and temporal genetic differentiation and effective population size of brown trout (Salmo trutta, L.) in small Danish rivers. Conservation Genetics 6:615-621.

Liu, K and Muse SV (2005) PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics 21:2128-2129.

Lynch M and O'Hely M (2001) Captive breeding and the genetic fitness of natural populations. Conservation Genetics 2:363-378

Manly, BFJ. (1986) Multivariate Statistical Methods. A Primer. Chapman and Hall. London.. 159 + x pp.

McLean JE, Bentzen P, Quinn TP (2003) Differential reproductive success of sympatric, naturally spawning hatchery and wild steelhead trout (Oncorhynchus mykiss) through the adult stage. Can. J. Fish. Aquat. Sci., 60:433-440.

Mullan, JW (1987) Status and propagation of chinook salmon in the mid-Columbia River through 1985. U.S. Fish Wildl. Serv. Biol. Rep. 87:111.

Murdoch AR and Peven C (2005) Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Hatchery Programs, Final Report.

Murdoch AR, Pearsons TN, Maitland TW, Ford M, and Williamson K (2006) Monitoring the reproductive success of naturally spawning hatchery and natural spring Chinook salmon in the Wenatchee River. BPA Project No. 2003-039-00, Contract No. 00021391. pp. 96

Nelson WR, and Bodle J (1990) Ninety years of salmon culture at the Little White Salmon National Fish Hatchery. U.S. Fish Wildl. Serv. Biol. Rep. 90:22.

Palm S, Laikre L, Jorde PE, et al (2003) Effective population size and temporal genetic change in stream resident brown trout (Salmo trutta, L.). Conservation Genetics 4:249-264.

Olsen JB, Bentzen P, Seeb JS (1998) Characterization of seven microsatellite loci derived from pink salmon. Molecular Ecology, 7:1087-1089

Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences 94:9197-9201.

Rexroad CE, Coleman RL, Martin AM, Hershberger WK, Killefer J (2001) Thirty-five polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Animal Genetics, 32:317-319.

Rohlf, F. J. (2002) NTSYSpc: Numerical Taxonomy System, ver. 2.1. Exeter Publishing, Ltd.

Ryman N, Laikre L (1991) Effects of supportive breeding on the genetically effective population size. Conservation Biology, 5:325-329.

Seeb L, et al. (in review) Development of a Standardized DNA Database for Chinook Salmon. Fisheries

Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.000: A software for population genetic data analysis. Genetics and Biometry Laboratory. University of Geneva, Switzerland.

The Mathworks (2006) MatLab Release R2006b. Massachusetts.
Utter FM, Chapman DW, and Marshall AR (1995) Genetic population structure and history of chinook salmon of the Upper Columbia River. Am. Fish. Soc. Symp. 17:149-165.

Wang J (2005) Estimation of effective size from data on genetic markers. Trans. Royal. Phil. Soc. B 360: 1395-1409.

Wang J, and Ryman N (2001) Genetic effects of multiple generations of supportive breeding. Conservation Biology 15: 1615-1631.

Wang J, Whitlock MC (2003) Estimating Effective Population Size and Migration Rates From Genetic Samples Over Space and Time. Genetics 163:429-446

Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121:379-391.

Waples RS (1990) Conservation genetics of Pacific salmon. III. Estimating effective population size. J. Hered. 81: 277-289.

Waples RS (1991) Genetic interactions between hatchery and wild salmonids: Lessons from the Pacific Northwest. Can. J. Fish. Aquat. Sci. 48(Suppl. 1):124-133.

Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Molecular Ecology, 14:3335-3352

Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics 7:167-184

Washington Department of Fisheries (WDF). 1934. Forty-second and forty-fifth inclusive annual reports of the State Department of Fisheries for the period from April 1, 1931-March 31, 1935, fiscal years of 1931 to 1934 inclusive. Wash. Dep. Fish., pp. 78

Williamson K, Cordes J, May B (2002) Characterization of microsatellite loci in chinook salmon (Oncorhynchus tshawytscha) and cross-species amplification in other salmonids. Molecular Ecology Notes, 2:17-19.

Williamson KS, Murdoch AR, and Ford MJ (submitted) Influence of supportive breeding on genetic diversity of hatchery and natural Wenatchee River spring Chinook salmon.

Figure 1. Conceptual process for evaluating potential changes in genetic variation in the Chiwawa naturally produced populations as a result of the supplementation hatchery programs (From Murdoch and Peven 2005).

Figure 2. Multidimensional scaling plot from an allele-sharing distance matrix calculated from the Chiwawa data set organized by fish origin (i.e., hatchery versus natural). The red arrows connect consecutive hatchery-origin collections starting with the first adult collection (1996) and ending with the 2006 collection (see Table 1 for collection years).

Figure 3. Relationships between the time interval in years and allele sharing distances, with each circle representing the pairwise relationship between two Chiwawa collections. Separate regression lines for the natural- and hatchery-origin collections. The slope for the natural-origin collection is not significantly different from zero ($\mathrm{p}=0.1483$), while the slope for hatchery-origin collection is significantly greater than zero ($\mathrm{p}=0.0254$) indicating a positive relationship between time interval and allele sharing distance.

Figure 4. Multidimensional scaling plot from an allele-sharing distance matrix calculated from the Chiwawa data set organized by four treatment groups, as discussed in the text. Each circle represents a single collection within each of the four treatment groups, and the polygon encloses all groups that are not outliers. Each outlier group is specifically labeled.

Figure 5. As in Figure 4, but allele-sharing distance matrix recalculated without the five outlier groups shown in Figure 4. Polygons group together treatment groups from the same collection year. Dates associated with symbols also refer to collection year. Collection years 2004-2006 included all four treatment groups, while collection year 2001 did not include a hatchery-origin natural spawner group. Legend is read as follows: Open circles refer to hatchery-origin hatchery spawner group, while filled box refers to natural-origin hatchery spawner group, and so on.

Figure 6. Principal component (PC) analysis of individual fish from the Chiwawa River. Only fish with complete microsatellite genotypes were included in the analysis $(\mathrm{n}=757)$. Open circles are the PC scores for individual fish, and the filled circles are the centroids (bivariate means) for each of the 25 groups discussed in the text. PC axes 1 and 2 account for only 10.5% of the total molecular variance.

Figure 7. Multidimensional scaling plot from an allele-sharing distance matrix calculated from the Chiwawa origin data set and all other non-Chiwawa collections, except Little Wenatchee River. Legend is read with abbreviations beginning with origin and then spawning location. $\mathrm{H}=$ hatchery, $\mathrm{N}=$ natural, and $\mathrm{S}=$ smolts. Polygons with solid lines enclose the naturalorigin natural spawner collections from each population (i.e., river). The polygon with the dotted lines enclose all Chiwawa collections, except for the five outlier collections, as discussed in text.

Table 1 Summary of within population genetic data. Chiwawa collection data are summarized in A) by origin of the sample (i.e., clipped vs. non-clipped). All collection data are summarized in B) by spawning location (i.e., hatchery broodstock or on spawning grounds). Hz is heterozygosity, HWE is the statistical significance of deviations from Hardy-Weinberg expectations ($*=0.05, * *=0.01$, and ${ }^{* * *}=0.001$), LD is the proportion of pairwise locus tests (across all populations) exhibiting linkage disequilibrium (bolded values are statistically significant), and the last column is mean number of alleles per locus.

