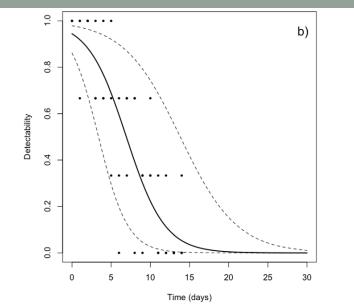


DETERMINING DISTRIBUTION OF SPRING-CHINOOK USING eDNA

Matthew B. Laramie, US Geological Survey Forest and Rangeland Ecosystem Sciences Center, Boise, Idaho; mlaramie@usgs.gov



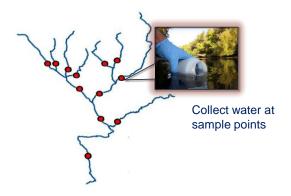
Outline

- What is eDNA? And eDNA Methodology
- Project Goals, Challenges & Accomplishments
- eDNA Sample Sites
- Integrating eDNA in CJHP
- Data Sharing
- Conclusions

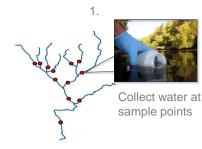
What is eDNA?

- Environmental DNA (eDNA) is dissolved or cell-bound DNA that persists in the environment
- Naturally sloughed cells, excretions, decaying tissue
- Can be collected & concentrated
- Limited persistence in freshwater
- Broken down by UV, bacterial & mechanical digestion

DNA detectability in freshwater according to time, under natural conditions (Dejean et al 2011)


What is eDNA?

- An effective, 'sight-unseen'-detection tool for aquatic systems
- Increased sensitivity over traditional methods
- Cost-effective method of monitoring habitat connectivity & species distribution
- Archived samples allow for future screening for additional species


eDNA Methodology

Direction of flow

eDNA Methodology

eDNA Methodology



2.

Filter water to concentrate DNA

eDNA Methodology

Use qPCR with speciesspecific primers & probe

2.


Filter water to concentrate DNA

eDNA Methodology 1. 2. Collect water at sample points 3. Simple points

Use qPCR with speciesspecific primers & probe

Filter water to concentrate DNA

Screen PCR product for target sequence

Project Goals

1. Develop and test molecular assay to detect presence of spring-Chinook DNA in filtered water samples

Project Goals

- 1. Develop and test molecular assay to detect presence of spring-Chinook DNA in filtered water samples
- 2. Conduct eDNA sampling throughout Methow Sub-basin
 - eDNA-based distribution vs known/modeled distributions

Project Goals

- 1. Develop and test molecular assay to detect presence of spring-Chinook DNA in filtered water samples
- Conduct eDNA sampling throughout Methow Sub-basin
 eDNA-based distribution vs known/modeled distributions
- Conduct eDNA sampling throughout Okanogan Subbasin (US & CAN)
 - Pre-hatchery release (baseline distribution)
 - Monitor re-colonization

Project Challenges & Accomplishments

- 1. Design species-specific primers & probe
- 2. Acquire library of genetic quality fin-clips
- 3. Screen against target species tissue
 Chinook (throughout geographic range)
- 4. Screen against non-target tissueClosely related fish

Project Challenges & Accomplishments Molecular assay

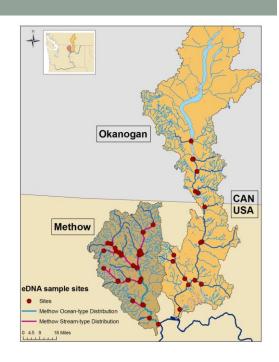
- Limitations
- Assay is species-specific
- Requires temporal and/or spatial sampling considerations to target spring-Chinook