	Sample size	Gene Diversity	Observed Hz	HWE	F $_{\text {IS }}$	LD	Mean \# Alleles

A) Origin

1993 Chiwawa Hatchery	95	0.77	0.79	$* * *$	-0.02	$\mathbf{0 . 8 6}$	14.00
1994 Chiwawa Hatchery	95	0.76	0.77	$* * *$	-0.01	$\mathbf{0 . 9 1}$	11.38
1996 Chiwawa Hatchery	8	0.75	0.81	-	-0.01	0.00	8.23
1998 Chiwawa Hatchery	27	0.81	0.82	-	0.00	0.04	12.62
2000 Chiwawa Hatchery	43	0.75	0.78	$* * *$	-0.01	$\mathbf{0 . 1 9}$	12.46
2001 Chiwawa Hatchery	69	0.77	0.80	$* * *$	-0.02	$\mathbf{0 . 1 4}$	15.31
2004 Chiwawa Hatchery	72	0.77	0.77	$* * *$	0.01	$\mathbf{0 . 4 5}$	15.92
2005 Chiwawa Hatchery	91	0.79	0.82	$*$	-0.03	$\mathbf{0 . 0 5}$	16.15
2006 Chiwawa Hatchery	95	0.80	0.84	$* * *$	-0.05	$\mathbf{0 . 4 9}$	15.85
1989 Chiwawa Natural	36	0.76	0.78	-	0.01	0.00	12.77
1993 Chiwawa Natural	62	0.78	0.81	-	-0.02	0.04	15.85
1996 Chiwawa Natural	8	0.72	0.78	-	-0.02	0.00	7.54
1998 Chiwawa Natural	10	0.78	0.84	-	0.00	0.00	8.23
2000 Chiwawa Natural	39	0.78	0.79	$* * *$	0.00	$\mathbf{0 . 1 0}$	14.00
2001 Chiwawa Natural	75	0.78	0.80	-	-0.03	0.03	15.31
2004 Chiwawa Natural	85	0.78	0.77	-	0.02	0.01	15.77
2005 Chiwawa Natural	90	0.79	0.79	-	0.01	0.01	16.15
2006 Chiwawa Natural	96	0.80	0.81	-	-0.01	0.01	16.46

Table 1 Within population genetic data analysis summary continued.

	Sample size	Gene Diversity	Observed Hz	HW	$\mathrm{F}_{\text {IS }}$	LD	Mean \# Alleles
Collection							
B) Spawning Location							
1993 Chiwawa Broodstock	62	0.78	0.81	-	-0.02	0.00	15.85
1996 Chiwawa Broodstock	16	0.75	0.79	-	-0.02	0.00	10.92
1998 Chiwawa Broodstock	37	0.82	0.83	-	0.00	0.01	14.38
2000 Chiwawa Broodstock	82	0.78	0.78	$* * *$	0.00	$\mathbf{0 . 3 2}$	15.62
2001 Chiwawa Broodstock	89	0.78	0.80	$*$	-0.02	$\mathbf{0 . 1 3}$	15.77
2004 Chiwawa Broodstock	61	0.77	0.76	$*$	0.02	$\mathbf{0 . 1 3}$	14.92
2005 Chiwawa Broodstock	75	0.79	0.78	$*$	0.02	0.01	15.85
2006 Chiwawa Broodstock	89	0.80	0.83	-	-0.03	$\mathbf{0 . 0 5}$	16.46
1989 Chiwawa River	36	0.76	0.78	-	0.01	0.00	12.77
2001 Chiwawa River	55	0.78	0.80	-	-0.02	$\mathbf{0 . 0 9}$	14.00
2004 Chiwawa River	96	0.78	0.78	$*$	0.01	$\mathbf{0 . 1 8}$	17.23
2005 Chiwawa River	106	0.79	0.82	$*$	-0.02	$\mathbf{0 . 0 6}$	16.69
2006 Chiwawa River	102	0.80	0.83	$* * *$	-0.03	$\mathbf{0 . 1 0}$	16.77
1989 White River	48	0.75	0.75	-	0.01	0.01	12.85
1991 White River	19	0.76	0.76	-	0.03	0.00	10.92
1992 White River	22	0.75	0.79	-	-0.02	0.01	11.00
1993 White River	21	0.75	0.69	$*$	0.10	0.00	10.15
2005 White River	29	0.75	0.77	-	-0.01	0.03	12.23
2006 White River	40	0.76	0.76	-	0.01	0.04	13.38

Table 1 Within population genetic data analysis summary continued.

Collection	Sample size	Gene Diversity	Observed Hz	HW	$\mathrm{F}_{\text {IS }}$	LD	Mean \# Alleles
1993 Little Wenatchee R.	19	0.84	0.85	-	0.02	0.00	11.23
1993 Nason Creek	45	0.78	0.80	-	-0.01	0.01	13.77
2000 Nason Creek	51	0.76	0.78	-	-0.02	$\mathbf{0 . 1 3}$	13.92
2001 Nason Creek	41	0.79	0.81	-	-0.01	$\mathbf{0 . 0 8}$	14.23
2004 Nason Creek	38	0.76	0.76	-	0.02	0.03	13.23
2005 Nason Creek	45	0.78	0.82	-	-0.04	0.03	14.92
2006 Nason Creek	48	0.80	0.82	-	-0.01	0.00	15.77
2001 Wenatchee River	32	0.79	0.80	$*$	0.00	0.04	12.85
2000 Leavenworth NFH	73	0.80	0.82	$*$	-0.02	$\mathbf{0 . 1 5}$	16.23
1997 Entiat NFH	37	0.81	0.83	-	-0.01	$\mathbf{0 . 0 6}$	14.38

Table 2 Demographic data for Chiwawa Hatchery and Chiwawa natural spring Chinook salmon. BS is census size of hatchery broodstock, pNOB is the proportion of hatchery broodstock of natural origin, NOS is the census size of natural-origin spawners present in Chiwawa River, HOS is the census size of hatchery-origin spawners present in Chiwawa River, Total is NOS and HOS combined, and pNOS is the proportion of spawners present in Chiwawa River of natural origin.

Brood Year	Hatchery		In River			
	BS	pNOB	NOS	HOS	Total	pNOS
1989	28	1	1392	0	1392	1.00
1990	18	1	775	0	775	1.00
1991	32	1	585	0	585	1.00
1992	78	1	1099	0	1099	1.00
1993	94	1	677	491	1168	0.58
1994	11	0.64	190	90	280	0.68
1995	0	0	8	50	58	0.14
1996	18	0.44	131	51	182	0.72
1997	111	0.29	210	179	389	0.54
1998	47	0.28	134	45	178	0.75
1999	0	0	119	13	132	0.90
2000	30	0.3	378	310	688	0.55
2001	371	0.3	1280	2850	4130	0.31
2002	71	0.28	694	919	1613	0.43
2003	94	0.44	380	223	603	0.63
2004	215	0.39	820	788	1608	0.51
2005	270	0.33	250	1222	1472	0.17

Table 3 Levels of significance for pairwise tests of genic differentiation among all hatchery- and natural-origin collections used in this analysis. HS = highly significant ($\mathrm{P}<0.000095$; the Bonferroni corrected p -value for an alpha $=0.05$); * $=\mathrm{P}<0.05$ (nominal critical value for most statistical test); - $=\mathrm{P}>0.05$ (not significant). A significant result between pairs of populations indicates that the allele frequencies between the pair are significantly different. Results are read by comparing the collections along the rows to collections along columns. The top block for each section is a symmetric matrix, as it compares collections within the same group.

		Chiwawa - Hatchery Origin								
		1993	1994	1996	1998	2000	2001	2004	2005	2006
	1993		HS	*	HS	HS	HS	HS	HS	HS
	1994	HS		HS						
	1996	*	HS		*	-	*	-	-	*
	1998	HS	HS	*		HS	HS	HS	HS	HS
	2000	HS	HS	-	HS		HS	*	HS	HS
	2001	HS	HS	*	HS	HS		HS	*	HS
	2004	HS	HS	-	HS	*	HS		HS	HS
	2005	HS	HS	-	HS	HS	*	HS		HS
	2006	HS	HS	*	HS	HS	HS	HS	HS	
	1989	HS	HS	-	HS	HS	*	HS	HS	HS
	1993	HS	HS	-	HS	HS	-	HS	*	HS
	1996	*	HS	-	*	-	-	-	-	-
	1998	HS	HS	-	-	HS	*	*	*	-
	2000	HS	HS	-	HS	HS	HS	*	HS	HS
	2001	HS	HS	-	HS	HS	HS	HS	*	HS
	2004	HS	HS	-	HS	HS	HS	HS	HS	HS
	2005	HS	HS	-	HS	HS	*	HS	*	HS
	2006	HS	HS	-	*	HS	HS	HS	HS	HS
$\begin{aligned} & \overline{0} \\ & \text { N} \\ & \text { Z} \end{aligned}$	1996	HS	HS	-	HS	HS	HS	HS	HS	HS
	2000	HS	HS	*	HS	HS	HS	HS	HS	HS
	2001	HS	HS	-	HS	HS	HS	HS	HS	HS
	2004	HS	HS	-	HS	HS	HS	HS	HS	HS
	2005	HS	HS	-	HS	HS	HS	HS	HS	HS
	2006	HS	HS	-	*	HS	HS	HS	HS	HS
$\begin{aligned} & \text { \#! } \\ & \frac{1}{3} \end{aligned}$	1989	HS								
	1991	HS	HS	-	HS	HS	HS	HS	HS	HS
	1992	HS	HS	*	HS	HS	HS	HS	HS	HS
	1993	HS	HS	*	HS	HS	HS	HS	HS	HS
	2005	HS	HS	-	HS	HS	HS	HS	HS	HS
	2006	HS								
$\begin{aligned} & \pm \\ & \stackrel{\text { ¢ }}{0} \end{aligned}$	Wen-M	HS	HS	*	HS	HS	*	*	-	HS
	Leaven	HS	HS	*	HS	HS	HS	HS	HS	HS
	Entiat	HS	HS	*	HS	HS	HS	HS	HS	HS

Table 3 (con't)

		Chiwawa - Natural Origin								
		1989	1993	1996	1998	2000	2001	2004	2005	2006
	1989		-	-	-	-	*	*	*	*
	1993	-		-	*	*	*	HS	*	HS
	1996	-	-		-	-	-	-	-	-
	1998	-	*	-		*	*	HS	*	*
	2000	-	*	-	*		HS	-	HS	HS
	2001	*	*	-	*	HS		HS	*	HS
	2004	*	HS	-	HS	-	HS		HS	HS
	2005	*	*	-	*	HS	*	HS		*
	2006	*	HS	-	*	HS	HS	HS	*	
$\begin{aligned} & \overline{0} \\ & \text { on } \\ & \text { Zn} \end{aligned}$	1996	*	*	-	*	*	HS	HS	HS	HS
	2000	HS								
	2001	HS	*	-	*	HS	HS	HS	HS	HS
	2004	HS	HS	-	HS	HS	HS	HS	HS	HS
	2005	*	*	-	*	HS	HS	HS	HS	HS
	2006	HS	HS	-	-	HS	HS	HS	HS	HS
	1989	HS	HS	*	HS	HS	HS	HS	HS	HS
	1991	HS	HS	*	-	HS	HS	HS	HS	HS
	1992	HS	HS	-	*	HS	HS	HS	HS	HS
	1993	HS	*	-	*	HS	HS	HS	HS	HS
	2005	HS	*	*	*	HS	HS	HS	*	HS
	2006	HS	HS	*	HS	HS	HS	HS	HS	HS
$\begin{aligned} & \text { む } \\ & \stackrel{ \pm}{0} \end{aligned}$	Wen-M	*	-	-	-	*	*	HS	*	*
	Leaven	HS	HS	*	*	HS	HS	HS	HS	HS
	Entiat	HS	HS	*	HS	HS	HS	HS	HS	HS

Table 3 (con't)

		Nason					
		1996	2000	2001	2004	2005	2006
$\begin{aligned} & \overline{0} \\ & \text { Un } \\ & \text { Z} \end{aligned}$	1996		HS	-	HS	-	*
	2000	HS		HS	HS	HS	HS
	2001	-	HS		*	-	*
	2004	HS	HS	*		*	HS
	2005	-	HS	-	*		-
	2006	*	HS	*	HS	-	
	1989	HS	HS	HS	HS	HS	HS
	1991	*	HS	HS	HS	*	*
	1992	HS	HS	HS	HS	HS	HS
	1993	*	HS	HS	HS	HS	HS
	2005	*	HS	HS	HS	HS	HS
	2006	HS	HS	HS	HS	HS	HS
$\begin{aligned} & \text { む } \\ & \stackrel{ \pm}{0} \end{aligned}$	Wen-M	HS	HS	HS	HS	*	HS
	Leaven	HS	HS	HS	HS	HS	HS
	Entiat	HS	HS	HS	HS	HS	HS

Table 3 (con't)

		White						Other		
		1989	1991	1992	1993	2005	2006	$\begin{array}{\|c} \text { Wen-M } \\ 2001 \end{array}$	$\begin{gathered} \text { Leaven } \\ 2000 \end{gathered}$	$\begin{gathered} \text { Entiat } \\ 1997 \end{gathered}$
	1989		-	*	-	HS	HS	HS	HS	HS
	1991	-		-	-	*	*	*	HS	HS
	1992	*	-		-	*	*	HS	HS	HS
	1993	-	-	-		*	*	HS	HS	HS
	2005	HS	*	*	*		*	HS	HS	HS
	2006	HS	*	*	*	*		HS	HS	HS
$\begin{aligned} & \text { む } \\ & \text { ث } \end{aligned}$	Wen-M	HS	*	HS	HS	HS	HS		HS	HS
	Leaven	HS		HS						
	Entiat	HS								

Table 4 Probabilities (above diagonal) and levels of significance (below diagonal) for pairwise tests of genic differentiation among all Chiwawa hatchery broodstock and Chiwawa natural spawner collections used in this analysis. HS $=$ highly significant ($\mathrm{P}<0.000476$; the Bonferroni corrected pvalue for an alpha $=0.05$); * $=\mathrm{P}<0.05$ (nominal critical value for most statistical test); $-=\mathrm{P}>0.05$ (considered not significant). A significant result between pairs of populations indicates that the allele frequencies between the pair are significantly different. Pairwise comparisons between the hatchery broodstock and natural spawner collections from 2001, 2004, 2005, and 2006, respectively, are highlighted.