Temporal and spatial sampling

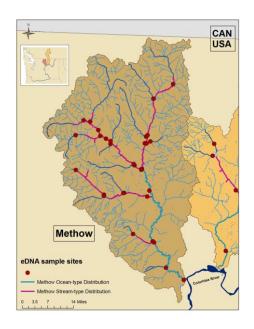
Vaseux Creek, BC CAN June 20, 2012

Temporal and spatial sampling

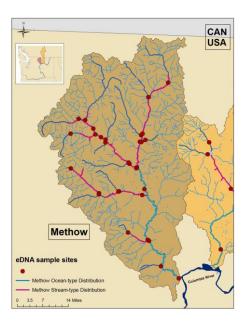
Vaseux Creek, BC CAN August 16, 2012


Temporal and spatial sampling

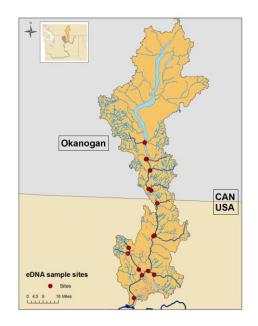
Salmon Creek, WA USA August 14, 2012


Project Goals eDNA sampling

49 Sites throughout
 Methow & Okanogan
 Sub-basins


Project Goals 2) Methow

- Purpose: demonstrate effectiveness of eDNA detection of spring-Chinook in large UCR watershed
- Sampling completed in 2012
- Analysis in progress (expected completion Spring 2013)

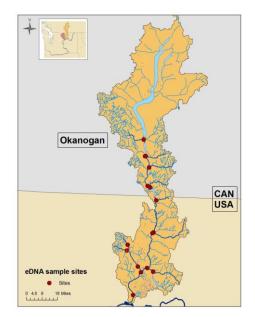

Project Goals 2) Methow

- 33 sites
- 2 sampling events
 - June-August 2012
- 3 1-L water samples per site x event = 198 total samples
- H2O temperature (C)
- GPS coordinates (UTM)

Project Goals 3) Okanogan

- Purpose: Baseline survey of spring-Chinook presence in Okanogan Sub-basin
 - pre-hatchery release
- Sampling completed in 2012
- Analysis in progress (expected completion Spring 2013)

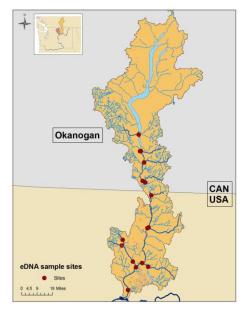
Project Goals 3) Okanogan


- 16 Sites
- 2 sampling events
 - June-August, 2012
- 3 samples per site x event
 96 total samples
- H2O temperature (C)
- GPS coordinates (UTM)

Project Goals 3) Okanogan

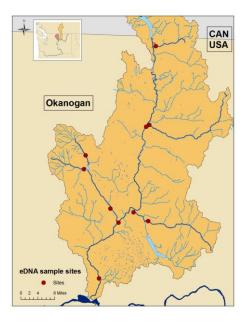
Focus

- Potential for spring-Chinook recolonization
 - Barriers
 - Habitat requirements
- Accessibility
 - Road crossings
 - Turnouts


Site accessibility

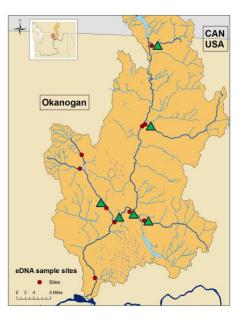
Sites easily accessible (road crossings, turnouts) Salmon Creek, WA USA

Project Goals 3) Okanogan


- Hyp: Rapid & costeffective
 - Prioritize resources & efforts
 - Monitoring

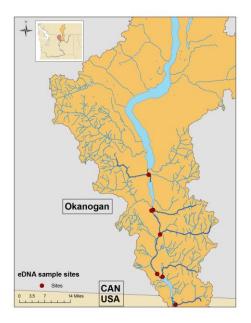
Project Goals 3) Okanogan

<u>USA</u>


- Okanogan River
- Salmon Creek
- North Fork Salmon Creek
- West Fork Salmon Creek
- Omak Creek
- Bonaparte Creek
- Nine Mile Creek

Project Goals 3) Okanogan

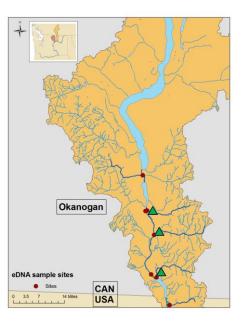
<u>USA</u>


- Okanogan River
- Salmon Creek
- North Fork Salmon Creek
- West Fork Salmon Creek
- Omak Creek
- Bonaparte Creek
- Nine Mile Creek
- ▲ = OBMEP ANNUAL SITE

Project Goals 3) Okanogan

<u>CANADA</u>

- Inkaneep Creek
- Okanogan River
- Vaseaux Creek
- Shuttleworth Creek
- Shingle Creek