		Smolt		Hatchery Broodstock								Natural Spawners				
		1993	1994	1993	1996	1998	2000	2001	2004	2005	2006	1989	2001	2004	2005	2006
$\begin{aligned} & \text { \# } \\ & \text { © } \\ & \text { © } \end{aligned}$	1993	HS 0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1994			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1993	HS	HS	0.9155		0.0000	0.0073	0.3647	0.0003	0.0694	0.0000	0.2220	0.0039	0.0008	0.0095	0.0000
	1996	HS	HS			0.0151	0.8388	0.0452	0.4916	0.3189	0.0716	0.5591	0.0759	0.8101	0.2364	0.0786
	1998	HS	HS	HS	*		0.0000	0.0000	0.0000	0.0000	0.0043	0.0000	0.0000	0.0000	0.0000	0.0005
	2000	HS	HS	*	-	HS		0.0000	0.4720	0.0000	0.0000	0.0036	0.0000	0.0712	0.0000	0.0000
	2001	HS	HS	-	*	HS	HS		0.0000	0.0059	0.0000	0.0003	0.0000	0.0000	0.0126	0.0000
	2004	HS	HS	*	-	HS	-	HS		0.0000	0.0000	0.0001	0.0000	0.0012	0.0000	0.0000
	2005	HS	HS	-	-	HS	HS	*	HS		0.0005	0.0024	0.0137	0.0025	0.7782	0.0018
	2006	HS	HS	HS	-	*	HS	HS	HS	*		0.0000	0.0000	0.0000	0.0000	0.5770
s.əumeds ןeınłen	1989	HS	HS	-	-	HS	*	*	HS	*	HS		0.0023	0.0317	0.0000	0.0003
	2001	HS	HS	*	-	HS	HS	HS	HS	*	HS	*		0.0000	0.2641	0.0000
	2004	HS	HS	*	-	HS	-	HS	*	*	HS	*	HS		0.0000	0.0000
	2005	HS	HS	*	-	HS	HS	*	HS	-	HS	HS	-	HS		0.0000
	2006	HS	HS	HS	-	*	HS	HS	HS	*	-	*	HS	HS	HS	

Table 5 Analysis of molecular variance (AMOVA) for the Chiwawa collections, showing the partition of molecular variance into (1) within collections, (2) among collections but within group, and (3) among group components. Each column in the table represents a separate analysis testing for differences under a different spatial or temporal hypothesis. The different analyses are grouped together in a single table for comparisons. The values within the table are percentages and the parenthetical values are P -values, or probabilities, associated with that percentage. P values greater than 0.05 indicate that the percentage is not significantly different from zero. For example, when collections are organized by hatchery- versus natural-origin ("Origin" - fourth column), 0.11% of the molecular variance is attributed to among group (i.e., hatchery- versus natural-origin), which is not significantly different from zero. No collections (first column) indicates no organization or grouping among all collections, and the among-group percentage is equal to the $\mathrm{F}_{\text {ST }}$ for the entire data set.

	No Structure	Collection Year	Spawning Location	Origin	Origin- Spawning Location
Among Groups	0.26	0.20	0.05	0.11	0.11
	(0.00)	(0.43)	(0.48)	(0.15)	(0.06)
Among collections -	-	0.08	0.24	0.21	0.18
Within groups		(0.003)	(0.00)	(0.00)	(0.06)
		99.72	99.71	99.68	99.71
Within collections	99.74	(0.00)	(0.00)	(0.00)	(0.00)

Table $6 \mathrm{~F}_{\text {ST }}$ values for all pairwise combinations of populations. Each $\mathrm{F}_{\text {ST }}$ is the median value for all pairwise combinations of collections within each population (the number of collections within each population is shown parenthetically next to each population name on each row). For example, the $\mathrm{F}_{\text {ST }}$ for the Chiwawa hatchery versus the White River (0.019) is the median value of 54 pairwise comparisons. The bold values along the center diagonal are the median F_{ST} values within each collection. For those populations with only one collection, the diagonal value was set at 0.000 .

	ChiwawaHatchery	ChiwawaNatural	Entiat	Leavenworth	Nason	Wenatcheemain	White	Little Wenatchee
Chiwawa-Hatchery (9)	0.013	0.008	0.016	0.012	0.011	0.005	0.019	0.111
Chiwawa-Natural (9)		0.003	0.012	0.011	0.007	0.003	0.014	0.105
Entiat (1)			0.000	0.005	0.010	0.008	0.019	0.078
Leavenworth (1)				0.000	0.007	0.008	0.014	0.092
Nason (6)					0.006	0.008	0.015	0.099
Wenatchee-main (1)						0.000	0.012	0.098
White (6)							0.005	0.113
Little Wenatchee (1)								0.000

Table 7 As in Table 5, except data includes Chiwawa hatchery- and natural-origin, Nason Creek, and White River collections

	All Years	All Years	$1989-1996$	$2005-2006$	$2005-2006$
	No Structure	Origin	Origin	Origin	Collection Year
Among Groups	0.28	0.33	-0.07	0.43	-0.06
	(0.00)	(0.00)	(0.67)	(0.01)	(0.57)
Among Collections -		0.04	0.22	0.25	0.64
Within groups		(0.00)	(0.00)	(0.00)	(0.00)
Within Collections	99.72	99.63	99.85	99.32	99.41

Table 8 Individual assignment results reported are the numbers of individuals assigned to each population using the partial Bayesian criteria of Rannala and Mountain (1997) and a "jack-knife" procedure (see Methods). The population with the highest posterior probability is considered the stock of origin (i.e., no unassigned individuals). Individuals from each population are assigned to specific populations (along rows). Bold values indicate correct assignment back to population of origin. Individuals assigned to a population are read down columns. For example, of the 595 individuals from Chiwawa hatchery origin, 134 individuals were assigned to Chiwawa natural origin (reading across). Of the 511 individuals assigned to Chiwawa natural origin (reading down), 60 were from Nason Creek.

Population	Total	Unassigned	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
1) Chiwawa Hatchery	595	0	$\mathbf{3 7 1}$	134	2	16	0	45	15	12
2) Chiwawa Natural	501	0	156	$\mathbf{2 6 9}$	4	5	0	42	9	16
3) Entiat	37	0	4	5	$\mathbf{1 3}$	8	0	6	1	0
4) Leavenworth	73	0	9	8	3	33	0	17	0	3
5) Little Wenatchee	19	0	0	0	0	0	$\mathbf{1 9}$	0	0	0
6) Nason	268	0	49	60	5	11	0	$\mathbf{1 3 1}$	1	11
7) Wenatchee Mainstem	32	0	12	9	0	1	0	2	$\mathbf{6}$	2
8) White	179	0	22	26	0	2	0	13	1	$\mathbf{1 1 5}$
TOTAL	1704	0	623	511	27	76	19	256	33	159

Table 9 As in Table 8, except the posterior probability from the partial Bayesian criteria of Rannala and Mountain (1997) must be 0.90 or greater, to be assigned to a population. Those individuals with posterior probabilities less than 0.90 are unassigned.