Project Goals 3) Okanogan

<u>CANADA</u>

- Inkaneep Creek
- Okanogan River
- Vaseaux Creek
- Shuttleworth Creek
- Shingle Creek

NINE1 – Nine Mile Creek, at CCT pit-tag site INKA1 – Inkaneep Creek, at rd crossing OSOY1 – Okanogan River, above Lake Osoyoos

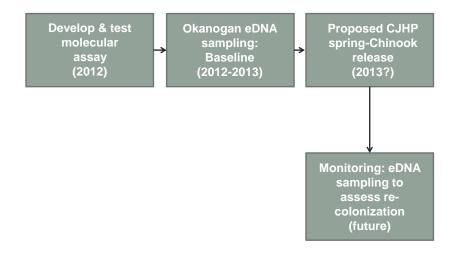
Appropriate uses of eDNA

- Presence/absence data (esp. at low density)
- · When efficiency of traditional methods reduced
 - Periods of high stream flow
 - · Difficult/unsafe to electro-fish or snorkle
 - Weir traps compromised
- Relationship: species density vs required survey effort
 - Low-density \rightarrow high-effort required to detect
 - High-density \rightarrow low-effort required to detect
 - eDNA could be useful when density is low, as alternative to investing high-effort

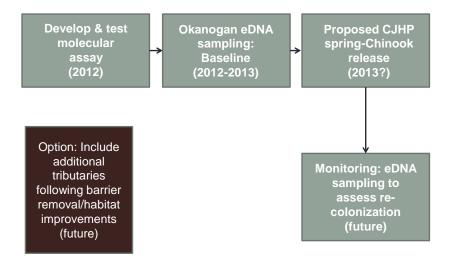
Integrating eDNA sampling to monitor CJHP spring-Chinook re-establishment

eDNA integration into CJHP

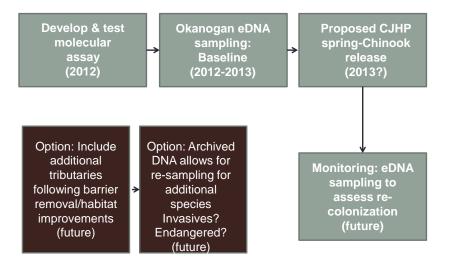
Develop & test molecular assay (2012)

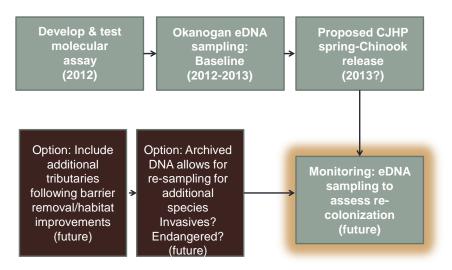

eDNA integration into CJHP

Develop & test molecular	Okanogan eDNA sampling:
assay (2012)	Baseline (2012-2013)


eDNA integration into CJHP

Develop & test molecular assay (2012) Okanogan eDNA sampling: Baseline (2012-2013) Proposed CJHP spring-Chinook release (2013?)


eDNA integration into CJHP


eDNA integration into CJHP

eDNA integration into CJHP

eDNA integration into CJHP

Collaborations

Sample site coordination

- OBMEP and WDFW
- Re-colonization potential
- Data gaps
- Ease of access

Aligned eDNA sites with OBMEP sites

• Habitat & Snorkel sites (Annual and Panel)

Coordinated with CJHP planning

Surveyed prior to proposed hatchery release

Data Management/Data Sharing

- M.S. Thesis (BSU) Summer 2013
- Peer-reviewed publications 2013+
- Conference presentations
 - BOBTWG Annual Meeting Penticton, BC March 1, 2013
 - CJHP Annual Review Bridgeport, WA. March 2013
 - AFS Western Regional Conference Boise, ID. April, 2013
 - ICCB Annual Conference Baltimore, MD. July, 2013

Data Management/Data Sharing

Annual reports

Direct access to data (GNLCC DMP)

Archived DNA samples

Stored at -20C (BSU)

USGS Grant Proposal: TESNAR -Technical Training in Support of Native American Relations

- Course Title: Applying environmental DNA (eDNA) methods for improving species detection when sampling freshwater rivers and streams
- 1 Day workshop (class & in-field)