Aggregate	Total	Unassigned	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
1) Chiwawa Hatchery	595	332	$\mathbf{2 1 4}$	31	1	4	0	10	3	0
2) Chiwawa Natural	501	375	30	$\mathbf{8 2}$	0	1	0	5	2	6
3) Entiat	37	24	1	1	$\mathbf{5}$	4	0	2	0	0
4) Leavenworth	73	51	0	1	1	19	0	1	0	0
5) Little Wenatchee	19	2	0	0	0	0	$\mathbf{1 7}$	0	0	0
6) Nason	268	188	11	6	2	5	0	53	0	3
7) Wenatchee Mainstem	32	23	4	3	0	0	0	0	$\mathbf{2}$	0
8) White	179	92	4	3	0	1	0	5	1	$\mathbf{7 3}$
TOTAL	1704	1087	264	127	9	34	17	76	8	82

Table 10 Estimates of N_{e} based on bias correction method of Waples (2006) implemented in LDNe (Do and Waples unpublished). Collections are categorized by spawning location. Sample size is the harmonic mean of the sample size, $95 \% \mathrm{CI}$ is the confidence interval calculated using Waples' (2006) equation 12, and Major Cohort assumes that each collection is 100% four-year-olds.

	Sample size	Estimated N_{b}	$95 \% \mathrm{CI}$	Major Cohort	Census	$\mathrm{N}_{\mathrm{N} / \mathrm{N}}$
1993 Chiwawa Broodstock	58.4	103.1	$77.0-149.7$	1989	1392	0.30
1996 Chiwawa Broodstock	15.5	30.4	$19.6-58.1$	1992	1099	0.11
1998 Chiwawa Broodstock	33.4	37.7	$29.8-49.7$	1994	280	0.54
2000 Chiwawa Broodstock	77.8	48.4	$41.4-57.2$	1996	182	1.06
2001 Chiwawa Broodstock	80.4	49.6	$42.2-59.2$	1997	389	0.51
2004 Chiwawa Broodstock	56.6	48.1	$39.0-60.9$	2000	688	0.28
2005 Chiwawa Broodstock	73	274.3	$148.9-1131.8$	2001	4130	0.27
2006 Chiwawa Broodstock	88.4	198.3	$136.1-340.5$	2002	1613	0.49
1989 Chiwawa River	26.6	5.2	$3.9-6.3$	1985		
2001 Chiwawa River	46.7	38.6	$31.0-49.3$	1997	389	0.40
2004 Chiwawa River	88.5	82.6	$67.3-104.4$	2000	688	0.48
2005 Chiwawa River	104.2	231.5	$161.8-382.7$	2001	4130	0.22
2006 Chiwawa River	101.1	107.3	$87.2-136$	2002	1613	0.27

Table 11 Summary of output from program SALMONNb and data for eight Chiwawa broodstock collections from Wenatchee River. For each pairwise comparison of samples i and $j, \widetilde{\mathrm{~S}}$ is the harmonic mean sample size, n is the number of independent alleles used in the comparison, $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ are the pairwise estimates of N_{b}, and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right]$ is the variance of $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$. $\widetilde{\mathrm{N}}_{\mathrm{b}}$ is the harmonic mean of the $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$. Alleles with a frequency below 0.05 were excluded from the analysis to reduce potential bias.

Year	1993	1996	1998	2000	2001	2004	2005	2006

Pairwise $\widetilde{\mathrm{S}}$ (above diagonal) and n (below diagonal):

1993	-	24.5	42.5	66.4	67.2	57.2	64.6	70.3
1996	82	-	21.2	25.8	26.0	24.4	25.6	26.4
1998	80	81	-	46.7	47.2	42.0	45.8	48.4
2000	80	82	84	-	78.6	65.2	75.1	82.7
2001	73	77	81	76	-	66.0	76.2	84.2
2004	77	81	75	76	78	-	63.5	69.0
2005	71	75	82	73	73	69	-	80.0
2006	81	80	84	75	74	75	72	-

Pairwise $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ (above diagonal) and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right]$ (below diagonal):

1993	-	-742.7	406.9	1240.8	-5432.0	829.8	808.9	729.0
1996	22491.2	-	110.4	-1786.5	765.9	162.8	824.7	382.7
1998	10910.4	67299.1	-	101.8	237.1	69.6	307.0	140.0
2000	6910.0	742895.8	19122.7	-	490.6	1498.2	706.9	201.6
2001	49318.3	21402.8	9754.2	6126.6	-	307.8	82.0	362.5
2004	8338.4	257267.7	24283.0	145043.4	7095.7	-	269.7	140.1
2005	31511.8	22242.5	10015.8	6596.6	114931.1	8240.4	-	599.6

$\begin{array}{llllllll}2006 & 6223.8 & 43935.2 & 73518.7 & 10152.5 & 5885.3 & 12827.0 & 6370.8\end{array}$

$\widetilde{\mathrm{N}}_{\mathrm{b}}=269.4$

Table 12 Summary of output from program SALMONNb and data for five Chiwawa in-river spawner collections from Wenatchee River. For each pairwise comparison of samples i and $j, \widetilde{\mathrm{~S}}$ is the harmonic mean sample size, n is the number of independent alleles used in the comparison, $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ are the pairwise estimates of N_{b}, and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j}}\right]$ is the variance of $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j}}$. $\widetilde{\mathrm{N}}_{\mathrm{b}}$ is the harmonic mean of the $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$. Alleles with a frequency below 0.05 were excluded from the analysis to reduce potential bias.

Year	1989	2001	2004	2005	2006

Pairwise $\widetilde{\mathrm{S}}$ (above diagonal) and n (below diagonal):

1989	-	33.3	40.2	41.7	42.2
2001	72	-	60.5	63.9	63.3
2004	72	77	-	95.3	94.0
2005	69	72	75	-	102.5
2006	76	76	77	78	-

Pairwise $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ (above diagonal) and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right]$ (below diagonal):

1989	-	118.4	299.0	143.3	165.3
2001	40378.8	-	181.7	-1537.3	153.5
2004	10455.2	7265.5	-	387.1	329.4
2005	20923.6	68660.6	5040.7	-	356.8
2006	16227.2	8886.9	3802.0	4522.8	-

$\widetilde{\mathrm{N}}_{\mathrm{b}}=224.2$

Table 13 Summary of output from program SALMONNb and data for three brood years that combined Chiwawa natural- and hatchery-origin samples from Wenatchee River. For each pairwise comparison of samples i and $j, \widetilde{\mathbf{S}}$ is the harmonic mean sample size, n is the number of independent alleles used in the comparison, $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ are the pairwise estimates of N_{b}, and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right]$ is the variance of $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$. $\widetilde{\mathrm{N}}_{\mathrm{b}}$ is the harmonic mean of the $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$. Alleles with a frequency below 0.05 were excluded from the analysis to reduce potential bias.

| Year 2004 | 2005 | 2006 |
| :--- | :--- | :--- | :--- |

Pairwise $\widetilde{\mathrm{S}}$ (above diagonal) and n (below diagonal):

2004	-	162	164.3
2005	77	-	188.2
2006	76	75	-

Pairwise $\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}$ (above diagonal) and $\operatorname{Var}\left[\hat{\mathrm{N}}_{\mathrm{b}(\mathrm{i}, \mathrm{j})}\right]$ (below diagonal):

2004	-	611.3	210.8
2005	9351.5	-	727.5
2006	14965.5	8673.9	-

$\widetilde{\mathrm{N}}_{\mathrm{b}}=386.8$

APPENDIX J

Summer Chinook Spawning Ground Surveys in the Methow and Okanogan Basins, 2009

4725 North Cloverdale Road • Ste 102•Boise, ID 83713
PHONE: (208) 321-0363 • FAX: (208) 321-0364
January 20, 2009
To: HCP Hatchery Committee
From: Denny Snyder and Mark Miller
Re: 2009 Summer Chinook Spawning Ground Surveys in the Okanogan and Methow Basins

The purpose of this memo is to provide information on the hatchery-supplemented natural spawning population of summer Chinook in the Methow and Okanogan basins. This work is part of a larger effort focused on monitoring and evaluating Chelan PUD's Hatchery Supplementation program. The tasks and objectives associated with implementing Chelan PUD's Hatchery M\&E Plan for 2009 are outlined in several documents (Murdoch and Peven 2005; Hays et al. 2006).

METHODS

Spawning ground surveys were conducted by foot, raft, and aircraft beginning the last week of September and ending mid-November. During aerial surveys an observer recorded the location and number of redds on topographic maps. We did not use aerial surveys on the Methow River because past work has demonstrated that ground counts were more accurate than aerial surveys (Miller and Hillman 1997). Because of the depth of redds, aerial surveys were the only census method used for the Columbia River downstream from Wells Dam. Ground surveys were used to provide more accurate counts and a complete census of Chinook redds within their spawning distribution. Observers floated through sampling reaches and recorded the location and numbers of redds each week. Observers recorded the date, water temperature, rivermile, and constructed a drawing of the area where redds were located. A different symbol was used each week to record the number of new and incomplete redds.

To maintain consistency, at least one observer surveyed the same stream reach on successive dates. In areas where numerous salmon spawn, we constructed detailed maps of the river and used the cell-area method (Hamilton and Bergersen 1984) to identify the number of redds within each cell. Cells were bound by noticeable landmarks along the banks (e.g., bridges or trees) or at stream habitat boundaries (e.g., transitions between pools and riffles). The number of redds were then recorded in the corresponding grid on the map. When possible, observers estimated the number of redds in a large disturbed area by counting females that defended their redds. We assumed that the area or territory defended by a female was one redd.
During redd surveys, we sampled carcasses of summer Chinook to describe the spawning population. Biological data included collection of scale samples for age analysis, length measurements (POH and FKL), gender, egg voidance, and a check for tags or marks. In the field,
fish sampled with an adipose fin present were considered wild. Fish without an adipose fin were considered hatchery and their snouts were removed and sent to the lab for coded wire tag (CWT) extraction. These data will be used to assess age-at-maturity, size-at-maturity, egg voidance, origin (hatchery or naturally produced), and stray rates. These analyses are provided in the main sections of the M\&E annual report. DNA samples were collected on summer Chinook in 2009. Estimated escapement to the tributaries is based on redd counts times the male-to-female ratio observed at Wells Dam during broodstock and run composition sampling.

RESULTS

Methow

There were 692 summer Chinook redds counted within seven reaches of the Methow River (Table 1). This was the sixth highest redd count observed in the Methow River (Appendix A). Spawning began the first week of October and peaked the second week of October and continued into the second week of November (Table 1; Figure 1). Stream temperatures in the Methow River, when spawning began, varied from $4.5-11.0^{\circ} \mathrm{C}$. Peak spawning occurred in reaches M2 and M4-M6 on the Methow River during the first week of October, and occurred in reach M3 the following week. The lowest reach (M1) peaked the third week. Most redds (93\%) were located in reaches M1-M3 downstream from the town of Twisp and in reach M5 between Methow Valley Irrigation Diversion (MVID) and Winthrop Bridge (Table 1). Few summer Chinook spawned upstream from the Winthrop Bridge in reaches M6 and M7. Estimated spawning escapement, based on redd counts and the sex ratio observed at Wells Dam during broodstock collection, was 1,758 summer Chinook (692 redds x 2.54 fish/redd) in the Methow River.

There were 591 summer Chinook salmon carcasses sampled within the different reaches on the Methow River (Table 2). Based on the estimated spawning escapement of 1,758 summer Chinook and the 591 carcasses sampled, the sampling rate for summer Chinook in the Methow River was 0.34 or 34%. Females made up 52% and males 48% of the carcasses examined. Mean percent egg voidance assessed from 306 female carcasses was 97%. Four of the females sampled died before spawning (i.e., they retained all their eggs). Ad-clipped hatchery fish made up 39\% and naturally produced fish were 61% of the sample collected (Table 2). The distribution of adclipped hatchery and naturally produced fish showed that 70% of the ad-clipped hatchery fish were located in the lower two reaches, while naturally produced fish were more evenly distributed (Figure 2).

Okanogan

There were 1,672 summer Chinook redds counted within six reaches on the Okanogan River (Table 1). This was the third highest redd count observed in the Okanogan River (Appendix A). Peak aerial redd counts (1,109 redds) were about 66% of redds counted from the ground. Spawning began the first week of October and peaked the following week (Table 1; Figure 1). Spawning was initiated in the Okanogan River when the stream temperature varied from 7-16 ${ }^{\circ} \mathrm{C}$. Spawning activity ended after the second week of November (Table 1; Figure 1). Most redds (84%) were located in the upper reaches (O5 and O6) between Zosel Dam and the town of Riverside (Table 1). Estimated spawning escapement (1,672 redds x 2.54 fish/redd) in the Okanogan River was 4,247 summer Chinook.

There were 920 summer Chinook salmon carcasses sampled within 6 reaches on the Okanogan River (Table 2). Based on the estimated spawning escapement of 4,247 summer Chinook and the

920 carcasses sampled, the sampling rate for summer Chinook in the Okanogan River was 0.22 or 22%. Females made up 61% and males 39% of the carcasses examined. Mean percent egg voidance estimated from 560 female carcasses was 98%. Eight females sampled died before they spawned. Ad-clipped hatchery fish made up 36% and naturally produced fish 64% of the sample collected (Table 2). Most naturally produced (60\%) and ad-clipped hatchery fish (32\%) were collected in the upper reaches (O5 and O6) on the Okanogan River closely following the distribution of redds (Figure 2).

Similkameen

There were 1,298 summer Chinook redds counted within the two reaches on the Similkameen River (Table 1). This was the sixth highest redd count recorded in the Similkameen River (Appendix A). The peak aerial count (907 redds) was about 70% of redds counted on the ground. Spawning began the first week of October and peaked the following week in the middle of October (Table 1; Figure 1). Spawning was initiated in the Similkameen River when the temperature varied from $11-12^{\circ} \mathrm{C}$. Spawning activity ended by the first week of November (Table 1). Most (84\%) spawning occurred in the lower reach from the Oroville Bridge downstream to the Driscoll channel on the Similkameen River. Estimated spawning escapement (1,298 redds x 2.54 fish/redd) in the Similkameen River was 3,297 summer Chinook.