Conclusions

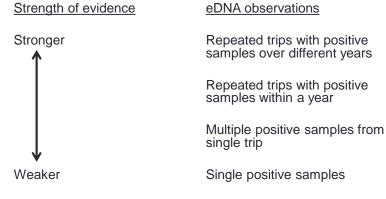
 eDNA may be a sensitive method for detection of spring-Chinook



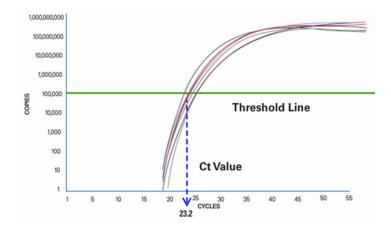
Conclusions

- Could allow for rapid, cost-effective surveys
 - Presence/absence
 - Re-colonization
 - Prioritize resources

Conclusions


Archived samples allow for additional species detection

SUPPLEMENTAL MATERIAL


Inference with eDNA detection

Gradient of evidence for species presence

(Jerde et al 2011)

Quantitative PCR (qPCR)

(www.appliedbiosystems.com)

Cytochrome oxidase subunit I (COI)

mtDNA - Mitochondrial

- higher copy number
- Relatively conserved region
 - Low variation within species
 - Suitable variation between species

Many sequences available (GenBank)

- 232 chinook sequences available
 - Sampled throughout range

(Rasmussen et al 2010, Rasmussen et al 2009)

Advantages of qPCR for eDNA

· Reduced potential for false positive results

A T C T G A C A T A C G A C T T G C C A T C A G T A T A G T T G A C A C C

(Thomsen et al 2011)

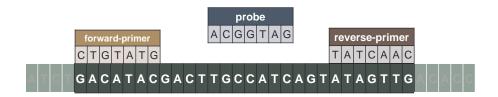
Advantages of qPCR for eDNA

Reduced potential for false positive results

GACATACGACTTGCCATCAGTATAGTTGACA

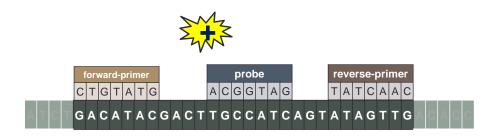
(Thomsen et al 2011)

Advantages of qPCR for eDNA


Reduced potential for false positive results

(Thomsen et al 2011)

Advantages of qPCR for eDNA


· Reduced potential for false positive results

(Thomsen et al 2011)

Advantages of qPCR for eDNA

Reduced potential for false positive results

(Thomsen et al 2011)

Advantages of qPCR for eDNA

- · Reduced potential for false positive results
- No post-PCR processing
- Turn around time, sample throughput

(Thomsen et al 2011)

Studies using eDNA methods

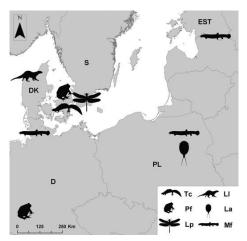
 American Bullfrog in lentic environments (Ficetola et al 2008)

Studies using eDNA methods

• Asian Carp in large canal systems (Jerde et al 2011)

Studies using eDNA methods

 Rocky Mountain Tailedfrog & Idaho Giant Salamander in headwater streams


(Goldberg, C. , Pilliod, D., Arkle, R. , Waits, L., 2011)

Studies using eDNA methods

- Spadefoot toads
- Great Crested Newts
- weather loach
- dragonflies
- Eurasian otter
- Fairy shrimp (Thomsen et al 2011)

Monitoring endangered freshwater biodiversity using environmental DNA

(OK1) Okanogan River - Gauging station above Monse, WA

SAL1 – Salmon Creek, at Spring Creek Rd. OK2 – Okanogan River, above Salmon Creek confluence

WFSAL1 – West Fork Salmon Creek, at 'State Lands' sign NFSAL1 – North Fork Salmon Creek, at Cottonwood CG

OMAK1 – Omak Creek at turnout by mill OMAK2 – Omak Creek above Mission Falls

OK3 – Okanogan River, below Bonaparte Creek BONA1 – Bonaparte Creek, at Bretz Rd.

NINE1 – Nine Mile Creek, at CCT pit-tag site INKA1 – Inkaneep Creek, at rd crossing OSOY1 – Okanogan River, above Lake Osoyoos

VAS1 – Vaseux Creek, at HWY 97

SKAHA1 – Okanogan River, below Skaha Lake SHUT1 – Shuttleworth Creek, at HWY 97 SHING1 – Shingle Creek, at eCommunity Building