There were 852 summer Chinook salmon carcasses sampled within the two reaches on the Similkameen River (Table 2). Based on the estimated spawning escapement of 3,297 summer Chinook and the 852 carcasses sampled, the sampling rate for summer Chinook in the Similkameen River was 0.26 or 26%. Females made up 72% and males 28% of the carcasses examined. Mean percent egg voidance was 98% from 611 female carcasses sampled. Seven females sampled died before they spawned. Ad-clipped hatchery fish made up 51\% and naturally produced fish 49\% of the sample collected (Table 2).

Chelan and Columbia Rivers

There were 72 Chinook redds counted in the Columbia River downstream from Wells Dam (Table 1). No redds were observed during aerial surveys in the Columbia River upstream from Wells Dam. Spawning began the third week of October in the Columbia River. Peak spawning likely occurred near the end of October. Because of inclement weather, aerial surveys were not conducted in late October. Estimated escapement (72 redds x 2.54 fish/redd) to the Columbia River was 183 summer Chinook. No carcasses were sampled in the Columbia River downstream from Wells Dam.

Redds in the Chelan River were counted by Chelan County PUD biologists as part of their evaluation of the newly constructed spawning channel. During their surveys on the Chelan River, they estimated a peak count of 246 redds and sampled 29 carcasses. Assuming 2.54 fish per redd, the spawning escapement in the Chelan River was 625 summer Chinook (this is an underestimate because the escapement is based on a peak redd count, not a total redd count). Based on this escapement, less than 5% of the spawning escapement was sampled.

REFERENCES

Hays, S., T. Hillman, T. Kahler, R. Klinge, R. Langshaw, B. Lenz, A. Murdoch, K. Murdoch, C. Peven. 2006. Analytical Framework for Monitoring and Evaluating PUD Hatchery Programs. Prepared for Habitat Conservation Plans Hatchery Committee.

Miller, M. D. and T. W. Hillman. 1997. Summer/fall Chinook salmon spawning ground surveys in the Methow and Okanogan river basins, 1997. Report to Chelan County PUD. Don Chapman Consultants, Inc. Boise, ID.

Murdoch, A. and C. Peven. 2005. Conceptual Approach to Monitoring and Evaluating the Chelan County Public Utility District Hatchery Programs. Prepared for Chelan PUD Habitat Conservation Plan's Hatchery Committee. Chelan PUD, Wenatchee, WA

Hamilton, K. and E. P. Bergersen. 1984. Methods to estimate aquatic habitat variables. Report for Bureau of Reclamation, Division of Planning and Technical Services, Denver, Colorado. Colorado Cooperative Fishery Research Unit, Colorado State University, Fort Collins, Colorado.

Figure 1. Number of new redds counted each week from September to mid-November. The figure displays the beginning, peak, and end of spawning for summer Chinook in the Methow, Okanogan, and Similkameen rivers in 2009 compared to an 18-year average (1991-2008).

Figure 2. Percent distribution of adipose fin clipped (hatchery) and non adipose fin clipped (wild) fish plotted against the percent distribution of redds observed in reaches of the Methow, Okanogan, and Similkameen rivers, 2009.

Table 1. Number of summer/fall Chinook redds observed each week within reaches of the Methow, Okanogan, Similkameen, and Columbia rivers 2009.

Reach	Location (Rkm)	Sep		Oct			Nov			Total	Percent
		20-26	27-3	4-10	11-17	18-24	25-31	1-7	8-14		
		39	40	41	42	43	44	45	46		
Methow River											
M1	0.0-25.0	0	0	14	19	79	48	26	0	186	26.9
M2	25.0-45.9	0	2	50	28	29	0	5	13	127	18.4
M3	45.9-63.6	0	1	58	87	47	10	0	0	203	29.3
M4	63.6-75.8	0	0	20	20	2	1	0	0	43	6.2
M5	75.8-84.2	0	5	78	36	3	5	0	0	127	18.4
M6	84.2-87.2	0	0	3	3	0	0	0	0	6	0.9
M7	87.2-90.2	0	0	0	0	0	0	0	0	0	0.0
Total		0	8	223	193	160	64	31	13	692	100.0
Okanogan River											
01	0.0-27.2	0	0	0	0	3	0	0	0	3	0.2
O2	27.2-41.9	0	0	0	6	17	7	0	2	32	1.9
O3	41.9-49.4	0	1	26	6	39	0	19	0	91	5.4
O4	49.4-65.4	0	0	61	60	10	0	7	0	138	8.3
O5	65.4-91.4	0	49	477	55	34	0	6	0	621	37.1
O6	91.4-129.6	0	201	442	104	38	2	0	0	787	47.1
Total		0	251	1,006	231	141	9	32	2	1,672	100.0
Similkameen River											
S1	0.0-2.9	0	13	794	221	54	9	0	0	1,091	84.1
S2	2.9-9.1	0	118	88	1	0	0	0	0	207	15.9
Total		0	131	882	222	54	9	0	0	1,298	100.0
Columbia River											
	953.3-954.3	0	0	0	0	21	0	0	51	72	100.0

Table 2. Number of summer/fall Chinook carcasses examined within reaches of the Methow, Okanogan, Similkameen, and Columbia rivers, 2009.

Reach	Location (Rkm)	Hatchery (Adipose Fin Absent)				Wild (Adipose Fin Present)				Reach Total
		Male	Female	Total	Percent	Male	Female	Total	Percent	
Methow River										
M1	0.0-23.8	34	60	94	65.3	22	28	50	34.7	144
M2	23.8-43.8	44	23	67	42.4	57	34	91	57.6	158
M3	43.8-63.7	35	18	53	33.3	40	66	106	66.7	159
M4	63.7-72.3	6	2	8	22.2	17	11	28	77.8	36
M5	72.3-80.1	4	3	7	7.4	26	61	87	92.6	94
M6	80.1-83.0	0	0	0	0.0	0	0	0	0.0	0
M7	83.0-96.1	0	0	0	0.0	0	0	0	0.0	0
Total		123	106	229	38.7	162	200	362	61.3	591
Okanogan River										
01	0.0-27.2	0	0	0	0.0	1	1	2	100.0	2
02	27.2-42.0	3	1	4	57.1	3	0	3	42.9	7
03	42.0-49.4	9	8	17	54.8	8	6	14	45.2	31
04	49.4-65.5	4	14	18	56.3	8	6	14	43.8	32
05	65.5-91.4	58	95	153	44.0	73	122	195	56.0	348
06	91.4-124.6	58	81	139	27.8	135	226	361	72.2	500
Total		132	199	331	36.0	228	361	589	64.0	920
Similkameen River										
S1	0.0-2.9	89	275	364	51.9	135	203	338	48.1	702
S2	2.9-9.2	7	61	68	45.3	10	72	82	54.7	150
Total		96	336	432	50.7	145	275	420	49.3	852

Appendix A. Historical aerial and ground redd counts of summer Chinook in the Methow, Okanogan, Similkameen, Chelan, and Columbia rivers, 1956-2009.

Year	Methow		Okanogan		Similkameen		Chelan		Columbia Near Wells	
	Aerial	Ground								
1956	109	--	37	--	30	--	--	--	--	--
1957	451	--	53	--	30	--	--	--	--	--
1958	335	--	94	--	31	--	--	--	--	-
1959	130	--	50	--	23	--	--	--	--	--
1960	194	--	29	--	--	--	--	--	--	--
1961	120	--	--	--	--	--	--	--	--	--
1962	678	--	--	--	17	--	--	--	--	--
1963	298	--	9	--	51	--	--	--	--	--
1964	795	--	112	--	67	--	--	--	--	--
1965	562	--	109	--	154	--	--	--	--	--
1966	1,275	--	389	--	77	--	--	--	--	--
1967	733	--	149	--	107	--	--	--	--	--
1968	659	--	232	--	83	--	--	--	--	--
1969	329	--	103	--	357	--	--	--	--	--
1970	705	--	656	--	210	--	--	--	--	--
1971	562	--	310	--	55	--	--	--	--	--
1972	325	--	182	--	64	--	--	--	--	--
1973	366	--	138	--	130	--	--	--	--	--
1974	223	--	112	--	201	--	--	--	--	--
1975	432	--	273	--	184	--	--	--	--	--
1976	191	--	107	--	139	--	--	--	--	--
1977	365	--	276	--	268	--	--	--	--	--
1978	507	--	195	--	268	--	--	--	--	--
1979	622	--	173	--	138	--	--	--	--	--
1980	345	--	118	--	172	--	--	--	--	--
1981	195	--	55	--	121	--	--	--	--	--
1982	142	--	23	--	56	--	--	--	--	--
1983	65	--	36	--	57	--	--	--	--	--
1984	162	--	235	--	301	--	--	--	--	--
1985	164	--	138	--	309	--	--	--	--	--
1986	169	--	197	--	300	--	--	--	--	--
1987	211	--	201	--	164	--	--	--	--	--
1988	123	--	113	--	191	--	--	--	--	--
1989	126	--	134	--	221	370	--	--	--	--
1990	229	--	88	47	94	147	--	--	--	--
1991	--	153	55	64	68	91	--	--	--	--
1992	--	107	35	53	48	57	--	--	--	--
1993	--	154	144	162	152	288	--	--	--	--
1994	--	310	372	375	463	777	--	--	--	--
1995	--	357	260	267	337	616	--	--	--	--

Year	Methow		Okanogan		Similkameen		Chelan		Columbia Near Wells	
	Aerial	Ground								
1996	--	181	100	116	252	419	--	--	--	--
1997	--	205	149	158	297	486	--	--	--	--
1998	--	225	75	88	238	276	30	---	25	---
1999	--	448	222	369	903	1,275	63	---	23	---
2000	--	500	384	549	549	993	124	196	91	---
2001	--	675	883	1,108	865	1,540	112	240	86	---
2002	--	2,013	1,958	2,667	$2,000^{\text {a }}$	3,358	180	253	425	---
2003	--	1,624	1,099	1,035	103	378	117	173	157	---
2004	--	973	1,310	1,327	2,127	1,660	177	185	200	---
2005	--	874	1,084	1,611	1,111	1,423	44	179	27	---
2006	--	1,353	1,857	2,592	1,337	1,666	---	208	48	---
2007	--	620	1,265	1,301	523	707	---	86	52	---
2008	--	599	1,019	1,146	673	1,000	---	153	49	---
2009	--	692	1,109	1,672	907	1,298	---	246	72	---

[^17]
[^0]: ${ }^{1}$ In this report we use two methods of describing age. One is termed the "European Method." This method has two digits, separated by a period. The first digit represents the number of winters the fish spent in freshwater before migrating to the sea. The second digit indicates the number of winters the fish spent in the ocean. For example, a fish designated as 1.2 spent one winter in freshwater and two in the ocean. A fish designated as 0.3 migrated to the ocean in its first year and spent three winters in the ocean. The other method describes the total age of the fish (egg-to-spawning adult, i.e., gravel-to-gravel), so fish demarcated as 0.3 or 1.2 are considered 4 -year-olds, from the same brood.

[^1]: 2 It is very unlikely that observer efficiency is 100%, especially within the White River. Therefore, in 2010, tagging methods will be used to estimate sockeye escapements into spawning tributaries.

[^2]: 3 A steelhead/rainbow trout larger than 200 mm (8 in) was considered a resident trout.

[^3]: ${ }^{1}$ Unnamed tributary that drains the eastside of Chiwawa Ridge. Its confluence with the Chiwawa River is about 1 mile (1.6 km) downstream from the mouth of Phelps Creek.

[^4]: ${ }^{2}$ The study period 1992-2009 includes only 17 years of sampling because there was no sampling in 2000.
 ${ }^{3}$ The habitat use index was calculated as follows: Multiple channel use $=\left(\operatorname{parr}_{m c} / \operatorname{parr}_{t}\right) /\left(\operatorname{area}_{m c} / \operatorname{area}_{t}\right)$, where parr ${ }_{m c}$ $=$ the number of parr counted in multiple channel habitat, $\operatorname{parr}_{t}=$ the total number of parr counted within all habitat types, area $_{m c}=$ the area of multiple channel habitat within the sampling frame, and area $a_{t}=$ the total area of the sampling frame. A multiple channel use index value of 1 would indicate that parr were uniformly distributed among habitat types and exhibited no preference for multiple habitat types. Values of the use index greater than 1 indicate use of multiple channels to a greater extent than the average, while scores between 0 and 1 indicate below-average

[^5]: ${ }^{4}$ The β parameter in the Gamma model was very close to 0 , which means that this model is nearly identical to the Cushing model. The reason it did not rank higher is because it contains an extra parameter, which means that it has less bias and greater variance than the Cushing model.

[^6]: ${ }^{5}$ Because there are no estimates for probability of detecting bull trout with daytime underwater observation methods in the Chiwawa Basin, we could not adjust bull trout numbers based on detectability. Therefore, the numbers reported in this report likely underestimate the "true" number of bull trout in the survey area.

[^7]: ${ }^{1}$ Includes the lower 0.2 miles of Minnow Creek

[^8]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^9]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^10]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^11]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^12]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^13]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^14]: ${ }^{1}$ Includes lower 0.2 miles of Minnow Creek.

[^15]: ${ }^{1}$ The majority of Chinook that ascend the mid-Columbia River as adults after July spawn between October and November in the mainstem of the Columbia, Wenatchee, Methow, Similkameen and Okanogan rivers. These fish have been called "summer" and "fall" Chinook based on their migration timing past the dams. Their life histories are identical (Mullan 1987), and should be termed "late-run" to separate them from earlier running "spring" Chinook that have a different life history. For consistency with previous year's reports, only the earlier segment of the late-run (those that ascend Rock Island Dam between June 24 and September 1; "summers") will be focused on in this report.

[^16]: ${ }^{1}$ Samples taken from scale cards provided by Jeff Fryer (CRITFC)

[^17]: ${ }^{\text {a }}$ Unable to accurately count redds because of superimposition.

